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Abstract—In our contribution, we model bank profitabil-
ity via return-on-assets (ROA) and return-on-equity (ROE) in a
stochastic setting. We recall that the ROA is an indication of the
operational efficiency of the bank while the ROE is a measure
of equity holder returns and the potential growth on their invest-
ment. As regards the ROE, banks hold capital in order to prevent
bank failure and meet bank capital requirements set by the reg-
ulatory authorities. However, they do not want to hold too much
capital because by doing so they will lower the returns to equity
holders. In order to model the dynamics of the ROA and ROE,
we derive stochastic differential equations driven by Ĺevy pro-
cesses that contain information about the value processes of net
profit after tax, equity capital and total assets. In particular, we
are able to compare Merton and Black-Scholes type models and
provide simulations for the aforementioned profitability indica-
tors.

Keywords: Stochastic Modeling; Lévy Process; StochasticDiffer-
ential Equations

1 Introduction

One of the biggest economic considerations in the 21st cen-
tury is the maintenance of a profitable banking system. The
main sources of bank profits originate from transaction fees
on financial services and the interest spread on resources that
are held in trust for clients who, in turn, pay interest on the
asset (see, for instance, [7]). In our discussion, we derivedy-
namic models for bank profitability via Lévy processes (see,
for instance, [2], [6] and [13]) appearing in a Merton-type
model (see [10] and [4]). Lévy processes are characterizedby
(almost surely (a.s.)) right-continuous paths with their incre-
ments being independent and time-homogeneous. Such pro-
cesses have an advantage over Brownian motion in that they
are able to reflect the non-continuous nature of the dynamics
of the components of bank profit. In the related Black-Scholes
model, the markets are complete but some risks cannot be
hedged. In addition, the motivation for using Lévy processes
is their flexible (infinitely divisible) distribution whichtakes
short-term skewness and excess kurtosis into account.

There are two main measures of the bank’s profitability (see
[11]). Let Ar = (Ar

t , t ≥ 0) be the process representing the
return-on-assets (ROA). In this regard, the net profit aftertaxes
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per unit of assets may be represented by

ROA (Ar) =
Net Profit After Taxes

Assets.
(1)

The ROA provides information about how much profits are
generated on average by each unit of assets. Therefore the
ROA is an indicator on how efficiently a bank is being run.
Let Er = (Er

t , t ≥ 0) be the process representing the return-
on-equity (ROE). Then the net profit after taxes per unit of
equity capital may be given by

ROE(Er) =
Net Profit After Taxes

Equity Capital.
(2)

From this relationship it follows that the lower the equity cap-
ital, the higher the ROE, therefore the owners of the bank (eq-
uity holders) may not want to hold too much equity capital.
However, the equity capital cannot be to low, because the level
of bank capital funds is subjected to capital adequacy regula-
tion. Currently, this regulation takes the form of the BaselII
Capital Accord (see [1]) that was implemented in 2007 on a
worldwide basis. Also, from [9] and [8], it follows that there
are other measures of the profitability.

The main problems addressed in this paper can be formulated
as follows.

Problem 1.1 (Modeling of Return-on-Assets):Can we de-
duce a Ĺevy process-driven model for the dynamics of the
ROA?(Proposition 3.1 in Section 3).

Problem 1.2 (Modeling of Return-on-Equity): Can we de-
duce a Ĺevy process-driven model for the dynamics of the
ROE?(Proposition 3.3 in Section 3).

The paper is structured in the following way. In Section 2
we present a brief description of the stochastic banking model
that we will consider. In the third section, we describe the
dynamics of two measures of bank profitability, viz., the ROA
and ROE. Section 4 contains numerical examples where we
compare a Lévy-process driven model with a model driven
by a Brownian motion. In Section 5, we provide concluding
remarks and we point out further research problems that may
be addressed.
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2 The Banking Model

In our model, we consider the filtered probability space
(Ω, F, (Ft)0≤t≤τ , P). As usual, we assume thatP is a
real probability measure,F = (Ft)0≤t≤τ is the natural fil-
tration,F0 is trivial andFτ = F. The jump process∆L =
(∆Lt, t ≥ 0) associated with a Lévy process,L, is defined by
∆Lt = Lt − Lt− , for eacht ≥ 0, whereLt− = lims↑t Ls is
the left limit att. Let L = (Lt)0≤t≤τ with L0 = 0 a.s. be the
cádlág version of a Lévy process. Also, we assume that the
Lévy measureν satisfies

∫

|x|<1

|x|2ν(dx) < ∞,

∫

|x|≥1

ν(dx) < ∞. (3)

Furthermore, the following definition of the Lévy-Itô decom-
position is important.

