
 
 

 

  
Abstract—In this paper, we propose a new probabilistic 

approach designed for supervised classification of natural 
objects (vegetal and mineral) in high resolution aerial pictures. 
It consists of a two layered hidden Markov models (HMM) 
based approach which takes into account the spatial correlations 
between natural objects. The performance of our approach has 
been tested on real world high resolution aerial pictures, and the 
obtained results demonstrated its effectiveness compared to 
those presented in the literature.  
 

Index Terms— 2D-HMM, Hidden Markov models HMM, 
Natural Objects Recognition.  
 

I. INTRODUCTION 

This work is part of a more global one that consists in 
creating virtual environments from aerial pictures combined 
with altimetry data. In such environments, while getting too 
close to the ground, one has to solve the problem of limited 
textural resolution. So, these textures have to be amplified to 
get more realistic scenes and immerse the user in this virtual 
world. Amplification must take account of objects nature.  For 
instance, grass and roads are not amplified in the same way. 
Hence, a classification of pixels in the picture must be 
performed in order to exploit efficiently these pictures in a 
virtual reality framework.  

Classification of natural objects (mineral or vegetal) in 
aerial pictures can be seen as a missing data problem, since we 
need to assign each pixel to a missing (hidden) class of natural 
objects. In this paper, we consider a supervised classification 
and assume existence of spatial correlations between natural 
objects present in the area of interest.  

II.  RELATED WORKS 

 Premoze et al. [1] performed a classification of terrain in a 
mountainous region from grey level aerial pictures of a 
slightly lower resolution than those we worked on.  They 
adopted a features vector of eight components to describe 
each pixel. First, they used data in the aerial pictures to 
estimate density distributions of the classes. 
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 Then, a Bayesian classifier is used for segmentation of 
pictures. But, their approach has some drawbacks, since it is 
based on a pixel piecewise classification. Indeed, spatial 
dependencies are considered only for immediate 
neighborhood, which is insufficient to recognize complex 
textures, so, broader neighborhoods are necessary.  Besides, 
only dependencies within the same class are taken into 
account and natural objects are supposed to be spatially 
uncorrelated which is generally incorrect. This seriously 
affects the classification accuracy, especially when the 
segmentation concerns a unique region.  

In this paper we propose a HMM based approach designed 
for supervised classification of natural objects in high 
resolution aerial images. 

Hidden Markov Models (HMM) have long been used to 
efficiently model uni-dimensional data (sequences of 
symbols), in particular in speech recognition systems. In 
theory, HMMs can be also applied to multi-dimensional data. 
However, the complexity of the algorithms grows 
exponentially in higher dimensions, so that, even in 
dimension 2, the use of plain 2D-HMM becomes prohibitive 
in practice [2]. 

2D-HMM is defined in a similar way to 1D-HMM. The 
output observation is an array of symbols Oxy which are 
emitted in accordance with the current state qxy. For instance, 
the pixels of an image scanned using a line by line ordering. In 
such model, the classical linear dependency is replaced by a 
double dependency which doesn’t allow the factorization of 
computation as in 1D-HMM. This leads to an exponential 
increase in the amount of computation that is needed for the 
regular Baum-Welch and Viterbi algorithms. For this reason, 
the use of plain 2D-HMM is unaffordable in practice. 

Many approaches have been proposed to overcome the 
complexity problem of 2D-HMMs [3]. One of the earliest 
versions of such approaches is described in [4] which uses a 
1D-HMM to model horizontal bands of face images. A more 
elaborate idea consists in extracting 1D features out of the 
image or video, and model these features with one or more 1D 
models [5]. 

Another approach uses a two-level model, called 
Embedded HMM, where a first high level model contains 
super-states associated with a low level HMMs, which model 
the lines of the observed image [6]. The main disadvantage of 
these approaches is that they greatly reduce the vertical 
dependencies between states, as it is only achieved through a 
single super-state. 

