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Abstract— Consider the sequence of poles A = {α1, α2, . . .},
and suppose the rational functions ϕj with poles in A form an
orthonormal system with respect to a Hermitian positive-definite
inner product. Further, assume the ϕj satisfy a three-term re-
currence relation. Let the rational function ϕ

(1)

j\1 with poles in
{α2, α3, . . .} represent the associated rational function of ϕj of
order 1; i.e. the ϕ

(1)

j\1 do satisfy the same three-term recurrence
relation as the ϕj . In this paper we then give a relation between
ϕj and ϕ

(1)

j\1 in terms of the so-called rational functions of the
second kind. Next, under certain conditions on the poles in A,
we prove that the ϕ

(1)

j\1 form an orthonormal system of ratio-
nal functions with respect to a Hermitian positive-definite inner
product. Finally, we give a relation between associated rational
functions of different order, independent of whether they form
an orthonormal system.

Keywords: Orthogonal rational functions, associated rational
functions, rational functions of the second kind, three-term recur-
rence relation, Favard theorem.

1 Introduction

Let φj denote the polynomial of degree j that is orthogonal
with respect to a positive measure µ on a subset S of the real
line. Further, suppose the orthogonal polynomials (OPs) φj

are monic (i.e. they are of the form φj(x) = xj + . . .) and
satisfy a three-term recurrence relation given by

φ−1(x) ≡ 0, φ0(x) ≡ 1,
φj(x) = (x− αj)φj−1(x)− βjφj−2(x), j ≥ 1.

Let the monic polynomial φ
(k)
j−k of degree j − k denote the

associated polynomial (AP) of order k ≥ 0, with j ≥ k.
By definition, these APs are the polynomials generated by the
three-term recurrence relation given by

φ
(k)
−1(x) ≡ 0, φ

(k)
0 (x) ≡ 1,

φ
(k)
j−k(x) = (x− αj)φ

(k)
(j−1)−k(x)− βjφ

(k)
(j−2)−k(x),

j ≥ k + 1.
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Note that this way the monic APs of order 0 and the monic
OPs are in fact the same.

The following relations exist between monic APs of different
order (see e.g. [7])

φ
(k)
j−k(x) = (x− αk+1)φ

(k+1)
j−(k+1)(x)− βk+2φ

(k+2)
j−(k+2)(x),

j ≥ k + 1 (1)

and

φ
(k)
j−k(x) = φ

(l)
j−l(x)φ(k)

l−k(x)−βl+1φ
(l+1)
j−(l+1)(x)φ(k)

(l−1)−k(x),

k + 1 ≤ l ≤ j − 1. (2)

From the Favard theorem it follows that the APs of order k
form an orthogonal system with respect to a positive measure
µ(k) on S. Therefore, another relation exists between the APs
of order k − 1 and k in terms of polynomials of the second
kind:

φ
(k)
j−k(x) =

∫

S

φ
(k−1)
j−(k−1)(t)− φ

(k−1)
j−(k−1)(x)

t− x
dµ(k−1)(t). (3)

Orthogonal rational functions (ORFs) on a subset S of the real
line (see e.g. [2, 5, 6] and [1, Chapt. 11]) are a generalisation
of OPs on S in such a way that they are of increasing degree
with a given sequence of complex poles, and the OPs result if
all the poles are at infinity. Let ϕj denote the rational func-
tion with j poles outside S that is orthogonal with respect to
a positive measure µ on S. Under certain conditions on the
poles, these ORFs do satisfy a three-term recurrence relation
as well. Consequently, associated rational functions (ARFs)
can be defined based on this three-term recurrence relation.
Furthermore, in [1, Chapt. 11.2], the rational function of the
second kind ϕ

[1]
j of ϕj is defined similarly as in (3); i.e.

ϕ
[1]
j (x) =

∫

S

ϕj(t)− ϕj(x)
t− x

dµ(t). (4)

The aim of this paper is to generalise the relations for APs,
given by (1)–(3), to the case of ARFs. But first, we start with
the necessary theoretical background in the next section.

