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Abstract—The goal is to build up an inverse model

capable of finding the average grain size history dur-

ing an extrusion process and other material constants

by using simulated strain and temperature values.

This problem of finding the parameter values is based

on linear and nonlinear least-squares regressions, cou-

pled with microstructure control models and the so-

lution of a finite element extrusion model. The prob-

lem is ill posed and we use the Tikhonov’s regulari-

sation to stabilise the solution process. Further some

of the parameters in the model are linear and some

are nonlinear. We determine the linear parameters

using simple linear algebra and for the computation

of non-linear parameters we use MATLAB’s routine

lsqnonlin.
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1 Introduction

Numerical modelling of extrusion may be used during
a design process to assess the extruded material proper-
ties. The extrusion simulation describes the material flow
through the die. An extrusion model, which is capable
of describing the behaviour of material flow, requires the
following input data: (a) material data such as Young’s
modulus, coefficient of expansion, Poisson’s ratio, inelas-
tic heat fraction, specific heat, density, conductivity, flow
stress-strain relationship, (b) die design variables and (c)
process variables such as ram speed, initial temperature
and friction factors.

In reality, material data can be measured using available
measuring instruments, but the optimal values of die de-
sign variables and process variables are often unknown.
In a previous paper[3], we formulated a non-linear least
squares inverse model in which the optimal values of die
design variables and process variables were estimated to
achieve a certain grain size. In the approach the following
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average grain size equation [7],[8]

d = α

(

dε

dt
exp

(

Q

RT

))β

(1)

was used as optimizing criteria to terminate the problem.
In equation (1), Q is an activation energy, d is the average

recrystallized grain size, T is the temperature,
dε

dt
is the

strain rate and R is the universal gas constant.

The values of constants α and β are based on experi-
mental observations and therefore the uncertainty of the
constants is very high. Small changes in these values can
cause variation in the grain size estimation. The success-
ful application of equation (1) depends on the accuracy of
the parameters. Methods to identify the optimal values
of α and β are therefore an important part of modelling
extrusion processes to increase the reliability of the nu-
merical simulation.

In the present work an alternative method is proposed.
The idea is to develop an inverse model for estimat-
ing grain size history, using inverse modelling techniques
available in the literature. Inverse modelling avoids the
use of α and β for the grain size history estimation. To
do so we consider the problem in which the material
properties of the billet as well as process and die design
parameters are known but the material constants α, β

and grain size d are not known. The accuracy of the
model is examined by using simulated temperature and
strain data (generated by the forward model) to which
normally-distributed relative noise has been added. We
design the inverse model as a least squares minimisation
problem associated with an ABAQUS finite element solu-
tion of an extrusion process. This is an ill-posed problem
and we solve it using regularisation methods.

2 Forward Problem

The thermo-mechanical behaviour of the extrusion pro-
cess can be described mathematically using conservation
of mass, momentum and energy as follows [4], [5], [6]:
The mass conservation is

Dρ

Dt
+ ρ∇ · V = 0 (2)
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where ρ is the density of the material and V is the velocity
vector.
The momentum conservation is

ρ
DV

Dt
= ∇ · σ + ρf (3)

where f is the body force per unit mass, and σ is Cauchy
stress tensor.
The energy conservation is

ρc

(

∂T

∂t
+ V · ∇T

)

= −∇ · (−k · ∇T) + Q̇ (4)

where T is the temperature, c is the specific heat, k = kI,
k denotes thermal conductivity, T is the temperature and
Q̇ is the rate of heat generated per unit volume.

Equations (2),(3) and (4) can be solved using finite ele-
ment methods. We have implemented a solution proce-
dure using ABAQUS to obtain temperature and strain
histories during the deformation process. Once the tem-
perature and strain values are obtained, the average grain
size at a nodal point can be calculated using equation (1).

3 Inverse Problem

The goal of inverse modelling is the extraction of model
parameter information from data. It is a subject, which
supplies tools for the proficient use of data in the estima-
tion of constants appearing in the models. In this inverse
problem, the structure of the equation is known; outputs,
temperature (T ) and strain (ε) values are available. Av-
erage grain size history and parameters α and β are the
unknowns.

