
 
 

 

  
Abstract— This research proposes an efficient approach for 
solving the multiresponse problem in Taguchi method by 
aggressive formulation in data envelopment analysis. Each 
experiment in Taguchi’s orthogonal array is treated as                   
a decision making unit (DMU) with multiresponses set as inputs 
and/or outputs. The efficiency of each DMU is then evaluated by 
aggressive formulation. Finally, the ordinal value of the DUM’s 
efficiency is used to decide the optimal combination of factor 
levels for multiresponse problem. Two case studies, which were 
investigated in previous literature, are provided for illustration. 
The computational results show that the proposed approach 
provides the largest anticipated improvement. In conclusion, 
the proposed approach may provide a great assistant to 
practitioners for solving the multiresponse problem in the 
manufacturing applications on Taguchi method.  

 
Index Terms— Aggressive formulation, DEA, Multiresponse 

problem, Taguchi method.  
 

I. INTRODUCTION 
   Parameter design is a method, popularized by Taguchi [1], 
for designing products and manufacturing processes that are 
robust to uncontrollable variations.  Taguchi method adopts    
a fractional factorial experimental design, called an 
orthogonal array (OA), which reduces the number of 
experiments under permissive reliability. Typically, the 
quality response of a process or a product can be divided into 
three main types: the smaller-the-better (STB); the 
nominal-the-best (NTB); and the larger-the-better (LTB) 
type response. Taguchi method has been found only efficient 
for optimizing a single response problem [2-3].     
   In today’s high competitive markets, most industries 
manufacture products with more than one quality response of 
main interest. Recently, optimizing multiresponse problem 
has received a considerable research attention. Therefore, 
several approaches [4-8] have been proposed to solve the 
multiresponse problem in Taguchi method. However, few 
approaches were reported efficient. 
   Data envelopment analysis (DEA) has been widely used for 
evaluating performance for a set of DMUs with multiple 
inputs and multiple outputs at organizational level, such as 
banks, hospitals, and universities [9]. DEA combines various  
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inputs and various outputs for a DMU into one performance 
measure, called relative efficiency. Therefore, this research 
proposes an approach for solving the multiresponse problem 
in Taguchi method utilizing DEA techniques. DEA is 
introduced in the section II. The proposed approach is 
outlined in section III. Illustrations are provided in section 
IV. Finally, conclusions are summarized in section V. 

II.   DATA ENVELOPMENT ANALYSIS  
   DEA is a fractional mathematical programming technique 
for evaluating the relative efficiency of homogeneous DMUs 
with multiple inputs and multiple outputs. The most popular 
DEA technique is the CCR model, developed by Charnes, 
Cooper, and Rhodes [10]. The CCR model measures the 
relative efficiency of each DMU once by comparing it to          
a group of the other DMUs that have the same set of inputs 
and outputs. Assuming there are n DMUs each with m inputs 
and s outputs to be evaluated. Let the DMU to be individually 
evaluated on any trial be designated as DMUo. The relative 
efficiency, Eoo, of DMUo with inputs of xio (i = 1, ... , m) and 
outputs of yro (r = 1, ... , s) is evaluated by solving 
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where ur  and vi are the virtual weights for the rth output and 
ith input, respectively, and θ is a scalar.  Obviously, the CCR 
model is nonlinear, which can be transformed into a linear 
model by setting the sum of the weighted inputs equal to one. 
The resulting model is called the “input-oriented” CCR 
model, which is expressed as  
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The objective function is the ratio of the sum of the weighted 
outputs. The first constraint ensures the sum of the weighted 
inputs is equal to one. Using the above model, DMUo is 
identified as CCR-efficient if the relative efficiency Eoo 
equals one. Baker and Talluri [11] showed that CCR model 
may provide misleading efficiency scores through 
identifying a DMU with an unrealistic weighing scheme to be 
efficient. Moreover, the Eoo may equal to one for more than 
one DMU. As a result, the CCR-model fails to discriminate 
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among efficient DMUs. In contrast, the aggressive 
formulation increases discrimination among efficient by 
allowing efficiency takes a value greater than one and allows 
for DMU’s peer-evaluation instead of self-evaluation [12]. A 
peer-evaluation means that DMUo is evaluated according to 
the optimal weighting scheme of other DMUs. The main idea 
of aggressive formulation is to obtain a weighing scheme of 
DMUo that would be optimal in the CCR model, but have, as 
a secondary objective, minimization of the cross-efficiencies 
of the other DMUs. The model of this technique given by 
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where δ is a scalar, which is very close to zero. Utilizing the 
optimal uro and vio values, *

rou  and *
iov , respectively, the 

cross-efficiencies of DMUo are then calculated. Let Eoj be the 
cross-efficiency of DMUj calculated according to the optimal 
weights of DMUo. The Eoj is calculated as     
         