2 Preliminaries

The field of complex numbers will be denoted by C and the
Riemann sphere by C = C ∪ {∞}. For the real line we use
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the symbol R, while the extended real line will be denoted by
R = R ∪ {∞}. Further, we represent the positive real line by
R+ = {x ∈ R : x ≥ 0}. If the value a ∈ X is omitted in the
set X , this will be represented by Xa; e.g.

C0 = C \ {0}.
Let c = a+ ib, where a, b ∈ R, then we represent the real part
of c ∈ C by <{c} = a and the imaginary part by ={c} = b.

Given a sequence Aj = {α1, α2, . . . , αj} ⊂ C0, we define
the factors

Zl(x) =
x

1− x/αl
, l = 1, 2, . . . , j,

and products

b0(x) ≡ 1, bl(x) = Zl(x)bl−1(x), l = 1, 2, . . . , j,

or equivalently,

bl(x) =
xl

πl(x)
, πl(x) =

l∏

i=1

(1− x/αi), π0(x) ≡ 1.

The space of rational functions with poles in Aj is then given
by

Lj = span{b0(x), b1(x), . . . , bj(x)}.
We will also need the reduced sequence of poles Aj\k =
{αk+1, αk+2, . . . , αj}, where 0 ≤ k ≤ j, and the reduced
space of rational functions with poles in Aj\k given by

Lj\k = span{bk\k(x), b(k+1)\k(x), . . . , bj\k(x)},
where

bl\k(x) =
bl(x)
bk(x)

=
xl−k

πl\k(x)
,

for l ≥ k and

πl\k(x) =
l∏

i=k+1

(1− x/αi), πl\l(x) ≡ 1.

In the special case in which k = 0 or k = j, we have that
Aj\0 = Aj and Lj\0 = Lj , respectively Aj\j = ∅ and
Lj\j = L0 = C. We will assume that the poles in Aj are
arbitrary complex or infinite; hence, they do not have to ap-
pear in pairs of complex conjugates.

We define the substar conjugate of a function f(x) ∈ L∞ by

f∗(x) = f(x).

Consider an inner product that is defined by the linear func-
tional M :

〈f, g〉 = M{fg∗}, f, g ∈ L∞.

We say that M is a Hermitian positive-definite linear func-
tional (HPDLF) if for every f, g ∈ L∞ it holds that

f 6= 0 ⇔ M{ff∗} > 0 and M{fg∗} = M{f∗g}.

Further, let µ0 be defined as µ0 = M{1} ∈ R+
0 , and suppose

there exists a sequence of rational functions {ϕj}, with ϕj ∈
Lj \ Lj−1, so that the ϕj form an orthonormal system with
respect to M .

Let α0 ∈ C0 be arbitrary but fixed in advance. Then the or-
thonormal rational functions (ORFs) ϕj = pj

πj
are said to be

regular for j ≥ 1 if pj(αj−1) 6= 0 and pj(αj−1) 6= 0. A
zero of pj at ∞ means that the degree of pj is less than j. We
now have the following recurrence relation for ORFs. For the
proof, we refer to [5, Sec. 2] and [3, Sec. 3].

Theorem 2.1. Let E0 ∈ C0, α−1 ∈ R0 and α0 ∈ C0 be
arbitrary but fixed in advance. Then the ORFs ϕj , j = n −
2, n−1, n, with n ≥ 1, are regular iff there exists a three-term
recurrence relation of the form

ϕn(x) = Zn(x)
{[

En +
Fn

Zn−1(x)

]
ϕn−1(x)

+
Cn

Zn−2∗(x)
ϕn−2(x)

}
, (5)

with En 6= 0 and

Cn = −En + Fn/Zn−1(αn−1)
En−1

6= 0.

The initial conditions are ϕ−1(x) ≡ 0 and ϕ0(x) ≡ η√
µ0

,
where η is a unimodular constant (|η| = 1).

Let ϕ
(k)
j\k ∈ Lj\k denote the associated rational function

(ARF) of ϕj of order k; i.e. ϕ
(k)
j\k, j = k + 1, k + 2, . . ., is

generated by the same recurrence relation as ϕj with initial
conditions ϕ

(k)
(k−1)\k(x) ≡ 0 and ϕ

(k)
k\k(x) ≡ κ

(k)
0 . Note that

in the special case in which k = 0, we have that ϕ
(0)
j\0 = ϕj .