Definition 2.1 (Lévy-Itô Decomposition (see [4]))Let (Lt)
be a Ĺevy process andν its Lévy measure, given by equation
(3). Then there exist a vectorγ and a Brownian motion(Bt)
such that

Lt = γt + Bt + L
f
t + lim

ǫ↓0
Lǫ

t,

whereL
f
t is a compound Poisson process with a finite number

of terms andLǫ
t is also a compound Poisson process. However,

there can be infinitely many small jumps.

An implication of the Lévy-Itô decomposition (see [4]) isthat
every Lévy process is a combination of a Brownian motion
and a sum of independent compound Poisson processes. This
imply that every Lévy process can be approximated a jump-
diffusion process, that is by the sum of a Brownian motion
with drift and a compound Poisson process. In this paper,
we will consider Merton’s jump-diffusion model (see [10] and
[4]) of L. Thus

Lt = at + s̃Bt +

Nt∑

i=1

Yi, 0 ≤ t ≤ τ, (4)

where(Bt)0≤t≤τ is a Brownian motion with standard devi-
ation s̃ > 0, a = E(L1), (Nt)t≥0 is a Poisson process
counting the jumps ofLt with jump intensityλ. TheYi (i.i.d.
variables) are jump sizes, the distribution of the jump sizes is
Gaussian withµ the mean jump size andδ the standard devia-
tion of Yi.

A typical bank balance sheet identity consists of assets (uses
of funds) and liabilities (sources of funds), that are balanced
by bank capital (see, for instance [5]), according to the well-
known relation

Value of Assets(A) = Value of Liabilities(Γ)

+ Value of Bank Capital(K). (5)

2.1 Assets

In this subsection, we discuss bank asset price processes. The
bank’s investment portfolio is constituted bym + 1 assets in-
cluding loans, advances and intangible assets (all risky assets)
and Treasuries (riskless asset). We pick the first asset to be
the riskless Treasuries,T, that earns a constant, continuously-
compounded interest rate ofrT. Profit maximizing banks set
their rates of return on assets as a sum of the risk-free Trea-
suries rate,rT1, risk premium,µr, and the default premium,
E(d). Here the unitary vector and risk premium are given by

1 = (1, 1, . . . , 1)T andµr = (µ1, µ2, . . . , µm)T ,

respectively. Also, we have that the default premium is defined
by

E(d) = (E(d1), E(d2), . . . , E(dm))T ,{
E(di) 6= 0 i-th asset is a loan,
E(di) = 0 i-th asset is not a loan.

The sumrTt 1 + µr covers, for instance, the cost of monitoring
and screening of loans and cost of capital. TheE(d) compo-
nent corresponds to the amount of provisioning that is needed
to match the average expected losses faced by the loans. The
m assets besides Treasuries are risky and their price process,
S (reinvested dividends included), follows a geometric Lévy
process with drift vector,rT1+µr+E(d) and diffusion matrix,
σa, as in

St = S0 +

∫ 1

0

Is
s

(
rT1 + µr + E(d)

)
ds +

∫ 1

0

Is
sσadLs +

∑

0<s≤t

∆Ss1{|∆Ss|≥1}, (6)

whereIS
t denotes them × m diagonal matrix with entriesSt

andL is anm-dimensional Lévy process. Also,∆Ss is the
jump of the processS at time t > 0 and1{|∆Ss|≥1} is the
indicator function of{|∆Ss| ≥ 1}. We suppose, without loss
of generality, that rank(σa) = m and the bank is allowed
to engage in continuous frictionless trading over the planning
horizon,[0, T ]. Next, we suppose thatρ is them-dimensional
stochastic process that represents thecurrent value of risky

assets. Put µa = rT + ρT

(
µr + E(d)

)
, σA = s̃σa and

µA = µa + aσa. In this case, the dynamics of thecurrent
value of the bank’s entire asset portfolio, A, over any reporting
period may be given by
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dAt

= Atµadt + Atσa

[
adt + s̃dBA

t + d[

Nt∑

i=1

Yi

]
− rTDtdt

= At

[
µAdt + σAdBA

t + σad[

Nt∑

i=1

Yi]

]
− rTDtdt (7)

where the face value of the deposits,D, is described in the
usual way, andrTDtdt represents the interest paid to deposi-
tors.