In this work, we propose an efficient model that avoids the 
exponential complexity of regular 2D-HMM while taking 
account of both horizontal and vertical dependencies within 
the aerial picture. Our model is two-layered: the higher layer 
comprises a unique HMM constituted of super states 
associated with one low level HMM each. This model differs 
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from embedded HMM in the sense that it deals with pixel 
blocks instead of pixel lines as elementary symbols. Another 
difference is that our high level HMM whose states 
correspond to natural objects is ergodic. This allows us to 
model natural objects dependencies more accurately.  

III.  HMM  MODELING 

  Given the fact that there are two kinds of interactions, 
correlations within the same object and correlations between 
objects, we considered a two layered probabilistic model. One 
lower layer constituted of as many HMMs as the number of 
object classes, to represent the local dependencies, and a 
higher one of a unique HMM, to represent the global ones.   

The training of our model has been done in two steps: 
firstly, the low level HMMs are trained on unitextured 
pictures. Secondly the high level one is trained on 
multitextured pictures of the same region using the parameters 
of HMMs of the first step, according to Baum-Welch 
algorithm with slight modifications. 

It is stated that there is no systematic recipe for adapting 
HMM to a specific application. Furthermore, to get 
satisfactory results, one has to operate accurately at each 
phase of the classification system designing: feature vector 
choice, modeling, learning and recognition. 

A. Features Vector Choice 

For a good modeling, one has to determine the texture and 
color features that are most relevant for the natural object 
analysis and learning. Computed at each pixel, these values 
are the only information the learning and classification 
algorithms have.  

Although HMM constitute a very efficient tool of spatial 
correlation modeling, we included in the features vector a 
spatiality information.   

After a set of tests, HSV is chosen for color space and the 
gradient norm of component V for spatiality information. 
Hence, our features vector is constituted of four components. 
That we denote k1, k2, k3 and k4. 

HSV is a very appropriate choice for color space since its 
components H, S and V are uncorrelated, which is crucial as it 
will be explained in the next sections. 

B. Lower Layer Modeling 

To enable our classifier to recognize unitextured images 
(pixel blocks eventually), we considered as many low level 
HMMs as the number of texture classes. The total constitutes 
the lower layer of our global model.  

In this section, the image is considered one dimensional. To 
extract the observation sequence, the image is scanned line by 
line, from left to right and right to left alternatively, to avoid 
providing the program with false dependencies between two 
successive pixels. 

Let a low level HMM be ( )BA,,πλ = . We denote the 

symbols set Y=V4 with V= {0, 1…255} while the states set is 
denoted S = {s1, s2…sn}. At time t the system state is qt and the 
observation is Ot.  

Given the fact that each pixel is described by four 
components, which raises the number of possible symbols per 
state to 2564, a problem arises if we achieve our modeling in a 
classical way. That is why we replaced B matrix by four 
matrixes B1, B2, B3 and B4. Each one is estimated separately, 
considering only one component each time. We assume that: 

).,(),(),(),(),,,( 443322114321 kjbkjbkjbkjbkkkkbj ×××=
 

(1) 

This assumption does not considerably affect the approach 
validity since H, S and V components are supposed to be 
independent. 

Each low level HMM is trained on a unitextured image 
(128 x 128 pixels). First of all, we used K-means algorithm to 
perform an unsupervised classification of the image pixels. 
This constitutes a pre-processing operation that aims to 
determine the appropriate states number of the corresponding 
low level HMM. Then, we achieved the learning process 
using Baum-Welch algorithm. 

Identifying the texture class of a given unitextured image 
amounts to determining the low level HMM that maximizes 
the probability of generating the observation sequence of this 
image. Thus, to assign an image to a given class, we compute 
the probability of its generation from each low level HMM. 
The image is then assigned to the natural object class ‘i’  for 
which the conditional probability P (O/λi) is maximal. The 
computation of this probability involves backward and 
forward functions. 

C. Higher Layer Modeling 

This layer consists of a unique high level HMM which 
models dependencies between different natural objects 
(fig.1). To classify aerial pictures, this model cooperates with 
lower layer models.  