In the remainder of this paper we will assume that ϕ
(k)
j\k is of

the form

ϕ
(k)
j\k(x) =

p
(k)
j−k(x)

πj\k(x)
,

with
p
(k)
j−k(x) = κ

(k)
j−kxj−k + . . . , κ

(k)
j−k ∈ C

and κ
(k)
0 6= 0. We now have the following Favard theorem.

For the proof, we refer to [4].

Theorem 2.2 (Favard). Let {ϕ(k)
j\k} be a sequence of rational

functions, and assume that

(A1) αk−1 ∈ R0 and αj ∈ C0, j = k, k + 1, . . .,

(A2) ϕ
(k)
j\k, j = k + 1, k + 2, . . ., is generated by a three-term

recurrence relation of the form given by Equation (5),

(A3) ϕ
(k)
j\k ∈ Lj\k \ L(j−1)\k, j = k + 1, k + 2, . . ., and

ϕ
(k)
k\k ∈ C0,
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(A4) Let F̂j = Fj/Ej , with Ej = E
(k)
j\k and Fj = F

(k)
j\k. Then

|F̂j | < ∞ and

={αj−2}
|αj−2|2 − ={αj}

|αj |2 · |Ej−1|2
|Ej |2 =

[={αj−1}
|αj−1|2 |F̂j |2 −={F̂j}

]
×

[
|Ej−1|2 − 4

={αj−1}
|αj−1|2 · ={αj−2}

|αj−2|2
]

,

j = k + 1, k + 2, . . . ,

(A5) max
{

0, 4={αj}
|αj |2 · ={αj−1}

|αj−1|2
}

< |Ej |2 < ∞, j = k, k +
1, . . .,

(A6) CjEj−1 = − [Ej + Fj/Zj−1(αj−1)] 6= 0, with Cj =
C

(k)
j\k, j = k + 1, k + 2, . . ..

Then there exists a HPDLF M (k) so that

〈f, g〉 = M (k){fg∗} =
∫

S

fg∗dµ(k)

defines a Hermitian positive-definite inner product for which
the rational functions ϕ

(k)
j\k form an orthonormal system.

In the remainder we will assume that the system of ORFs
ϕj satisfies every assumption in Theorem 2.2. This way, if
αk−1 ∈ R0, it is sufficient to prove that ϕ

(k)
j\k /∈ L(j−1)\k

for j = k + 1, k + 2, . . ., so that the ARFs ϕ
(k)
j\k form

an orthonormal system with respect to a HPDLF M (k). If
αk−1 ∈ R0 and condition (A3) is satisfied as well, we let
M (k){1} = µ

(k)
0 = |κ(k)

0 |−2.

3 Associated rational functions

Suppose the ARFs ϕ
(k−1)
j\(k−1) of order k − 1 ≥ 0 form an or-

thonormal system with respect to a HPDLF M (k−1), and let
Φj\(k−1) be given by

Φj\(k−1)(x, t) = (1− t/αk−1)ϕ
(k−1)
j\(k−1)(x). (6)

Then we define the rational functions of the second kind ψj\k
by

ψj\k(x) = (1− x/αk)×[
M

(k−1)
t

{
Φj\(k−1)(t, x)− Φj\(k−1)(x, t)

t− x

}

−δj,k−1Rk−1

]
, j ≥ k − 1, (7)

where δj,k−1 is the Kronecker Delta and

Rk−1 =
[
κ

(k−1)
0 αk−1

]−1

. (8)

Note that this definition is very similar to, but not exactly
the same as the one given before in (4). We will then prove
that the ψj\k satisfy the same three-term recurrence relation
as ϕ

(k−1)
j\(k−1) with initial conditions ψ(k−1)\k(x) ≡ 0 and

ψk\k(x) ≡ −Ek−1Ck/κ
(k−1)
0 6= 0.

First, we need the following lemma.

Lemma 3.1. Let ψj\k, with j ≥ k − 1 ≥ 0, be defined as
before in (7). Then it holds that

ψj\k(x) ≡
{

0, j = k − 1
−Ek−1Ck/κ

(k−1)
0 6= 0, j = k,

while ψj\k ∈ Lj\k for j > k.