1 1

/
s m
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Let ej be the mean of cross-efficiencies for DMUj. The ej is 
estimated as   
 

/( 1)j oj
o j

e E n
≠

= −∑          j = 1, ..., n                                             (2) 

 
Once the Eoj and ej values are obtained, a matrix called the 
“cross-efficiencies matrix” is constructed and used for 
comparing the performance of n DMUs. In this research, the 
aggressive formulation will be utilized for solving the 
multiresponse problem in Taguchi method.   

III. PROPOSED APPROACH 

   The proposed approach for solving the multiresponse 
problem in Taguchi method is outlined in the following steps:  
   
Step 1: Assume n experiments in Taguchi’s OA are 
conducted. Treat each experiment as a DMU. Typically, the 
efficiency is enhanced if the sum of the weighted outputs is 
increased and/or the sum of the weighted inputs is decreased. 
Therefore, set the multi-responses for each DMU based on 
the following:  
 

i. If all responses are STB type, then set all responses as 
inputs, whereas set a unit (one) as the output. 
Conversely, if all responses are LTB type, then set all of 
them as the outputs, while set one as input.  

ii. If all responses are NTB type, then calculate the estimate 
of quality loss, Lj, for DMUj as follows [13]: 

 
   2 2( / )  j j jL c s y=       j = 1, … , n                                     (3) 

where c is the quality loss coefficient, while 
jy  and sj are 

the average and standard deviation of response replicates 
for each DMUj, respectively. Set the Lj values as the 
inputs and one as the output for all DMUs.     
      

iii. If responses are a mix of the three types, set STB type 
response and Lj value of the NTB type response as 
inputs, whereas set LTB type response(s) as the output.   

 
Step 2: Obtain the Eoo value by solving the input-oriented 
CCR model for each DMU. 
 
Step 3: Estimate the *

rou  and *
iov  values for each DMU by 

solving aggressive formulation. Then, calculate the Eoj and ej 
values using Eqs. (1) and (2), respectively. Finally, construct 
the cross-efficiencies matrix.  
 
Step 4: Decide the ordinal value of ej. The ordinal value is to 
rank the ej values such that the smallest ej value receives an 
ordinal value of one, whereas the largest ej value takes an 
ordinal value of n. Let AOVfl be the average of the ordinal 
values at level l of factor f.  Calculate the AOVfl  value for 
each factor level. Typically, higher AOVfl implies better 
performance. Therefore, the optimal factor level is identified 
as the level that maximizes the value of AOVfl . If a tie occurs 
in selecting the optimal level for a factor, then choose the 
factor level that provides the largest anticipated improvement 
as the optimal level for that factor.  
 
Step 5: Calculate the anticipated improvement due to setting 
controllable factors at optimal levels obtained by aggressive 
formation.   

IV. ILLUSTRATIONS 
Two frequently-investigated case studies are provided to 

illustrate the proposed approach. 
 

A- Optimization of Polysilicon Process 
   Taguchi method was used to improve the quality of 
polysilicon process [14] by optimizing concurrently three 
responses; the surface defects (STB), thickness (NTB, target 
is 3600 Å) and deposition rate (LTB). Six process factors 
were investigated simultaneously including: (A) deposition 
temperature, (B) deposition pressure, (C) Nitrogen flow, (D) 
silane flow, (E) settling time, and (F) cleaning method, 
utilizing L18 (21×37) array shown in Table 1. The proposed 
approach was adopted to optimize the three responses 
concurrently as follows: 
 
Step 1:  Each experiment in L18 (21×37) array is treated as           
a DMU. The quality loss of thickness, calculated using               
Eq. (3), and surface defects are set the inputs. Whereas, the 
deposition rate is set as the output for all DMUs.  
 
 Step 2: Each DMU is evaluated by solving the 
input-oriented CCR model. The Eoo (o = 1, ... , 18) is 
displayed  in Table 2. Note that all the Eoo values lie between 
zero and one, while the Eoo value for each of DMU1, DMU4, 
DMU10, DMU11, and DMU14 is equal to one. Thus, these 
DMUs are equally identified as CCR-efficient, which shows 
the weakness of the CCR model in discriminating efficient 
DMUs.  
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Step 3: Aggressive formulation model is adopted to evaluate 
the values of *

1 jv , *
2 ,jv and *

1 ju  for each DMUj. The results are 

also shown in Table 2.  For illustration, the values of 
*
11v , *

21 ,v and *
11u equal to 0.0, 0.00006892, and 0.00000318, 

respectively,  for DMU1 are obtained by solving  
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The values of *

1 jv , *
2 ,jv and *

1 ju  for other DMUs are obtained 

similarly. The Eoj and ej values are then calculated using   
Eqs. (1) and (2) for each DMU. Finally, the cross-efficiencies 
matrix is constructed in Table 3. Note in Table 3, the DMUs 
identified as CCR-efficient have unequal ej values and hence 
are no more equally efficient. This shows that the efficiency 
of the aggressive formulation technique in increasing the 
discrimination among efficient DMUs.  
 