 First, let us enumerate the main elements of the high level 
HMM   

• Symbols are here blocks of (3x3), i.e. a symbol is a 
sequence of 9 pixels with four components each. At time 
t observation Ot = (Ot,1, Ot,2…Ot,9) ∈  Z= Y9 with Y=V4. 

• States: S = {S1, S2, S3 …SN}, each state corresponds 
to a natural object. At instant t, the image state is denoted 
qt. Pixels block are considered unitextured since each 
block is emitted by a state (textured object class). 

• A [N, N] matrix: aij represents the probability that the 
system evolves from state Si to state Sj . This corresponds 
also to the probability that the current pixels block 
belongs to object class ‘i’ given that the previous block 
belongs to class ‘j’. 

• B matrix: bj (k) represent the probability of emitting 
symbol zk (9 pixels block) given that the system current 
state is Sj. More explicitly, it is the probability of emitting 
the 9 pixels block from the low level HMM 
corresponding to the same natural object as state Sj. In 
our method, the lower layer of the model will intervene 
here to compute bj (k) instead of estimating matrix B as 
usually done. 

                

Fig. 1 – Sample of a five classes high level HMM structure 
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The observation sequence is extracted in a similar way to 
that of the lower layer. Instead of lonely pixels, each pixel is 
considered with its 8-neighborhood. Thus, to classify a pixel, 
we process it with its 8 direct neighbors, assuming each time 
that the block central pixel belongs to the same class as its 
neighbors. This will provide more information about texture, 
which can improve the recognition rate. The outcome of this 
assumption about neighborhood homogeneity is limited since 
we use overlapping blocks (fig. 2). A different treatment is 
devoted to the pixels of image boundary. 

To estimate high level HMM parameters, we used 
Baum-Welch algorithm on which we performed slight 
modifications we performed in order to take into account the 
lower layer models.  

In fact, B matrix is not estimated. To compute the value of 
bj(k), we resort to low level HMM corresponding to natural 
object ‘j’.  

Therefore, 

( ) ( ) ( )
LowerjkHigherjtktj zOPSqzOPkb λ=====  (2) 

Unlike the lower layer HMM, where each symbol (pixel) 
was ascribed to a class separately using the evaluation of          
P (O/λi) each instant, in the higher layer, the classification of 
an aerial picture pixels considers the whole picture. Indeed, 
the aerial picture is classified using Viterbi algorithm which 
determines the optimal states path that better explains the 
symbols (blocks) emission. Pixels are not attributed to classes 
till the whole image is processed. This enables our model to 
better perceive the picture. In fact, when analyzing local 
features in a small region taken lonely, it is sometimes 
difficult even for a human to tell what the image is about [7]. 

To better understand the classification process, let’s 
consider fig. 2 where letters A, B…Y represent pixels. For the 
sake of simplicity, we only consider pixels: L, M and N. 

First, the observation sequence O = (O1, O2, O3) is 
extracted. Note that O1, O2 and O3 correspond to pixels L, M 
and N respectively (taken with their 8-neighbors each). 

For each of O1, O2 and O3, the observation sequence to be 
introduced to low level HMMs is obtained by scanning each 
local block column by column and not line by line. Therefore, 
we deal with vertical dependencies within the same block and 
horizontal ones between blocks. 

Second, for each symbol Ol (l=1, 2, 3) and each state Sj we 
compute bj (Ol) =P (Ot=Ol/qt= Sj) which is given by                    
P (O=Ol /λj) with λj being the HMM corresponding to natural 
object of state Sj (fig. 3). 

 

         
 

Fig. 2 – observation sequence extraction 

Once these values calculated, the high level model has all 
the necessary parameters to find out the optimal states path. In 
fig. 2 case, decoding consists in determining Q = (q1, q2, q3) 
from S that maximizes the probability: 

( ) ( ) ( ) ( )( ) .,,,,/,,,, 321321321321 qqqqqqOOOOOOP tttttt ==  

Finally, as each qi  corresponds to a natural object, finding 
out the optimal states path leads to identify pixels L, M and N. 