Proof. Define qj−(k−2) by

qj−(k−2)(x) = (1− x/αk−1)πj\(k−1)(x)

For j ≥ k it then follows from (6) and (7) that

ψj\k(x) =
1

πj\k(x)
M

(k−1)
t

{
1

t− x
×

[
ϕ

(k−1)
j\(k−1)(t)qj−(k−2)(x)− (1− t/αk−1)p

(k−1)
j−(k−1)(x)

]}

=

∑j−(k−1)
i=0 M

(k−1)
t

{
a
(k)
i (t)

}
xi

πj\k(x)
. (9)

Further, with

cj,k = lim
x→∞

πj\k(x)
xj−k

,

we have that

M
(k−1)
t

{
a
(k)
j−(k−1)(t)

}
=

cj,k−1

αk−1
M

(k−1)
t

{
ϕ

(k−1)
j\(k−1)(t)

}

= 0,

so that

ψj\k(x) =
p
(k)
j−k(x)

πj\k(x)
∈ Lj\k.

For j = k we find that

κ
(k)
0 =

M
(k−1)
t





ϕ
(k−1)
k\(k−1)(t)q2(x)− (1− t/αk−1)p

(k−1)
1 (x)

−x(1− t/x)



 .

Note that

lim
x→αk−1

−q2(x)
x

M
(k−1)
t





ϕ
(k−1)
k\(k−1)(t)

1− t/x



 = 0,
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so that

κ
(k)
0 = lim

x→αk−1
M

(k−1)
t

{
1− t/αk−1

1− t/x

}
p
(k−1)
1 (x)

x

=
∣∣∣κ(k−1)

0

∣∣∣
−2

lim
x→αk−1

ϕ
(k−1)
k\(k−1)(x)

Zk(x)

= lim
x→αk−1

1

κ
(k−1)
0

[
Ek +

Fk

Zk−1(x)

]

= [Ek + Fk/Zk−1(αk−1)] /κ
(k−1)
0 .

Finally, in the special case in which j = k − 1, we have that

M
(k−1)
t

{
Φ(k−1)\(k−1)(t, x)− Φ(k−1)\(k−1)(x, t)

t− x

}
=

κ
(k−1)
0 M

(k−1)
t

{
(1− x/αk−1)− (1− t/αk−1)

t− x

}
= Rk−1,

where Rk−1 is given by (8).

The following theorem now shows that these ψj\k do satisfy
the same three-term recurrence relation as the ϕj .

Theorem 3.2. Let ψj\k be defined as before in (7). The ratio-
nal functions ψj\k, with j = n − 2, n − 1, n and n ≥ k + 1,
then satisfy the three-term recurrence relation given by

ψn\k(x) = Zn(x)
{[

En +
Fn

Zn−1(x)

]
ψ(n−1)\k(x)

+
Cn

Zn−2∗(x)
ψ(n−2)\k(x)

}
. (10)

The initial conditions are ψ(k−1)\k(x) ≡ 0 and

ψk\k(x) ≡ −Ek−1Ck/κ
(k−1)
0 6= 0.

Proof. First note that the ARFs ϕ
(k−1)
j\(k−1), with j = n−2, n−

1, n, do satisfy the three-term recurrence relation given by
(10), and hence, so do the Φn\(k−1). We now have that

ψn\k(x)
1− x/αk

=

EnM
(k−1)
t

{
1

t− x
× [

Zn(t)Φ(n−1)\(k−1)(t, x)

−Zn(x)Φ(n−1)\(k−1)(x, t)
] }

+ FnM
(k−1)
t

{
1

t− x
×

[
Zn(t)

Zn−1(t)
Φ(n−1)\(k−1)(t, x)

− Zn(x)
Zn−1(x)

Φ(n−1)\(k−1)(x, t)
]}

+ CnM
(k−1)
t

{
1

t− x
×

[
Zn(t)

Zn−2∗(t)
Φ(n−2)\(k−1)(t, x)

− Zn(x)
Zn−2∗(x)

Φ(n−2)\(k−1)(x, t)
]}

,

ψn\k(x) = Zn(x)
{[

En +
Fn

Zn−1(x)

