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Hidden Markov Model Based Classification of
Natural Objects in Aerial Pictures

Mohamed El Yazid Boudaren, Abdenour Labed, AdekBmulfekhar, Yacine Amara

Abstract—In this paper, we propose a new probabilistic
approach designed for supervised classification ohatural
objects (vegetal and mineral) in high resolution agal pictures.
It consists of a two layered hidden Markov models HMM)
based approach which takes into account the spatiabrrelations
between natural objects. The performance of our apgach has
been tested on real world high resolution aerial gitures, and the
obtained results demonstrated its effectiveness cqared to
those presented in the literature.

Index Terms— 2D-HMM, Hidden Markov models HMM,
Natural Objects Recognition.

I. INTRODUCTION

This work is part of a more global one that cossist
creating virtual environments from aerial pictucesnbined
with altimetry data. In such environments, whildtigg too
close to the ground, one has to solve the problelimaed
textural resolution. So, these textures have tarbplified to
get more realistic scenes and immerse the uséisrvirtual
world. Amplification must take account of objectgure. For
instance, grass and roads are not amplified irsémee way.
Hence, a classification of pixels in the picture sinbbe
performed in order to exploit efficiently these fpi@s in a
virtual reality framework.

Classification of natural objects (mineral or vedetn
aerial pictures can be seen as a missing datagmobkince we
need to assign each pixel to a missing (hiddessaénatural
objects. In this paper, we consider a supervisasktication
and assume existence of spatial correlations betwatural
objects present in the area of interest.

II. RELATED WORKS

Premozeet al [1] performed a classification of terrain in a

mountainous region from grey level aerial pictudfsa
slightly lower resolution than those we worked offithey
adopted a features vector of eight components $orifee
each pixel. First, they used data in the aeriatupés to
estimate density distributions of the classes.
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Then, a Bayesian classifier is used for segmemtatif
pictures. But, their approach has some drawbadkse  is
based on a pixel piecewise classification. Indesahtial
dependencies are considered only for immediate
neighborhood, which is insufficient to recognizenqaex
textures, so, broader neighborhoods are neces&asides,
only dependencies within the same class are takém i
account and natural objects are supposed to béalbpat
uncorrelated which is generally incorrect. Thisiasly
affects the classification accuracy, especially nwhbe
segmentation concerns a unique region.

In this paper we propose a HMM based approach dedig
for supervised classification of natural objects high
resolution aerial images.

Hidden Markov Models (HMM) have long been used to
efficiently model uni-dimensional data (sequencet o
symbols), in particular in speech recognition systeIn
theory, HMMs can be also applied to multi-dimensiaata.
However, the complexity of the algorithms grows
exponentially in higher dimensions, so that, evan i
dimension 2, the use of plain 2D-HMM becomes pribivid
in practice [2].

2D-HMM is defined in a similar way to 1D-HMM. The
output observation is an array of symb@lg which are
emitted in accordance with the current stgjeFor instance,
the pixels of an image scanned using a line bydndering. In
such model, the classical linear dependency iscepl by a
double dependency which doesn't allow the factdioraof
computation as in 1D-HMM. This leads to an expoiant
increase in the amount of computation that is neddethe
regular Baum-Welch and Viterbi algorithms. For tteason,
the use of plain 2D-HMM is unaffordable in practice

Many approaches have been proposed to overcome the
complexity problem of 2D-HMMs [3]. One of the eadi
versions of such approaches is described in [4thvhses a
1D-HMM to model horizontal bands of face imagesnére
elaborate idea consists in extracting 1D featurgsod the
image or video, and model these features with omeooe 1D
models [5].

Another approach uses a two-level model, called
Embedded HMM, where a first high level model comsai
super-states associated with a low level HMMs, twinnodel
the lines of the observed image [6]. The main diaathge of
these approaches is that they greatly reduce thicale
dependencies between states, as it is only achtbvedgh a
single super-state.