2.2 Capital

The total value of the bank capital,K = (Kt, t ≥ 0), can be
expressed as

Kt = Kt1 + Kt2 + Kt3, (8)

whereKt1, Kt2 andKt3 are Tier 1, Tier 2 and Tier 3 cap-
ital, respectively. Tier 1 (T1) capital is the book value of
the bank’s equity,E = (Et, t ≥ 0), plus retained earnings,
ER = (ER

t , t ≥ 0). Tier 2 (T2) and Tier 3 (T3) capital (col-
lectively known assupplementary capital) is, in our case, the
sum of subordinate debt,O whereOt = exp{rt} and loan-
loss reserves,RL. However, for sake of argument, we suppose
that

Kt = Et + ER
t + Ot. (9)

ForσE = s̃σe andµE = (µe+aσe) we describe the evolution
of O andE as

dOt = r exp{rt}dt, O0 > 0 (10)

and

dEt = Et−

[
µEdt + σEdBE

t + σed[

Nt∑

i=1

Yi]

]
(11)

respectively. Whereσe, µe andBE
t are the volatility ofE,

the total expected returns onE, and the standard Brownian
motion, respectively.

2.3 Profit

Let Πn be the bank’s net profit after tax which is used to meet
obligations such as dividend payments on bank equity,δe, and
interest and principal payments on subordinate debt,(1+r)O.

Putδs = (1 + r). In this case, we may compute theretained
earnings, ER = (ER

t , t ≥ 0), as

ER
t = Πn

t − δeEt − δsOt (12)

We assume that the retained earnings remain constant during
the planning period so thatdER = 0. Therefore, the dynamics
of the net profit after tax may be expressed as

dΠn
t = δeEt−

[
µEdt + σEdBE

t + σed[

Nt∑

i=1

Yi]

]
+

δsr exp{rt}dt. (13)

3 Dynamics of ROA and ROE

In this section, we derive stochastic differential equations for
the dynamics of two measures of bank profitability, viz., the
ROA and ROE. The procedure that we use to obtain the said
equations is related to Ito’s general formula (see [13]). An
important observation about our aforegoing description ofthe
assets and liabilities of a commercial bank, is that it is sugges-
tive of a simple procedure for obtaining a stochastic model for
the dynamics of the profitability of such a depository institu-
tion. The solution of the SDE (13) is

Πn
t = ER

t + δeE0 exp

{
σEBE

t + (µE −
1

2
(σE)2)t +

σe[

Nt∑

i=1

Yi]

}
+ δs exp{rt}. (14)

3.1 Return-on-Assets (ROA)

The dynamics of the ROA (see equation (1)) may be calculated
by considering the nonlinear dynamics of the value of total
assets represented by (7) and the dynamics of the net profit
after tax given by (13). One can easily check how efficiently
a bank has been managed over a certain past time period by
monitoring the fluctuations of the ROA. A stochastic system
for the dynamics of the ROA for a commercial bank is given
below.

Proposition 3.1 (Dynamics of ROA using Merton’s
Model): Suppose that the dynamics of the value of total
assets and the net profit after tax are represented by (7) and
(13), respectively. Then astochastic system for the ROA of a
bankmay be expressed as
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dAr
t = Ar

t

[ (
δeEt(σ

E)2{(σA)2σ2

adBA
t − σ2

a} + σ2

a

+ (σA)2 − µA + [Πn
t ]−1{δeµ

EEt + δerOt}

)
dt

+

(
d[

Nt∑

i=1

Yi]δeEtσ
E{σAσadBA

t − σa}

+ [Πn
t ]−1δeσ

EEt

)
dBE

t

+

(
[Πn

t ]−1σEδeEt + σAσadBA
t − σa

+ δeEtσ
E [Πn

t ]−1dBE
t {σAσadBA

t − σa}

−δeEt[Π
n
t ]−1σEσAdBA

t

)
d[

Nt∑

i=1

Yi]

− σa dBA
t

]
. (15)

Next, we consider the special case whereLt = Bt, i.e.,∑Nt

i=1
Yi + at = 0.