]
ψ(n−1)\k(x)

+
Cn

Zn−2∗(x)
ψ(n−2)\k(x)

}
+ M

(k−1)
t

{
fn(x, t)
t− x

}

+ δn,k+1Rk−1Ck+1

[
(1− x/αk)

Zk+1(x)
Zk−1∗(x)

]
,

where fn(x, t) = (1− x/αk)gn(x, t) and gn(x, t) is given by

gn(x, t) = En[Zn(t)− Zn(x)]Φ(n−1)\(k−1)(t, x)

+ Fn

[
Zn(t)

Zn−1(t)
− Zn(x)

Zn−1(x)

]
Φ(n−1)\(k−1)(t, x)

+ Cn

[
Zn(t)

Zn−2∗(t)
− Zn(x)

Zn−2∗(x)

]
Φ(n−2)\(k−1)(t, x).

Note that

Zn(t)− Zn(x) =
(t− x)

(1− t/αn)(1− x/αn)
Zn(t)

Zn−1(t)
− Zn(x)

Zn−1(x)
=

(t− x)/Zn−1(αn)
(1− t/αn)(1− x/αn)

Zn(t)
Zn−2∗(t)

− Zn(x)
Zn−2∗(x)

=
(t− x)/Zn−2∗(αn)

(1− t/αn)(1− x/αn)
,

so that

fn(x, t)
t− x

=
[
(1− x/αk)

Zn(x)
Zk−1∗(x)

]
(1− t/αn)−1hn(t)

=
[
(1− x/αk)

Zn(x)
Zk−1∗(x)

] (
1 +

Zn(t)
αn

)
hn(t),

where

hn(t) =
[
Enϕ

(k−1)
(n−1)\(k−1)(t)

+
Fn

Zn−1(αn)
ϕ

(k−1)
(n−1)\(k−1)(t)

+
Cn

Zn−2∗(αn)
ϕ

(k−1)
(n−2)\(k−1)(t)

]
.

It clearly holds that

M
(k−1)
t {hn(t)} =

δn,k+1Ck+1

κ
(k−1)
0 Zk−1∗(αk+1)

.

Further, note that

Zn(t)
Zn−2∗(αn)

=
Zn(t)

Zn−2∗(t)
− 1

and
Zn(t)

Zn−1(αn)
=

Zn(t)
Zn−1(t)

− 1.

Hence,

Zn(t)hn(t) = ϕ
(k−1)
n\(k−1)(t)

− Fnϕ
(k−1)
(n−1)\(k−1)(t)− Cnϕ

(k−1)
(n−2)\(k−1)(t),
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so that

M
(k−1)
t {Zn(t)hn(t)}

αn
= −δn,k+1Ck+1

κ
(k−1)
0 αk+1

.

Consequently, we have that

M
(k−1)
t

{
fn(x, t)
t− x

}
=

− δn,k+1Rk−1Ck+1

[
(1− x/αk)

Zk+1(x)
Zk−1∗(x)

]
,

which ends the proof.

The next theorem directly follows from Lemma 3.1 and The-
orem 3.2.

Theorem 3.3. Let ψj\k be defined as before in (7). These

ψj\k are the ARFs ϕ
(k)
j\k of order k with initial conditions

ϕ
(k)
(k−1)\k(x) ≡ 0 and

ϕ
(k)
k\k(x) ≡ −Ek−1Ck/κ

(k−1)
0 6= 0.

In the above lemma and theorems we have assumed that the
ARFs ϕ

(k−1)
j\(k−1) form an orthonormal system with respect to a

HPDLF M (k−1). The assumption certainly holds for k = 1,
and hence, the ARFs ϕ

(1)
j\1 are the rational functions of the sec-

ond kind of the ORFs ϕj . The next question is then whether
the ARFs ϕ

(1)
j\1 form an orthonormal system with respect to a

HPDLF M (1). Therefore, we need the following lemma.

Lemma 3.4. Let the ARFs ϕ
(k)
j\k of order k be defined by

(7). Then the leading coefficient K
(k)
j−k, i.e. the coefficient

of bj\k in the expansion of ϕ
(k)
j\k with respect to the basis

{bk\k, . . . , bj\k}, is given by

K
(k)
j−k = K

(k−1)
j−(k−1)M

(k−1)
t

{
1− t/αk−1

1− t/αj

}
, j ≥ k.

