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Abstract—This paper presents a reformulation of
Krylov Subspace Spectral (KSS) Methods, which use
Gaussian quadrature in the spectral domain com-
pute high-order accurate approximate solutions to
variable-coefficient parabolic and hyperbolic PDE.
This reformulation serves two useful purposes. First,
it improves the numerical stability of these methods
by removing cancellation arising from the approxi-
mation of certain derivatives by finite differences by
computing these derivatives analytically. Second, it
reveals that KSS methods are actually high-order op-
erator splittings that are defined implicitly, in terms
of derivatives of the nodes and weights of Gaussian
quadrature rules with respect to a parameter. Effi-
cient algorithms for computing these derivatives are
provided, as well as the first application of KSS meth-
ods to systems of coupled PDE.

Keywords: spectral methods, Gaussian quadrature,

Lanczos method, heat equation, wave equation

1 Introduction

Consider the following initial-boundary value problem in
one space dimension,

ut + Lu = 0 on (0, 2π) × (0,∞), (1)

u(x, 0) = f(x), 0 < x < 2π, (2)

with periodic boundary conditions. The operator L is a
second-order differential operator of the form

Lu = −pD2u + q(x)u, (3)

where D = ∂
∂x , p is a positive constant and q(x) is a

nonnegative (but nonzero) smooth function. It follows
that L is self-adjoint and positive definite. The exact
solution can be represented using a Fourier series if q(x) is
constant, but here we concern ourselves exclusively with
the solution of variable-coefficient problems, for which
numerical methods are necessary.
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In [9], [10] a class of methods, called Krylov subspace
spectral (KSS) methods, was introduced for the purpose
of solving these problems. It has been shown in these
references, as well as [7], [11], that KSS methods, by em-
ploying different approximations of the solution opera-
tor for each Fourier component of the solution, achieve
higher-order accuracy in time than other Krylov subspace
methods (see, for example, [6]) for stiff systems of ODE.
However, because these methods approximate derivatives
of bilinear forms using finite differences, they are prone
to numerical instability. In this paper, we address this
issue, and also demonstrate that the resulting modified
KSS methods are actually high-order operator splittings.

Section 2 reviews the main properties of KSS methods,
including algorithmic details and results concerning lo-
cal accuracy. It will be shown that KSS methods can be
reformulated as high-order operator splittings that are
implicitly defined in terms of directional derivatives of
nodes and weights of Gaussian quadrature rules. This re-
formulation, and a description of the resulting splittings,
is presented in Section 3, along with efficient algorithms
for computing the derivatives that define the splittings.
Generalization to the second-order wave equation is de-
scribed in Section 4. Section 5 briefly discusses gener-
alization to systems of coupled PDE. Section 6 features
conclusions and future directions.

2 Krylov Subspace Spectral Methods

We begin with a review of the main aspects of KSS meth-
ods. These methods are time-stepping algorithms that
compute the solution of (1), (2) at time t1, t2, . . ., where
tn = n∆t for some choice of ∆t. Given the computed
solution ũ(x, tn) at time tn, the solution at time tn+1 is
computed by approximating the Fourier components that
would be obtained by applying the exact solution opera-
tor S(t) = exp[−Lt] to ũ(x, tn). KSS methods approxi-
mate these components with higher-order temporal accu-
racy than traditional spectral methods and time-stepping
schemes. We briefly review how these methods work.

We discretize functions defined on [0, 2π] on an N -point
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uniform grid with spacing ∆x = 2π/N . With this dis-
cretization, the operator L and the solution operator
S(∆t) can be approximated by N ×N matrices that rep-
resent linear operators on the space of grid functions, and
each Fourier component of the solution can be approxi-
mated by a bilinear form

û(ω, tn+1) ≈ ê
H
ω SN(∆t)u(tn), (4)

where

[êω]j =
1√
2π

eiωj∆x, [u(tn)]j = u(j∆x, tn), (5)

and

SN (t) = exp[−LN t], [LN ]jk =

m
∑

µ=0

aµ(j∆x)[Dµ
N ]jk

(6)
where DN is a discretization of the differentiation opera-
tor D that is defined on the space of grid functions. Our
goal is to approximate (4) by computing an approxima-
tion to [ûn+1]ω = êH

ω u(tn+1) = êH
ω SN (∆t)u(tn).