In this work, we propose an efficient model thavids the
exponential complexity of regular 2D-HMM while takj
account of both horizontal and vertical dependenuiihin
the aerial picture. Our model is two-layered: tighbr layer
comprises a unique HMM constituted of super states
associated with one low level HMM each. This madiéers
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from embedded HMM in the sense that it deals wittelp
blocks instead of pixel lines as elementary symbaither

b (ke k) =0 (k) Xb (k) X0y k)*b (k). (1)

difference is that our high level HMM whose states

correspond to natural objects is ergodic. Thisvadlais to
model natural objects dependencies more accurately.

I1l. HMM MODELING

Given the fact that there are two kinds of intécms,
correlations within the same object and correlaibatween
objects, we considered a two layered probabilietidel. One
lower layer constituted of as many HMMs as the neirrdif
object classes, to represent the local dependenaies a
higher one of a unique HMM, to represent the glalreds.

The training of our model has been done in two step

firstly, the low level HMMs are trained on unitexdal

This assumption does not considerably affect tipeaarh
validity sinceH, S andV components are supposed to be
independent.

Each low level HMM is trained on a unitextured ireag
(128 x 128 pixels). First of all, we used K-mealgoethm to
perform an unsupervised classification of the impogels.
This constitutes a pre-processing operation thats afo
determine the appropriate states number of thesponding
low level HMM. Then, we achieved the learning prxe
using Baum-Welch algorithm.

Identifying the texture class of a given unitextlimage
amounts to determining the low level HMM that maizies

pictures. Secondly the high level one is trained othe probability of generating the observation seqaeof this
multitextured pictures of the same region usingﬂmameters image_ Thus, to assign an image to a given C|55$;Qmpute
of HMMs of the first step, according to Baum-Welchhe probability of its generation from each loweeHMM.
algorithm with slight modifications. The image is then assigned to the natural objesisdl for

It is stated that there is no systematic recipeaftapting Which the conditional probabilitP (O/4) is maximal. The
HMM to a specific application. Furthermore, to getcomputation of this probability involve®ackward and

satisfactory results, one has to operate accuraklgach
phase of the classification system designing: featector
choice, modeling, learning and recognition.

A. Features Vector Choice

For a good modeling, one has to determine the textnd
color features that are most relevant for the @édtabject
analysis and learning. Computed at each pixel etivatues
are the only information the learning and clasatin
algorithms have.

Although HMM constitute a very efficient tool of afial
correlation modeling, we included in the featurester a
spatiality information.

After a set of testdiSVis chosen for color space and the

gradient norm of component for spatiality information.
Hence, our features vector is constituted of fmmponents.
That we denoté;, k,, ks andk,.

HSVis a very appropriate choice for color space sitxe

component$d, SandV are uncorrelated, which is crucial as it

will be explained in the next sections.

B. Lower Layer Modeling

To enable our classifier to recognize unitextuneges
(pixel blocks eventually), we considered as many level
HMMs as the number of texture classes. The totastitntes
the lower layer of our global model.

In this section, the image is considered one diieas To
extract the observation sequence, the image isisddime by
line, from left to right and right to left altermagly, to avoid
providing the program with false dependencies betwo
successive pixels.

Let a low level HMM bei = (n, A, B). We denote the

symbols se¥=V* with V= {0, 1...255}while the states set is

denoteds ={s, $...5}. Attimet the system state ¢gand the
observation i©..

Given the fact that each pixel is described by four

components, which raises the number of possibléeigmper

state to 258 a problem arises if we achieve our modeling in a

classical way. That is why we replacdmatrix by four

matrixesB,, By, B; andB,. Each one is estimated separately,

considering only one component each time. We asshate

ISBN:978-988-98671-9-5

forward functions.

C. Higher Layer Modeling

This layer consists of a unique high level HMM whic
models dependencies between different natural tshjec
(fig.1). To classify aerial pictures, this modebperates with
lower layer models.

First, let us enumerate the main elements of itjie level
HMM A = (7, A B).