Note that the computational complexity of this model 
remains low: we explore each block of pixels only once, for 
each block, we only have to consider all possible super states 
Sj (associated to λj) and compute P (Ok /λj) for each. This only 
increases linearly (not exponentially) the model complexity. 

D. Model Complexity 

In this section, we provide an illustrative example to show 
that our algorithm exhibits only moderate computational 
complexity. 

Let’s consider an aerial image of length L and width W, let 
T=L.W be the number of picture pixels. To classify these 
pixels, we start by extracting the observation sequence. It 
consists of T pixel blocks of 9 pixels each.  

.,...,..., 21 Tk OOOOO =  

With      ( ).,...,
921 kkkk OOOO =  

To assign each pixel of the picture to a class, we use the 
Viterbi algorithm applied to the observation sequence 
according to the high level HMM. Before we can apply 
Viterbi algorithm, we need to compute for each symbol 
(pixels block) Ok and each super state Sj (associated to low 
level HMM λj) the probability P (O=Ok /λj). As this 
computation involves N low level HMMs of n states each 
applied to 9 pixels sequences, its complexity order is of: 
(N.T.(9n²)). For our experimentation N=20 and n=3 for most 
low level HMMs.  

The previous calculation provides us with the B matrix 
values necessary to the application of Viterbi algorithm. Now, 
we apply the decoding algorithm in a 1D-HMM context. This 
application has a complexity of (N².T). This raises our model 
complexity to [T (9Nn²+N²)]. The complexity remains linear 
with the sequence length T. 

                         

Fig. 3 – Cooperation between higher and lower layer 

  Snow 

Water 

   Rock 

  Grass 

 Tree 

S1 

S2 S3 

Ok 

P (O/ λGrass) 

      Grass 

Ok 

      ? 
  bGrass(Ok) 

          Higher layer 

       
bGrass(Ok)= ? P (O/λGrass) 

    Lower layer A B D E C 
F G I J H 
K L N O M 
P Q S T R 
U V X Y W 

F G H 
K L M 
P Q R 

G I H 
L N M 
Q S R 

I J H 
N O M 
S T R 

L N M 
Pixels to classify 

O1 

O2 

O3 

Observation sequence 

Image 

 

 

 

 

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008



 
 

 

IV.  EXPERIMENTAL RESULTS 

 For our experiments, we used real world aerial pictures 
(like fig. 4) of a relatively large area, with a resolution of 50 
centimeters.  

For unitextured pictures, the correct classification rate 
obtained by low level HMMs on a set of 600 pictures (30 
pictures of 32x32 pixels per object class)  was of 93,17%. 

 To visually appreciate the multitextured pictures 
classification quality, we reconstituted some classified 
pictures according to class index of each pixel by associating 
a unique color with each class like in fig. 5.  

 Our results were then used to generate virtual interactive 
3D-scene. This showed that our classifier was able to 
satisfactorily reproduce the original terrain. 

However, the presence of shadow in several pictures limits 
the classification accuracy. 

V. CONCLUSION 

Designing our model with two layers to take account of 
dependencies between natural objects improves classification 
accuracy. 

Although our model considers aerial picture one 
dimensional, it takes account of both pixels vertical 
dependencies through low level HMMs associated with 
natural object classes and natural objects horizontal 
dependencies through high level HMM. This constitutes a 
good tradeoff between classification accuracy and lower 
complexity of the model. 

The use of overlapping blocks offers our classifier the 
opportunity to deal with sufficient amount of information 
without reducing the original aerial picture resolution. 

To solve shadow problem, one can have recourse to firstly 
detect shadow pixels as a preliminary step, and treat them 
separately via a module devoted to this purpose. 

 

   

Fig. 4 – Aerial picture sample (50cm per pixel) 

 

Fig. 5 – Reconstituted picture 
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