In [2] Golub and Meurant describe a method for comput-
ing quantities of the form

uT f(A)v, (7)

where u and v are N -vectors, A is an N × N symmetric
positive definite matrix, and f is a smooth function. Our
goal is to apply this method with A = LN where LN

was defined in (6), f(λ) = exp(−λt) for some t, and the
vectors u and v are derived from êω and u(tn).

The basic idea is as follows: since the matrix A is sym-
metric positive definite, it has real eigenvalues

b = λ1 ≥ λ2 ≥ · · · ≥ λN = a > 0, (8)

and corresponding orthogonal eigenvectors qj , j =
1, . . . , N . Therefore, the quantity (7) can be rewritten
as

uT f(A)v =

N
∑

ℓ=1

f(λℓ)u
T qjq

T
j v. (9)

We let a = λN be the smallest eigenvalue, b = λ1 be the
largest eigenvalue, and define the measure α(λ) by

α(λ) =











0, if λ < a
∑N

j=i αjβj , if λi ≤ λ < λi−1
∑N

j=1 αjβj , if b ≤ λ

, (10)

where αj = uT qj and βj = qT
j v. If this measure is posi-

tive and increasing, then the quantity (7) can be viewed
as a Riemann-Stieltjes integral

uT f(A)v = I[f ] =

∫ b

a

f(λ) dα(λ). (11)

As discussed in [2], the integral I[f ] can be approximated
using a Gaussian quadrature rule, where the nodes and
weights can be obtained using the symmetric Lanczos
algorithm if u = v, and the unsymmetric Lanczos algo-
rithm if u 6= v (see [4]).

In the case u 6= v, there is the possibility that the weights
may not be positive, which destabilizes the quadrature
rule (see [1] for details). Therefore, it is best to handle
this case by rewriting (7) using decompositions such as

uT f(A)v =
1

δ
[uT f(A)(u + δv) − uT f(A)u], (12)

where δ is a small constant. Guidelines for choosing an
appropriate value for δ can be found in [10, Section 2.2].

Employing these quadrature rules yields the following ba-
sic process (for details see [9], [10]) for computing the
Fourier coefficients of u(tn+1) from u(tn). It is assumed
that when the Lanczos algorithm (symmetric or unsym-
metric) is employed, K iterations are performed to obtain
the K quadrature nodes and weights.

for ω = −N/2 + 1, . . . , N/2
Choose a scaling constant δω

Compute u1 ≈ êH
ω SN (∆t)êω

using the symmetric Lanczos algorithm
Compute u2 ≈ êH

ω SN (∆t)(êω + δωun)
using the unsymmetric Lanczos algorithm

[ûn+1]ω = (u2 − u1)/δω

end

It should be noted that the constant δω plays the role of δ
in the decomposition (12), and the subscript ω is used to
indicate that a different value may be used for each wave
number ω = −N/2+1, . . . , N/2. Also, in the presentation
of this algorithm in [10], a polar decomposition is used
instead of (12), and is applied to sines and cosines instead
of complex exponential functions.

This algorithm has high-order temporal accuracy, as in-
dicated by the following theorem, which was proved in

[10]. Let BLN ([0, 2π]) = span{ e−iωx }N/2
ω=−N/2+1 denote

a space of bandlimited functions with at most N nonzero
Fourier components.

Theorem 1 Let L be a self-adjoint m-th order positive
definite differential operator on Cp([0, 2π]) with coeffi-
cients in BLN ([0, 2π]). Let f ∈ BLN ([0, 2π]). Then the
preceding algorithm, applied to the problem (1), (2), is
consistent; i.e.

[û1]ω − û(ω, ∆t) = O(∆t2K),

for ω = −N/2 + 1, . . . , N/2.

The preceding result can be compared to the accuracy
achieved by an algorithm described by Hochbruck and
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Lubich in [6] for computing eA∆tv for a given matrix A
and vector v using the unsymmetric Lanczos algorithm.
As discussed in [6], this algorithm can be used to compute
the solution of some ODEs without time-stepping, but
this becomes less practical for ODEs arising from a semi-
discretization of problems such as (1), (2), due to their
stiffness.