Step 4: The ordinal values for all ej values are decided and 
also listed in Table 3. The AOVfl  values are then calculated 
for all factor levels and plotted in Fig. 1. For illustration, the 
AOVA1, the efficiency of level 1 for factor A, is calculated as 
the average of the ordinal values for DMU1, DMU2, DMU3, 
DMU10, DMU11, and DMU12, then divided by six. From       
Fig. 1, it is clear that A1B1C1D2E2F2 is the combination of 
factor levels that optimizes the three responses concurrently. 
 
 Table 1. Experimental data of polysilicon process. 

 
Control factors* Inputs  Outputs  DMUj 

e A B C D E F 
thickness 

Loss 
(x1j) 

Surface  
defects 
(x2j) 

Deposition 
 rate (y1j) 

DMU1 1 1 1 1 1 1 1 0.00030 0.67 14.5 
DMU2 1 1 2 2 2 2 2 0.00027 36.22 36.6 
DMU3 1 1 3 3 3 3 3 0.00025 135.78 41.4 
DMU4 1 2 1 1 2 2 3 0.00006 17.00 36.1 
DMU5 1 2 2 2 3 3 1 0.00719 1087.78 73.0 
DMU6 1 2 3 3 1 1 2 0.00051 839.89 49.5 
DMU7 1 3 1 2 1 3 2 0.00726 776.33 76.6 
DMU8 1 3 2 3 2 1 3 0.00520 2065.33 105.4 
DMU9 1 3 3 1 3 2 1 0.00087 2200 115.0 
DMU10 2 1 1 3 3 2 2 0.00206 0.89 24.8 
DMU11 2 1 2 1 1 3 3 0.00013 1.00 20.0 
DMU12 2 1 3 2 2 1 1 0.00016 246.56 39.0 
DMU13 2 2 1 2 3 1 3 0.00062 150.11 53.1 
DMU14 2 2 2 3 1 2 1 0.00005 44.44 45.7 
DMU15 2 2 3 1 2 3 2 0.00018 1359.44 54.8 
DMU16 2 3 1 3 2 3 1 0.00065 14.33 76.8 
DMU17 2 3 2 1 3 1 2 0.00629 2201.22 105.3 
DMU18 2 3 3 2 1 2 3 0.01438 3333.33 91.4 

* e  indicates empty column.  
 

Table 2. The results of aggressive formulation. 
 

CCR-Model Aggressive Formulation DMUj 

Ejj δ *
1 jv  *

2 jv  *
1 ju  

DMU1 1.00000 0.000018 0.00000000 0.00006892 0.00000318 
DMU2 0.38025 0.001007 0.00000000 0.00006909 0.00002600 
DMU3 0.22037 0.000234 21.65440000 0.00000000 0.00002882 
DMU4 1.00000 0.001507 0.00000000 0.00006900 0.00003249 
DMU5 0.02626 0.001171 0.00000000 0.00007450 0.00002915 
DMU6 0.09788 0.000000 21.77700000 0.00000000 0.00002196 
DMU7 0.03359 0.000860 0.00000000 0.00007281 0.00002479 
DMU8 0.03032 0.000445 24.25418000 0.00000000 0.00003628 
DMU9 0.13343 0.000000 21.94908000 0.00000000 0.00002216 
DMU10 1.00000 0.000000 0.00000000 0.00006892 0.00000247 
DMU11 1.00000 0.000024 0.00000000 0.00006892 0.00000345 
DMU12 0.25200 0.000000 21.61228000 0.00000000 0.00002234 
DMU13 0.16001 0.001421 0.00000000 0.00006964 0.00003150 
DMU14 1.00000 0.000000 21.56102000 0.00000000 0.00002359 
DMU15 0.30722 0.000000 21.62162000 0.00000000 0.00002182 
DMU16 0.67157 0.000153 0.00000000 0.00006898 0.00000864 
DMU17 0.02609 0.000529 24.91281000 0.00000000 0.00003883 
DMU18 0.01227 0.001793 0.00000000 0.00008947 0.00004004 

 

 
Table 3. The cross-efficiencies matrix by aggressive formulation for polysilicon process. 