Corollary 3.2 (Dynamics of ROA using Black-Scholes
Model): Suppose thatLt = Bt in equations (7) and (13).
Then astochastic system for the ROA (using Black-Scholes
model) of a bankmay be expressed as

dAr
t = Ar

t

[
{σ2

a − µr + [Πn
t ]−1(δeµeEt + δsrOt)}dt

+ [Πn
t ]−1δeσeEt dBE

t − σa dBA
t

]
. (16)

3.2 Return-on-Equity (ROE)

The dynamics of the ROE (see equation (2)) may be calculated
by considering the equation for the dynamics of the equity
capital given by (11) and the net profit after tax representedby
(13) and using Ito’s formula (see [13]). A stochastic system
for the dynamics of the return on equities for a commercial
bank is given below.

Proposition 3.3 (Dynamics of ROE using Merton’s
Model): Suppose that the dynamics of the value of total
assets and the net profit after tax are represented by (11) and
(13), respectively. Then astochastic system for the ROE of a
bankmay be expressed as

dEr
t = Er

t

[ (
[Πn

t ]−1

{
δeEtµ

E + δsrOt

+ δeEt(σ
E)2{2(σE)2 + σ2

edBE
t − σ2

e}

−δeEt(σ
E)2

}
+ [σE ]2 − µe + σ2

e

)
dt

+

(
[Πn

t ]−1δeσ
EEt − σe

)
dBE

t

+

(
[Πn

t ]−1σEδeEt − σe + 2σEσedBE
t

)
d[

Nt∑

i=1

Yi]

+

(
δeEtσ

E{2σEσedBE
t − σe}

− δeEt(σ
E)2

)
dBE

t d[

Nt∑

i=1

Yi]

]
. (17)

Next, we consider the special case whereLt = Bt i.e.∑Nt

i=1
Yi + at = 0.

Corollary 3.4 (Dynamics of ROE using Black-Scholes
Model): Suppose thatLt = Bt in equations (11) and (13).
Then astochastic system for the ROE (using Black-Scholes
model) of a bankmay be expressed as

dEr
t = Er

t

[(
[σe]

2 − µe + [Πn
t ]−1

{
δsrOt + δeEtµe

−δeEt(σe)
2

})
dt

+

(
[Πn

t ]−1σeδeEt − σe

)
dBE

t

]
. (18)

4 Numerical Examples

In this section, we simulate the ROA and the ROE of the SA
Reserve Bank (see [12]) over a two year period. There are
a few methods for simulating stochastic differential equation
(SDE). First we assume that the ROA and the ROE do have
jumps. We therefore simulate the stochastic differential equa-
tions (15) and (17) by using Merton’s model. Note that in
Merton’s model the driving Lévy process is a compounded
Poisson process.

Although Lévy based models are structurally superior, thees-
timation procedures are complicated. For comparative pur-
poses (see [14]), we compute the average absolute error (APE)
as a percentage of the mean ROA (or ROE) as

APE =
1

mean ROA (or ROE) value

∗

24∑

i=1

|Data value − Model value|

number of ROA (or ROE) values
.(19)
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Figure 1: A solution of the SDEs (16) and (18) with a fitted linear trend line
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Figure 2: A solution of the SDEs (15) and (17) with a fitted linear trend line

Another measure which also gives an estimate of the goodness
or quality of fit is the root-mean-square error (RMSE) given by

RMSE =

√√√√
24∑

i=1

(Data value − Model value)2

number of ROA (or ROE) values
. (20)

We estimate the model parameters by minimizing the APE and
the RMSE errors. In Table 2 we give the relevant values of
APE and RMSE. The calibrated Lévy model is very sensi-
tive to the numerical starting point in the minimization algo-
rithm or small changes in the input data. In our case, we use
Merton’s model with intensityλ = 2 (ROA case) orλ = 16
(ROE case) and the average jump size asµ = 0.06 (ROA)
or µ = 0.01 (ROE). For another intensity the results of the
minimization will be different.