In this situation, one can resort to time-stepping, in which
case the local temporal error is only O(∆tK), assuming
a K-dimensional Krylov subspace. The difference be-
tween KSS methods and the approach described in [6]
is that in the former, a different K-dimensional Krylov
subspace is used for each Fourier component, instead of
the same subspace for all components as in the latter.
As shown in [10], using the same subspace for all com-
ponents causes a loss of accuracy as the number of grid
points increases, whereas KSS methods do not suffer from
this phenomenon.

Unfortunately, the difference quotient used to compute
each Fourier component of the solution can be numeri-
cally unstable if δω is chosen too small, but this parame-
ter must also be chosen small enough to ensure stability
of the quadrature rules. We will now address this issue,
and realize an additional benefit in the process: opera-
tor splittings that are high-order accurate in time, and,
though explicit, possess favorable stability properties.

3 Reformulation of KSS Methods as

Splittings

From the algorithm given in the preceding section, we see
that each Fourier component [ûn+1]ω approximates the
derivative

d

dδω

[

êH
ω (êω + δωun)eT

1 exp[Tω(δω)∆t]e1

]

∣

∣

∣

∣

δω=0

(13)

where Tω(δω) is the tridiagonal matrix output by the un-
symmetric Lanczos algorithm applied to the matrix LN

with starting vectors êω and (êω + δωun) (which reduces
to the symmetric Lanczos algorithm for δω = 0). In this
section, we will compute these derivatives analytically.
This leads to an improved algorithm, henceforth referred
to as the “new formulation” of KSS methods, over the
“original formulation”, described in [11].

3.1 High-Order Splittings

For a given δω, let λω,j , j = 1, . . . , K, be the nodes of the
K-point Gaussian rule obtained by applying the unsym-
metric Lanczos algorithm to LN with starting vectors êω

and (êω + δωun). Let wω,j , j = 1, . . . , K, be the corre-
sponding weights. Then, letting δω → 0, we obtain the
following, assuming all required derivatives exist:

[ûn+1]ω = êH
ω un+1

=
d

dδω

[

êH
ω (êω + δωun) exp[−Tω(δω)∆t]11

]

∣

∣

∣

∣

δω=0

=
d

dδω

[

êH
ω (êω + δωun)

K
∑

k=1

wje
−λj∆t

]
∣

∣

∣

∣

∣

δω=0

= êH
ω un

K
∑

k=1

wje
−λj∆t +

K
∑

k=1

w′
je

−λj∆t − (14)

∆t
K
∑

k=1

wjλ
′
je

−λj∆t

where the ′ denotes differentiation with respect to δω, and
evaluation of the derivative at δω = 0. Equivalently, these
derivatives are equal to the length of un times the direc-
tional derivatives of the nodes and weights, as functions
defined on R

N , in the direction of un, and evaluated at
the origin.

It should be noted that in the above expression for [ûn+1],
the nodes and weights depend on the wave number ω, but
for convenience, whenever a fixed Fourier component is
being discussed, the dependence of the nodes and weights
on ω is not explicitly indicated.

It can be shown that the derivatives of the nodes and
weights at δω = 0 are Fourier components of pseudodif-
ferential operators applied to un. It follows that by con-
sidering all Fourier components together, we find that
KSS methods are actually high-order operator splittings
“in disguise”. These splittings have the form

exp[−L∆t] ≈
K
∑

k=1

Wke−Ck∆t[I − ∆tVk] (15)

where K is the number of quadrature nodes, and the
operators Ck and Wk are diagonal in the basis of trial
functions (e.g., a constant-coefficient operator when us-
ing Fourier series). In fact, their eigenvalues are the kth
nodes and weights, respectively. The operators Vk have
the form

Vk = C′
k + ∆t−1W−1

k W ′
k (16)

where the Fourier components of C′
ku

n and W ′
ku

n are the
derivatives of the nodes and weights with respect to δω

at δω = 0. Because e−Ck∆t → I linearly as ∆t → 0, and
∑K

j=1 Wk = I, it follows that the terms in Vk of order

O(∆t−1) cancel and pose no difficulty.