 
        DMUj 
DMUo DMU1  DMU2  DMU3  DMU4  DMU5  DMU6 DMU7 DMU8 DMU9 DMU10 DMU11 DMU12 DMU13 DMU14  DMU15  DMU16  DMU17 DMU18 

DMU1  0.0467 0.0141 0.0981 0.003101 0.0027 0.0046 0.0024 0.0024 1.28756 0.9241 0.0073 0.0163 0.0475 0.0019 0.2476 0.0022 0.0013 
DMU2 8.1438  0.1147 0.7991 0.025253 0.0222 0.0371 0.0192 0.0197 10.48572 7.5260 0.0595 0.1331 0.3870 0.0152 2.0167 0.0180 0.0103 
DMU3 0.0643 0.1832  0.8049 0.013519 0.1288 0.0141 0.0270 0.1756 0.01598 0.2021 0.3317 0.1138 1.3162 0.4043 0.1567 0.0223 0.0085 
DMU4 10.1914 0.4759 0.1436  0.031603 0.0278 0.0465 0.0240 0.0246 13.12210 9.4183 0.0745 0.1666 0.4843 0.0190 2.5238 0.0225 0.0129 
DMU5 8.4685 0.3954 0.1193 0.8309  0.0231 0.0386 0.0200 0.0205 10.90372 7.8261 0.0619 0.1384 0.4024 0.0158 2.0971 0.0187 0.0107 
DMU6 0.0487 0.1388 0.1670 0.6100 0.010245  0.0106 0.0204 0.1331 0.01211 0.1532 0.2513 0.0862 0.9974 0.3064 0.1188 0.0169 0.0064 
DMU7 7.3675 0.3440 0.1038 0.7229 0.022846 0.0201  0.0174 0.0178 9.48613 6.8086 0.0538 0.1204 0.3501 0.0137 1.8245 0.0163 0.0093 
DMU8 0.0722 0.2060 0.2477 0.9048 0.015196 0.1448 0.0158  0.1974 0.01797 0.2272 0.3728 0.1279 1.4795 0.4545 0.1762 0.0250 0.0095 
DMU9 0.0487 0.1390 0.1672 0.6105 0.010255 0.0977 0.0107 0.0205  0.01212 0.1533 0.2516 0.0863 0.9984 0.3067 0.1189 0.0169 0.0064 
DMU10 0.7767 0.0363 0.0109 0.0762 0.002408 0.0021 0.0035 0.0018 0.0019  0.7177 0.0057 0.0127 0.0369 0.0014 0.1923 0.0017 0.0010 
DMU11 1.0821 0.0505 0.0152 0.1062 0.003355 0.0029 0.0049 0.0026 0.0026 1.39326  0.0079 0.0177 0.0514 0.0020 0.2680 0.0024 0.0014 
DMU12 0.0499 0.1423 0.1712 0.6253 0.010503 0.1001 0.0109 0.0210 0.1364 0.01242 0.1570  0.0884 1.0225 0.3141 0.1218 0.0173 0.0066 
DMU13 9.7894 0.4571 0.1379 0.9606 0.030356 0.0267 0.0446 0.0231 0.0236 12.60445 9.0467 0.0715  0.4652 0.0182 2.4242 0.0216 0.0124 
DMU14 0.0528 0.1506 0.1812 0.6618 0.011115 0.1059 0.0116 0.0222 0.1444 0.01314 0.1662 0.2727 0.0936  0.3324 0.1289 0.0183 0.0070 
DMU15 0.0487 0.1389 0.1671 0.6104 0.010251 0.0977 0.0107 0.0205 0.1332 0.01212 0.1533 0.2515 0.0863 0.9981  0.1188 0.0169 0.0064 
DMU16 2.7119 0.1266 0.0382 0.2661 0.008409 0.0074 0.0124 0.0064 0.0066 3.49171 2.5061 0.0198 0.0443 0.1289 0.0051  0.0060 0.0034 
DMU17 0.0753 0.2146 0.2581 0.9426 0.015832 0.1509 0.0165 0.0316 0.2057 0.01872 0.2367 0.3884 0.1333 1.5414 0.4735 0.1835  0.0099 
DMU18 9.6843 0.4522 0.1364 0.9502 0.03003 0.0264 0.0442 0.0228 0.0234 12.46919 8.9497 0.0708 0.1583 0.4602 0.0180 2.3982 0.0214  