Proof. Note that the leading K
(k)
j−k is given by (see also [3,

Thm. 3.1])

K
(k)
j−k = lim

x→αj

ϕ
(k)
j\k(x)

bj\k(x)
= lim

x→αj

p
(k)
j−k(x)
xj−k

.

Further, let qj−(k−2) be defined as before in Lemma 3.1.
Clearly, for j ≥ k it then holds that

lim
x→αj

−qj−(k−2)(x)
xj−(k−1)

M
(k−1)
t





ϕ
(k−1)
k\(k−1)(t)

1− t/x



 = 0.

So, from (9) we deduce that

K
(k)
j−k = lim

x→αj

p
(k−1)
j−(k−1)(x)

xj−(k−1)
M

(k−1)
t

{
1− t/αk−1

1− t/x

}

= K
(k−1)
j−(k−1)M

(k−1)
t

{
1− t/αk−1

1− t/αj

}
.

This proves the statement.

As a consequence, we now have the following theorem.

Theorem 3.5. Let the ARFs ϕ
(k)
j\k of order k be defined by (7)

and assume that αk−1 ∈ R0. Further, suppose that

M
(k−1)
t

{
1− t/αk−1

1− t/αj

}
6= 0 (11)

whenever j > k and αj /∈ {αk−1, αk, αk}. Then it holds
that the ϕ

(k)
j\k form an orthonormal system with respect to a

HPDLF M (k).

Proof. As pointed out at the end of Section 2, it suffices to
prove that the ϕ

(k)
j\k ∈ Lj\k \ L(j−1)\k for j > k.

Note that ϕ
(k)
j\k ∈ Lj\k \L(j−1)\k iff K

(k)
j−k 6= 0. We now have

that K
(k−1)
j−(k−1) 6= 0 for every j > k, due to the fact that the

ARFs ϕ
(k−1)
j\(k−1) are regular. Moreover, as M (k−1) is a HPDLF

and because ϕ
(k−1)
k\(k−1) is regular, we also have that

M
(k−1)
t

{
1− t/αk−1

1− t/αj

}
6= 0

whenever αj ∈ {αk−1, αk, αk}. Thus, together with the
assumption given by (11), it follows from Lemma 3.4 that
ϕ

(k)
j\k ∈ Lj\k \ L(j−1)\k for every j > k. Consequently,

the ARFs ϕ
(k)
j\k then satisfy the six conditions given in The-

orem 2.2.

Finally, in Theorem 3.7 we give a relation between ARFs of
different order that holds independent of whether the ARFs in-
volved form an orthonormal system with respect to a HPDLF.
First we need the following lemma.

Lemma 3.6. The ARFs ϕ
(s)
n\s = κ

(s)
0 ϕ̂

(s)
n\s, with s = k, k +

1, k + 2 and n ≥ k + 1, satisfy the relation given by

ϕ̂
(k)
n\k(x) = Zk+1(x)

[
Ek+1 +

Fk+1

Zk(x)

]
ϕ̂

(k+1)
n\(k+1)(x)

+ Ck+2
Zk+2(x)
Zk∗(x)

ϕ̂
(k+2)
n\(k+2)(x). (12)

Proof. First, consider the case in which n = k + 1. From
Theorem 3.2 we deduce that

ϕ̂
(k)
(k+1)\k(x) = Zk+1(x)

[
Ek+1 +

Fk+1

Zk(x)

]
ϕ̂

(k)
k\k(x).

We also have that ϕ̂
(k)
k\k(x) ≡ 1 ≡ ϕ̂

(k+1)
(k+1)\(k+1)(x), while

ϕ̂
(k)
(k−1)\k(x) ≡ 0 ≡ ϕ̂

(k+2)
(k+1)\(k+2)(x). Hence, the statement

clearly holds for n = k + 1.
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Next, consider the case in which n = k+2. From Theorem 3.2
we now deduce that

ϕ̂
(k)
(k+2)\k(x) = Zk+2(x)

[
Ek+2 +

Fk+2

Zk+1(x)

]
ϕ̂

(k)
(k+1)\k(x)

+ Ck+2
Zk+2(x)
Zk∗(x)

ϕ̂
(k)
k\k(x).