As shown in [7], splittings such as this facilitate stabil-
ity analysis of KSS methods, and such analysis demon-
strates that KSS methods represent a “best-of-both-
worlds” compromise between explicit and explicit time-
stepping methods, as they possess the stability of implicit
methods, but like explicit methods, they do not require
solution of large systems of equations. However, unlike
splitting such as the Strang splitting (see [13]), the stages
of the splitting (15) cannot easily be described in terms
of the coefficients of L. This is because they are defined
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in terms of the nodes and weights of quadrature rules,
which do not have a simple relation to the recursion co-
efficients, as they come from the eigenvalues and eigen-
vectors of Jacobi matrices. Nevertheless, these splittings
can still be implemented efficiently, as the action of the
operators Vk on a given grid function can be computed
from the derivatives of the nodes and weights. We now
discuss how to compute these derivatives.

3.2 Derivatives of the Nodes and Weights

We now show how to efficiently compute the derivatives
of the quadrature nodes and weights used in (14), using
their relationships to the matrix Tω(δω).

The nodes are the eigenvalues of Tω(δω). Because Tω(0)
is Hermitian, it follows that there exists a unitary matrix
Q0

ω such that Tω(0) = Q0
ωΛω(0)[Q0

ω]H . The eigenvalues
of Tω(0) are distinct (see [4]). Because the eigenvalues
are continuous functions of the entries of the matrix, they
continue to be distinct for δω sufficiently small, and there-
fore Tω(δ) remains diagonalizable. It follows that we can
write

Tω(δω) = Qω(δω)Λω(δω)Qω(δω)−1, (17)

where Qω(0) = Q0
ω. Differentiating (17) with respect to

δω and evaluating at δω = 0 yields

diag(Λ′
ω(0)) = diag

(

Qω(0)HT ′
ω(0)Qω(0)

)

, (18)

since all other terms that arise from application of the
product rule vanish on the diagonal. Therefore, for each
ω, the derivatives of the nodes λ1, . . . , λK are easily ob-
tained by applying a similarity transformation to the ma-
trix of the derivatives of the recursion coefficients, T ′

ω(0),
where the transformation involves a matrix, Qω(0), that
must be computed anyway to obtain the weights.

To compute the derivatives of the weights, which are the
products of the first components of the left and right
eigenvectors of Tω(δω), we consider the equation

(Tω(δω) − λjI)wj(δω) = 0, j = 1, . . . , K, (19)

where wj(δω) is an eigenvector of Tω(δω) with eigenvalue
λj , normalized to have unit 2-norm. First, we differen-
tiate this equation with respect to δω and evaluate at
δω = 0. Then, we delete the last equation and elimi-
nate the last component of wj(0) and w′

j(0) using the
fact that wj(0) must have unit 2-norm. The result is a
(K−1)×(K−1) system where the matrix is the sum of a
tridiagonal matrix and a rank-one update. This matrix is
independent of the solution un, while the right-hand side
is not. After solving this simple system, as well as a sim-
ilar one for the left eigenvector corresponding to λj , we
can obtain the derivative of the weight wj from the first
components of the two solutions. It should be noted that
although Tω(0) is Hermitian, Tω(δω) is, in general, com-
plex symmetric, which is why the system corresponding
to the left eigenvector is necessary.

3.3 Derivatives of the Recursion Coeffi-
cients

From the preceding discussion, we need the derivatives of
the entries of Tω(δω) with respect to δω, at δω = 0. To
that end, let A be a symmetric positive definite n × n
matrix and let r0 be an n-vector. Suppose that we have
already carried out the symmetric Lanczos iteration to
obtain orthogonal vectors r0, . . . , rK and the Jacobi ma-
trix TK . Now, suppose that we wish to compute the
entries of the modified matrix T̂K that results from ap-
plying the unsymmetric Lanczos iteration with the same
matrix A and the initial vectors r0 and r0 + f , where f is
a given perturbation.