* Symbols are here blocks of (3x3), i.e. a symbal is
sequence of 9 pixels with four components eachinie
t observatior0,= (O3, O»...Q.9) L Z= YPwith Y=V*,

e StatesS={S, S, ...}, each state corresponds
to a natural object. At instahtthe image state is denoted
g Pixels block are considered unitextured sinceheac
block is emitted by a state (textured object class)

* A, N Matrix: a; represents the probability that the
system evolves from stafgto stateS. This corresponds
also to the probability that the current pixels dio
belongs to object class ‘i’ given that the previdaisck
belongs to clasg’:

» B matrix: b (k) represent the probability of emitting
symbol z (9 pixels block) given that the system current
state is5. More explicitly, it is the probability of emittin
the 9 pixels block from the low level HMM
corresponding to the same natural object as Sale
our method, the lower layer of the model will intene
here to computé; (k) instead of estimating matr& as
usually done.

Fig. 1 — Sample of a five classes high level HM~ictre
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The observation sequence is extracted in a simitarto
that of the lower layer. Instead of lonely pixedach pixel is
considered with its 8-neighborhood. Thus, to cfgssiixel,
we process it with its 8 direct neighbors, assunaiagh time
that the block central pixel belongs to the sanas<las its
neighbors. This will provide more information abdexture,
which can improve the recognition rate. The outcarthis
assumption about neighborhood homogeneity is larsiace
we use overlapping blocks (fig. 2). A differentatment is
devoted to the pixels of image boundary.

To estimate high level HMM parameters, we used
Baum-Welch algorithm on which we performed inghfS

modifications we performed in order to take inte@mt the
lower layer models.

Once these values calculated, the high level moaglall
the necessary parameters to find out the optiratdspath. In
fig. 2 case, decoding consists in determir@hg (0, G, k)
from Sthat maximizes the probability:

P((Otl’otZ’OIS) = (01'02'03)/(qt1'qt2'qt3) = (qlquYqS)) .

Finally, as eacly; corresponds to a natural object, finding
out the optimal states path leads to identify gikeM andN.

Note that the computational complexity of this mode
remains low: we explore each block of pixels onhg®, for
ach block, we only have to consider all possibfees states
(associated t@) and comput® (O./4;) for each. This only
increases linearly (not exponentially) the modehptexity.

D. Model Complexity

In fact, B matrix is not estimated. To compute the value of |, this section. we provide an illustrative examideshow

bi(k), we resort to low level HMM corresponding to nalur
object j'.
Therefore,

bj (k):P(q :Zk/q :SJ)Higher:P(O:Zk//‘j )Lower (2)

Unlike the lower layer HMM, where each symbol (pjxe
was ascribed to a class separately using the eicuaf
P (O/4%) each instant, in the higher layer, the clasdificaof
an aerial picture pixels considers the whole petlindeed,
the aerial picture is classified usinterbi algorithm which
determines the optimal states path that betteramelthe
symbols (blocks) emission. Pixels are not attridtteclasses
till the whole image is processed. This enablesnoodel to
better perceive the picture. In fact, when analyziocal
features in a small region taken lonely, it is stmes
difficult even for a human to tell what the imageabout [7].

To better understand the classification processs le
consider fig. 2 where lettefs B...Y represent pixels. For the
sake of simplicity, we only consider pixels:M andN.

First, the observation sequen€® = (O, O, O is
extracted. Note thad,, O, andO; correspond to pixels, M
andN respectively (taken with their 8-neighbors each).

that our algorithm exhibits only moderate compuoitazi
complexity.

Let’s consider an aerial image of lengitland widthw, let
T=L.W be the number of picture pixels. To classify these
pixels, we start by extracting the observation sege. It
consists ofT pixel blocks of 9 pixels each.

0=0,,0,,.0,,..0;.

with o, =(0,,0,,...0, )-

To assign each pixel of the picture to a classuse the
Viterbi algorithm applied to the observation sequeen
according to the high level HMM. Before we can gppl
Viterbi algorithm, we need to compute for each sgmb
(pixels block)O, and each super stafe (associated to low
level HMM 4;) the probability P (O=Cx /4). As this
computation involvesN low level HMMs of n states each
applied to 9 pixels sequences, its complexity ondeof:
(N.T.(9m)). For our experimentatioN=20 andn=3 for most
low level HMMs.