Secondly, we assume that the ROA and the ROE do not have
jumps. In this case our SDEs (16) and (18) are driven by
Brownian motions. We apply Euler-Maruyama Method to
simulate these SDEs over[0, T ] discretized Brownian path us-
ing time steps of sizeDt = R ∗ dt for some positive integerR
anddt = T

28 . For a SDE of the form

dAt = f(At)dt + g(At)dBt, 0 ≤ t ≤ T,

the Euler-Maruyama method takes the form

Aj = Aj−1 + f(Aj−1)∆t + g(Aj−1)(B(tj) − B(tj−1)),

wherej = 1, 2, · · · , 2
8

R
.

The following data on the ROA and ROE from the SA Reserve
Bank was used in our simulation.

ROA/ROE ROA/ROE
Jan-2005 0.9/11.2 Jan-2006 1.3/16.4
Feb-2005 1.8/22.0 Feb-2006 1.3/16.9
Mrt-2005 1.0/12.0 Mrt-2006 1.2/14.9
Apr-2005 0.5/6.2 Apr-2006 0.8/9.8
May-2005 1.2/14.2 May-2006 1.0/13.0
Jun-2005 1.2/13.9 Jun-2006 1.5/20
Jul-2005 1.6/19.5 Jul-2006 1.4/17.9
Aug-2005 1.2/15.0 Aug-2006 1.8/23.4
Sep-2005 0.7/8.7 Sep-2006 1.2/15.5
Oct-2005 1.1/13.3 Oct-2006 1.4/18.1
Nov-2005 1.4/16.4 Nov-2006 1.1/14.5
Dec-2005 1.5/18.2 Dec-2006 2.2/27.5

Table 1: Source SA Reserve Bank

Using SA Reserve Bank’s data we get the following parameter
choicesσe = 0.69, µe = 0.06, σa = 0.01, µr = 0.003.
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Also, for the Euler-Maruyama method we chose the value of
net profit after tax asΠn

t = 16878, the dividend payments on
E asδe = 0.05, the interest and principal payments onO as
δs = 1.06, the interest rate asr = 0.06, the subordinate debt
O = 135 and the bank equityE = 1164.

Model APE(%) RMSE
Black-Scholes (ROA) 27.58 0.3472
Black-Scholes (ROE) 38.7145 6.2475
Merton (ROA) 1.2588 0.06
Merton (ROE) 0.6124 0.3687

Table 2: Lévy models: APE and RMSE

In Figure 1, we plotted the actual ROA (or ROE) values versus
the Black-Scholes model values for the two years 2005 and
2006. From Figure 1 and Table 2 where we used the model
without jumps it follows that the root-mean-square error for
the ROA is 0.3472 and for the ROE it is 6.2475.

In Figure 2, we plotted the actual ROA (or ROE) values
versus the Merton’s model values for the two years 2005 and
2006. From Figure 2 and Table 2 where we used the model
with jumps it follows that the RMSE for the ROA is 0.06 and
0.3687 for the ROE.

Note that the APE (%) decreases from 27.58 % to 1.2588 %
and the RMSE value decreases from 0.3472 to 0.06 for the
ROA. Furthermore, in the ROE case the APE (%) decreases
from 38.71 % to 0.6124 % and the RMSE value decreases
from 6.2475 to 0.3687. We therefore conclude that in the
ROA case and even more for the ROE case the Black-Scholes
model performs worse than Merton’s model. However, we
still observe a significant difference from the data values.Note
that calibrations to other datasets can favor the Black-Scholes
model more.

5 Conclusions and Future Directions

Although the Black-Scholes model is powerful and simple to
use, most profit indicators exhibit jumps rather than contin-
uous changes. Therefore, we have constructed asset-liability
models in a stochastic framework driven by a Lévy process for
two measures of commercial bank profitability. In this regard,
the ROA, that is intended to measure the operational efficiency
of the bank and the ROE that involves the consideration of the
bank owner’s returns on their investment was central to our
discussion. These stochastic models arose from a considera-
tion of the bank’s balance sheet and income statements asso-
ciated with off-balance sheet items.

Discussions on the profitability and solvency of banking sys-
tems are intimately related (see, for instance, [3]). In par-
ticular, asset-liability management by banks cannot be sepa-
rated from the decision about how much equity the bank owner

should invest. This means that banking decisions and equity
policy have to be simultaneously addressed by bank managers.
Further investigations will include descriptions of the dynam-
ics of the other measures of bank probability.
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