In [11], an iteration that produces T̂K was presented,
based on algorithms from [3]. It was used to efficiently
obtain the recursion coefficients needed to approximate
êH

ω SN(∆t)(êω + δωun) from those used to approximate
êH

ω SN(∆t)êω . It was shown that with an efficient im-
plementation of this algorithm in Matlab, KSS meth-
ods are a viable option for solving parabolic problems
when compared to Matlab’s built-in ODE solvers, even
though the former are explicit and the latter are implicit.

In [7], this algorithm was used for a different purpose.
From the expressions for the entries of T̂K , the derivatives
of the recursion coefficients αj , j = 1, . . . , K, and βj ,
j = 1, . . . , K − 1, can be obtained by setting r0 = êω and
f = δωun. By differentiating the recurrence relations that
define T̂K with respect to δω and evaluating at δω = 0, we
obtain a Lanczos-like iteration that yields the derivatives
of the recursion coefficients αj and βj with respect to δω,
evaluated at δω = 0.

It is worth noting that because the initial vector for the
case δω = 0 is êω, the inner products needed to obtain the
derivatives of the recursion coefficients can be computed
for all ω simultaneously using appropriate FFTs. As
shown in [11], [7], the resulting time-stepping algorithm,
in either the original or the new formulation, requires
O(N log N) floating-point operations per time step.

In [8] it is shown that Theorem 1 applies to the new for-
mulation. Then, it is demonstrated that this method
yields essentially the same results as the original for-
mulation, and much greater accuracy than the standard
ODE solvers in Matlab, which implement algorithms
described in [12].

4 Application to the Wave Equation

In this section we apply KSS methods developed in [9] to
the problem

{

∂2u
∂t2 + Lu = 0 in (0, 2π) × R ,
u(0, t) = u(2π, t) on R ,

(20)
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with the initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ (0, 2π), (21)

where, as before, the operator L is as described in (3).

4.1 Solution Using KSS Methods

A spectral representation of the operator L allows us the
obtain a representation of the solution operator (the prop-
agator) in terms of the sine and cosine families generated
by L by a simple functional calculus. We introduce

R1(t) = L−1/2 sin(t
√

L), R0(t) = cos(t
√

L). (22)

These functions of L indicate which functions are the in-
tegrands in the Riemann-Stieltjes integrals used to com-
pute the Fourier components of the solution. Since the
exact solution u(x, t) is given by

u(x, t) = R0(t)f(x) + R1(t)g(x), (23)

we can obtain [un+1]ω by approximating each of the
quadratic forms

c+
ω (t) = 〈êω, R0(∆t)[êω + δωun]〉 (24)

c−ω (t) = 〈êω, R0(∆t)êω〉 (25)

s+
ω (t) = 〈êω, R1(∆t)[êω + δωun

t ]〉 (26)

s−ω (t) = 〈êω, R1(∆t)êω〉 , (27)

where δω is a nonzero constant.

We can obtain the Fourier coefficients of an approxima-
tion of ut(x, t) by approximating similar quadratic forms
(see [5] for details). As noted in [9], this approximation
to ut(x, t) does not introduce any error due to differentia-
tion of our approximation of u(x, t) with respect to t–the
latter approximation can be differentiated analytically.

4.2 Reformulation

Following the reformulation of KSS methods presented in
Section 3, we let δω → 0 to obtain

[

ûn+1

ûn+1
t

]

ω

=

(

K
∑

k=1

wk

[

ck
1√
λk

sk

−
√

λksk ck

]

)

[

ûn

ûn
t

]

ω

+

K
∑

k=1

[

ck
1√
λk

sk

−
√

λksk ck

] [

w′
k

w̃′
k

]

−

K
∑

k=1

wkt

2
√

λk

[

sk − 1√
λk

ck√
λkck sk

] [

λ′
k

λ̃′
k

]

−

wk

[

0 1
2(λk)3/2

sk
1

2
√

λk
sk 0

]

[

λ′
k

λ̃′
k

]

where ck = cos(
√

λkt), sk = sin(
√

λkt), and λ′
k and w′

k

are the derivatives of the nodes and weights, respectively,
in the direction of un, and λ̃′

k and w̃′
k are the derivatives

in the direction of un
t .