In this section a model is formulated to obtain the best or
optimal estimate of grain size history, α and β appearing
in equation (1) from temperature and strain estimations
made at some nodes in the material inside the forming
zone. The microstructural model given equation (1) can
be rewritten to solve for strain rate as follows.

dε

dt
=

(

d

α

)1/β

exp

(

−Q

RT

)

(5)

Therefore the strain is

ε(t) =

∫ t

0

(

d(τ)

α

)1/β

exp

(

−Q

RT (τ)

)

dτ

=

∫ t

0

K(t, τ)D(τ)dτ (6)

where the kernel K(t, τ) is:

K(t, τ) = exp

(

−Q

RT (τ)

)

(7)

and

D(τ) =

(

d(τ)

α

)
1

β

(8)

If n temperature and strain values are available at the
node (X1, Y1, Z1) between 0 and tf and suppose that we
wish to determine D(τ) at times τ0 = 0, . . ., tf , then
discretising (6) by the trapezoidal rule gives a system of
linear equations

e = A(p)q (9)

where e = [ε(0), . . . , ε(tf )]
T

, Aij = K(ti, τj)βij , q =

[D(τ0), . . . , D(τf )]
T

and p = [Q], and βij is a quadra-
ture weight. Generally, minimising an objective func-
tion solves inverse problems. The objective function Z

that provides minimum variance estimates is the ordi-
nary least squares function

minimize Z (p, q) = ‖A(p)q − e‖2

2
(10)

If the value of activation energy Q is known then the
problem becomes a linear least square problem and can be
solved easily. But the coefficient matrix of problem (10)
always has a very large condition number and is ill posed.
Therefore well posedness must be restored by restricting
the class of admissible solutions. This can be achieved
using regularisation methods [1]. With Tikhonov’s regu-
larisation, we introduce the regularised objective function

Z (q) = ‖Aq − e‖2

2
+ λ2‖Lq‖2

2
(11)

where ‖Aq − e‖2

2
is the residual norm (or data misfit

function), and ‖Lq‖2

2
is the solution norm. We will be

interested in the minimisation of the function Z(q) for
different values of λ. Note that the objective function Z

is the 2-norm of the following system of equations
[

A

λL

]

q =

[

e

0

]

,

where L is the regularisation operator and λ is the regu-
larisation parameter.

If the value of Q is not known then the problem becomes
a nonlinear least square problem as follows.

Z (q, p) = ‖A(p)q − e‖2

2
+ λ2‖Lq‖2

2
. (12)

Since the equation (12) has a combination of linear pa-
rameters q and non-linear parameters p, we separate
the solution process into two steps. We find the non-
linear parameter p by constructing an iterative proce-
dure, where at each iteration a linear sub-problem is
solved to estimate the linear parameter q corresponding
to that particular value of p.

Now taking natural logarithms of both sides of the equa-
tion (8) and rearranging gives

ln(D) = m ln(d) + C (13)

where m =
1

β
and C =

1

β
ln

(

1

α

)

. Now suppose n+1 D

values are available and we wish to determine the corre-
sponding d values. This gives

Ky = f , (14)
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Figure 1: Three considered nodes on deformed mesh
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
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Now the minimisation problem for estimating y is formu-
lated as

min
y

‖Ky − f‖2

2
. (15)

It is a linear problem and therefore the grain size history
d1, d2, . . . , dn can be calculated with reasonable accuracy
provided the initial grain size is known.

4 Applications

In this section, we present numerical simulations to
demonstrate the solution process and evaluate the ac-
curacy of the model. To do so, we consider an in-
put of temperature and strain values data generated at
three elements A, B, C as shown in Figure 1 from a
FE-simulation of extrusion using ABAQUS. The data
values used in the simulation of extrusion are: ini-
tial temperature of work piece and die respectively are
T = 500oC and T = 450oC, work piece’s Young’s
modulus E = 7 × 1010 Pa, coefficient of expansion
8.4 × 10−5 oC−1 at T = 20 oC, Poisson’s ratio 0.35,
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Figure 2: (A):Total error, (B) L-curve.

inelastic heat fraction 0.9, specific heat 910 Jkg−1K−1,
density= 2750 kgm−3, conductivity 204 Wm−1K−1

when T = 0 oC, 225 Wm−1K−1 when T = 300 oC,
die material’s Young’s modulus E = 20 × 1010 Pa, co-
efficient of expansion 8.4 × 10−5 oC−1 at T = 20 oC,
Poisson’s ratio 0.30, inelastic heat fraction 0.9, specific
heat 450 Jkg−1K−1, density 7200 kgm−3, conductivity
204 Wm−1K−1 when T = 0 oC, 225 Wm−1K−1 when
T = 300 oC.

4.1 Estimation of d(t) for known value of ac-
tivation energy Q

If the value of Q is known, we will have to solve equation
(11) to estimate the grain size. The minimization
problem given by equation (11) depends on the optimal
value of the regularization parameter λ. A number
of techniques have been discussed in the literature[2]
for estimating an optimal value of a regularization
parameter. Here we use the L-curve criteria to esti-
mate the parameter values. It is based on minimizing
the total error equation (11) as shown in Figure 2.
A good regularization parameter λ should provide a
fair balance between data misfit error and regulariza-
tion error. The L-curve method shown in figure 2B
is based on minimizing total error as shown in Figure 2A.