Furthermore, we have that ϕ̂
(k)
k\k(x) ≡ 1 ≡ ϕ̂

(k+2)
(k+2)\(k+2)(x).

While,

Zk+2(x)
[
Ek+2 +

Fk+2

Zk+1(x)

]
ϕ̂

(k)
(k+1)\k(x)

= Zk+1(x)
[
Ek+1 +

Fk+1

Zk(x)

]
×

Zk+2(x)
[
Ek+2 +

Fk+2

Zk+1(x)

]
ϕ̂

(k+1)
(k+1)\(k+1)(x)

= Zk+1(x)
[
Ek+1 +

Fk+1

Zk(x)

]
ϕ̂

(k+1)
(k+2)\(k+1)(x).

Consequently, the statement clearly holds for n = k + 2 as
well.

Finally, assume that the statement holds for n − 2 and n − 1.
By induction, the statement is then easily verified for n ≥
k + 3 by applying the three-term recurrence relation, given by
Theorem 3.2, to the left hand side of (12) for ϕ̂

(k)
n\k, as well as

to the right hand side of (12) for ϕ̂
(k+1)
n\(k+1) and ϕ̂

(k+2)
n\(k+2).

Theorem 3.7. The ARFs ϕ
(s)
n\s = κ

(s)
0 ϕ̂

(s)
n\s, with s = k, j +

1, j + 2 and k + 1 ≤ j ≤ n− 1, are related by

ϕ̂
(k)
n\k(x) = ϕ̂

(j)
n\j(x)ϕ̂(k)

j\k(x)

+ Cj+1
Zj+1(x)
Zj−1∗(x)

ϕ̂
(j+1)
n\(j+1)(x)ϕ̂(k)

(j−1)\k(x). (13)

Proof. Note that for every l ≥ 0 it holds that

ϕ̂
(l)
l\l(x) ≡ 1 and ϕ̂

(l)
(l+1)\l(x) = Zl+1(x)

[
El+1 +

Fl+1

Zl(x)

]
.

Thus, for j = n− 1 or j = k + 1, the relation given by (13) is
nothing more than the three-term recurrence relation given by
Theorem 3.2, respectively the relation given by (12).

So, suppose that the statement holds for j. By induction we
then find for j + 1 that

ϕ̂
(k)
(j+1)\k(x) = ϕ̂

(j)
(j+1)\j(x)ϕ̂(k)

j\k(x)

+ Cj+1
Zj+1(x)
Zj−1∗(x)

ϕ̂
(k)
(j−1)\k(x),

and

Cj+2
Zj+2(x)
Zj∗(x)

ϕ̂
(j+2)
n\(j+2)(x) = ϕ̂

(j)
n\j(x)

− ϕ̂
(j+1)
n\(j+1)(x)ϕ̂(j)

(j+1)\j(x).

Consequently,

ϕ̂
(j+1)
n\(j+1)(x)ϕ̂(k)

(j+1)\k(x)

+ Cj+2
Zj+2(x)
Zj∗(x)

ϕ̂
(j+2)
n\(j+2)(x)ϕ̂(k)

j\k(x)

= Cj+1
Zj+1(x)
Zj−1∗(x)

ϕ̂
(j+1)
n\(j+1)(x)ϕ̂(k)

(j−1)\k(x)

+ ϕ̂
(j)
n\j(x)ϕ̂(k)

j\k(x),

which ends the proof.

4 Conclusion

In this paper, we have given a relation between associated ra-
tional functions (ARFs) of order k− 1 and k in terms of ratio-
nal functions of the second kind, assuming the ARFs of order
k − 1 form an orthonormal system with respect to a Hermi-
tian positive-definite inner product. Further, we have given
a relation between ARFs of different order that holds in gen-
eral; i.e. the relation holds independently of whether the ARFs
involved form an orthonormal system with respect to a Her-
mitian positive-definite inner product. If all the poles are at
infinity, we again obtain the polynomial case.
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[2] A. Bultheel, P. González-Vera, E. Hendriksen, and O.
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