As shown in [8], this new formulation has the same order
of accuracy as the original presented in [5]. Specifically,
the error in each Fourier component is O(∆t4K), where
K is the number of nodes in each Gaussian quadrature
rule.

4.3 Numerical Results

We now compare the original formulation of KSS meth-
ods as presented in [11] with its reformulation as pre-
sented in Section 3, with the appropriate integrands used
in place of e−λt. We construct the operator L and ini-
tial data f(x) and g(x) so that coefficients and data have
three continuous derivatives. We then apply both formu-
lations to approximate the solution to (20), (21) at t = 1,
using 2-node Gaussian rules for each Fourier component
of u(x, t) and ut(x, t). As before, N = 64 grid points are
used.

Because this KSS method is 7th-order accurate in time,
very high accuracy is achieved, but as ∆t → 0, this order
of convergence is not maintained by the original formula-
tion due to catastrophic cancellation in the final step of
the computation of each component. Because this sub-
traction is not performed in the new formulation as an
implicitly-defined operator splitting, the order of conver-
gence is maintained by this reformulation for smaller val-
ues of ∆t, as we can see in Figure 1.

Figure 1 also reports the results of solving this problem
using two of Matlab’s ODE solvers, ode23s and ode45,
a higher-order accurate explicit solver that, while not a
practical option for a parabolic problem, is much bet-
ter suited to this hyperbolic one. While ode45 exhibits
slightly higher-order accuracy in this case, it is unable to
achieve reasonable accuracy for larger time steps, and this
threshold decreases as the number of grid points increases
due to the stiffness of the problem, while KSS methods
do not exhibit such sensitivity, even though they too are
explicit. This is demonstrated in [8], where the same
problem is solved with N = 128 grid points.

5 Systems of Coupled PDE

In [8], KSS methods were also applied to a system of
n coupled variable-coefficient PDE of the form ut + Lu,
where u : [0, 2π] × [0,∞) → R

n for n > 1. The operator
L is an n×n matrix where the (i, j) entry is a differential
operator Lij .

Generalization of KSS methods to such a system can
proceed as follows. For i, j = 1, . . . , n, let Lij be the
constant-coefficient operator obtained by averaging the
coefficients of Lij over the spatial domain. Then, for
each wave number ω, we define L(ω) to be the matrix
with entries equal to the symbols of each Lij evaluated
at ω. Then, we define our trial and test functions by
qj(ω) ⊗ eiωx, where qj is a Schur vector of L(ω).
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Figure 1: Estimates of relative error in the approximate
solution of problem (20), (21) at t = 1, computed with
the original KSS method from [11] with δω = 10−5 (solid
curve), the reformulated KSS method (dashed curve), the
Matlab solver ode23s (dotted-dashed curve), and ode45

(dotted curve). In both KSS methods, 2-node Gaussian
quadrature rules are used, and N = 64 grid points are
used for all methods.

As in the scalar case, this approach yields O(∆t2K) lo-
cal temporal error, where K is the number of nodes in
each Gaussian quadrature rule, even though L is not self-
adjoint. The recursion coefficients, nodes and weights can
be computed in the same manner as in the scalar, self-
adjoint case. The result is an implicitly-defined operator
splitting of the form (15). Numerical results presented in
[8] demonstrate the superior accuracy obtained by KSS
methods compared to the ODE solvers of Matlab.

6 Summary

We have demonstrated that for both parabolic and hy-
perbolic variable-coefficient PDE, a reformulation of KSS
methods that eliminates the need to perturb quadrature
rules not only improves their numerical stability, but also
reveals that these methods are actually implicitly-defined
high-order operator splittings. Although the stages of
the splitting are not easily described, efficient algorithms
for computing appropriate derivatives of the nodes and
weights allow efficient implementation of these methods.
We have also shown that KSS methods can also be read-
ily generalized to systems of coupled PDE through an
appropriate choice of trial functions, even if the opera-
tor L(x, D) is not self-adjoint. Future work will explore
the analysis, and enhancement, of KSS methods through
closer examination of the splittings they define, and varia-
tion of the parameter δω with respect to ω. Also, because
of the improved numerical stability of these methods, us-
ing a larger number of nodes is now more viable than in

the original formulation.
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