The previous calculation provides us with tBematrix
values necessary to the application of Viterbi etgm. Now,
we apply the decoding algorithm in a 1D-HMM contéiis

For each oDy, O, and O, the observation sequence to pépplication has a complexity dk{.T). This raises our model

introduced to low level HMMs is obtained by scamnaach
local block column by column and not line by lifiderefore,
we deal with vertical dependencies within the saitoek and
horizontal ones between blocks.

Second, for each symb0| (I=1, 2, 3) and each statg we
compute by (O) =P (O=O/g= S) which is given by
P (0=0/4) with 4; being the HMM corresponding to natural
object of state§ (fig. 3).
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Fig. 2 — observation sequence extraction
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complexity to [T (ONr2+N2)]. The complexity remains linear
with the sequence lengih

beras{Ox)= ?

Higher layer

Lower layer

2
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Fig. 3 — Cooperation between higher and lower layer
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IV. EXPERIMENTAL RESULTS

For our experiments, we used real world aerialupés
(like fig. 4) of a relatively large area, with asodution of 50
centimeters.

For unitextured pictures, the correct classifiaatiate
obtained by low level HMMs on a set of 600 pictuf@®
pictures of 32x32 pixels per object class) wa83iL7%.

To visually appreciate the multitextured pictures
classification quality, we reconstituted some dfaesh
pictures according to class index of each pixehfgociating
a unique color with each class like in fig. 5.

Our results were then used to generate virtuataative
3D-scene. This showed that our classifier was dble
satisfactorily reproduce the original terrain.

However, the presence of shadow in several picturs
the classification accuracy.

V. CONCLUSION

Designing our model with two layers to take accooht Fig. 5 — Reconstituted picture
dependencies between natural objects improvedfidation
accuracy.

Although our model considers aerial picture one
dimensional, it takes account of both pixels vaitic . b Wiliam B. Th d Peter ShBsospecifi

H H : Imon Premoze, Willlam bB. ompson an eter Specific
dependenc[es throth low level HMMs ?SSOCIated_ wi rendering of Alpine terrainRendering Techniques'99, Proceedings of
natural object classes and natural objects ho@tont  the Eurographics Workshop in Granada, 1999,Spring99, pp
dependencies through high level HMM. This constua 107-118.

good tradeoff between classification accuracy amget [2] Levin, E; Pieraccini, R..Dynamic planar warping for optical
Complexity of the model character recognitionlEEE International Conference on Acoustics,

Speech and Signal Processing, Volume 3, 23-26 MEgeR, pp.149 —

REFERENCES

The use of overlapping blocks offers our classitiee 152
opportunity to deal with sufficient amount of infoation [3] M. A. Mohamed and P. GadetGeneralized hidden Markov
without reducing the original aerial picture regio. modelsPart I: Theoretical Frameworks, IEEE TransactionRuzzy

; systems, February 2000, Vol.8, No.1, pp.67-81.
To solve shadow prObIem’ one can have recoursesttyf [4] Samaria, Ferdinando and Fallsiderank face identification and

detect shadow pixels as a preliminary step, arat fiteem feature extraction using hidden Markov mogédisage Processing:

separately via a module devoted to this purpose. Theory and Applications, Elsevier, 1993, pp 295-298

[5] M. Brand, N. Oliver and A. Pentlan@pupled hidden Markov models
for complex action recognitionin Proceedings, CVPR, pages
994--999. |[EEE Press, 1997.

[6] S. Fine, Y. Singer, N. Tishb¥he hierarchical hidden Markov model:
Analysis and applicationdachine Learning 32(1998).

[7] Bernard Merialdo, Joakim Jiten, Eric Galmar, Benditet, A new
approach to probabilistic image modeling with mdilthensional
hidden Markov models Adaptive multimedia retrieval2006,
pp.95-107.

Fig. 4 — Aerial picture sample (50cm per pixel)
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