Once the optimal value of λ is known, we estimate
q = [D(τ0), . . . , D(τf )]

T
easily and then using equation

(15) values y =
[

D1

D0

, . . . , Dn

D0

]T

are calculated. Figure 3

shows the graph of equation (13) for the initial grain size
d0 = 200 µm and the activation energy Q = 100 KJm−1.
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Figure 3: Graph of Equation (13)

The accuracy of value Q we use in equation (1) may or
may not be very high since it is based on experimental
observations and the accuracy of estimation of d is also
subject to error. Therefore it is appropriate to analyze
the effect of inaccuracy of the Q value. To investigate
we changed the Q values, while all other values are un-
changed. Table (1) shows the optimal values of α and
β for the respective values of Q obtained using the pro-
posed method. Figure 4 depict the comparison of grain
size variation. Data 4 in this graph is the grain size esti-
mation using the proposed method and data 5 is the grain
size variation obtained by equation (1)for the respective
α and β values given in table (1). Data 1, Data 2 and
Data 3 respectively are the grain size values for (α = 278
& β = −0.080), (α = 200 & β = −0.020) and (α = 279 &
β = −0.018) by equation (1). When Q is underestimated,
the average grain size estimated value using equation (1)
is higher than it used to be and increases approximately
quadratically with decreasing Q value. When Q is over-
estimated, the average grain size estimated value is lower
than it used to be and decreases approximately quadrat-
ically with increasing Q value. The graph of Data 4 and
Data 5 are approximately the same. This shows that
even if the Q value is wrong, it is possible to estimate d

accurately using equation (1) if appropriate α and β val-
ues are available. It is not achievable in a real practical
environment, but can be only possible through inverse
modelling techniques.

4.2 Estimation of d(t) for unknown value of
activation energy Q

Here the problem is concerned with the estimation of
grain size d(t) values and the activation energy (Q). This
estimation process contains a combination of a nonlinear
parameter (Q) and linear parameters (d(t)). This is dif-
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Figure 4: Grain size vs Q for different material constants

Q β α

20 -0.044 140
50 -0.080 278
100 -0.026 209
140 -0.020 200
180 -0.019 240
220 -0.018 279
300 -0.019 412

Table 1: % of variation with Q values

ferent from a linear problem and therefore we cannot only
use linear algebra to solve this problem. This problem
can be solved by constructing an iterative procedure as
mentioned above. Alternatively we can solve the equa-
tion (12) for a sequence of Q values to get a best value for
Q which minimizes equation (12), since we have only one
nonlinear parameter. Figure 5A, 5B respectively shows
the variation of Z with Q at the nodes A, B, C for the
ram speed 12.5 mm s−1 and 6.5 mm s−1. The graphs
clearly show that the best value of Q is not same for all
cases. In the literature we can find that the activation
energy of the material varies with temperature. During
the extrusion process the temperature inside the defor-
mation zone is not constant everywhere. Therefore using
constant Q value in equation (1) will not give an accu-
rate result unless appropriate values of α and β are used.
Again the estimation of α and β which suits the Q value
is not achievable in a real practical environment.

5 Summary and conclusion

The objective of the work demonstrated in this paper
is to develop an inverse model capable of concurrently
estimating the average grain size, activation energy and
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Figure 5: Z vs Q

other material constants appearing in the model. The
approach is based on a non-linear least squares estima-
tion using simulated temperature and strain value his-
tory inside the deformation zone. Since the problem is
ill-posed we apply Tikhonov’s regularisation method to
stabilise the solution process. Some of the parameters
in the problem are linear and some are nonlinear. We
determined the linear parameters using simple linear al-
gebra and for the computation of non-linear parameters
we used MATLAB’s routine lsqnonlin. The optimal value
of the regularisation parameter is obtained using the lin-
ear L-curve for the linear problem.

Firstly, the usefulness of an inverse modeling technique
in the grain size estimation process has been demon-
strated. The inverse modelling technique has been ap-
plied to equation (1) with the situation in which α, β and
Q values are unknown. Secondly, it has been shown that
the error in traditional d estimation increases quadrati-
cally with the error in Q if the α and β values are ad-
justed accordingly to cater for Q. The appropriate values
of α and β can only be found using the above mentioned
inverse modelling technique. Thirdly, it has been demon-
strated the optimal value of the activation energy inside
the deformation region is not constant and varies with
the temperature. Therefore the traditional d estimation
using equation (1) with constant values of Q, α and β

will not give the accurate value if the temperature inside
the deformation zone is not constant.
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