 ej 3.451546 0.217537 0.1290407 0.622386 0.014957 0.058069 0.01983 0.017806 0.0746 4.4328488 3.24542 0.15017 0.09551 0.65689 0.15897 0.88919 0.01556 0.0072595
Ordinal 
value 17 12 9 13 2 6 5 4 7 18 16 10 8 14 11 15 3 1 
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Step 5: The anticipated improvement in each 
response due to setting factors at A1B1C1D2E2F2 and 
the anticipated improvements gained by other 
approaches in previous studies, including 
engineering judgment [14] the sum of the weighted 
normalized quality losses [13], PCA [5], and DEA 
based ranking (DEAR) [6], are displayed in Table 4. 
Clearly in Table 4, the largest anticipated 

improvements in thickness (= 14.84 dB) and surface 
defects (= 63.72 dB) correspond to the proposed 
approach. However, the largest anticipated 
improvement in deposition rate (= -9.34 dB) 
corresponds to the sum of the weighted of 
normalized quality losses. Nevertheless, among all 
techniques, the proposed approach provides the 
largest total anticipated improvement (= 69.22 dB).

.  
 

 
Fig. 1. Optimal factor levels for polycilicon process (optimal level is identified by circle). 

 
 

Table 4. The anticipated improvement for polysilicon process 
 

Optimal condition (II) Anticipated improvement  (II-I) 

Quality response (dB) 
Starting  

condition 
(I) 

Engineering 
judgment 

[ 14]  

Sum of 
weighted 

quality loss 
[13 ] 

PCA 
[ 5]  

DEAR 
[ 6]  

Proposed 
approach 

Engineering 
judgment 

[ 14]  

Sum of 
weighted 

quality loss
[13 ]  

PCA 
[ 5]  

DEAR 
[ 6]  

Proposed 
approach 

Thickness 29.95 36.79 40.24 41.23 41.32 44.79 6.84 10.29 11.28 11.37 14.84 
Surface defects -56.69 -19.84 -24.22 -2.29 1.20 7.03 36.85 32.47 54.40 57.89 63.72 

Deposition rate 34.97 29.60 32.44 27.21 27.21 25.64 -5.37 -2.53 -7.76 -7.76 -9.34 

Total anticipated improvement (dB) 38.32 40.23 57.92 61.5 69.22 

 
 

B- Optimization of Gear Hobbing Operation 
    Genetic algorithm was employed to optimize four 
STB type responses of gear hobbing operation 
involving: left profile (LP) error, right profile (RP) 
error, left helix (LH) error, and right helix (RH) 
error [7]. Six controllable factors were investigated 
including: (A) direction of hobbing, (B) number of 
passes, (C) source of hob, (D) feed, (E) speed, and 
(F) job run out. The L18 (21×37) array was used for 
providing the layout of experimental work. Each 
experiment is treated as a DMU with LP error, RP 
error, LH error, and RH are set as the inputs, 
whereas a unit (one) is set as the output for all 
DMUs as shown in Table 5.  The proposed approach 
to optimize the four responses concurrently is 
described briefly as follows. First, the Eoo values are 
obtained by solving CCR model then displayed in 
Table 6. Then, the aggressive formulation is applied 

to calculate the optimal input and output weights of  
each  DMU. The Eoj  values are computed for each 
DMU.  Then, the ej values with their corresponding 
ordinal values are obtained and listed in the last two 
columns of Table 6. Finally, the AOVfl values are 
calculated and plotted in Fig. 2. In this figure, it is 
noted that A2B1C1D3E2F2 is the optimal combination 
of factor levels. Table 7 displays the anticipated 
improvement in each response at A2B1C1D3E2F2. 
The anticipated improvement gained by genetic 
approach [7] is also displayed in Table 7. The total 
anticipated improvement (= 11.2506 dB) due to 
setting factor levels at A2B1C1D3E2F2 larger than the 
anticipated improvement by genetic algorithm (= 
4.1498 dB). Based on the above, it is concluded that 
the proposed approach is effective for solving the 
multiresponse problem in Taguchi method for gear 
hobbing operation. 

Table 5. Experimental data of gear hobbing operation. 
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Control factor   Inputs Outputs 

DMUj A BC D E F Empty 
LP 

error 
(x1j) 

RP 
error 
(x2j) 

LH 
error 
(x3j) 

RH error 
(x4j) 

Output (y1j) 

DMU1 1 1 1 1 1 1 1 1 72.53 73.97 47.37 42.90 1 
DMU2 1 1 2 2 2 2 2 2 75.67 74.23 32.43 39.10 1 
DMU3 1 1 3 3 3 3 3 3 74.20 73.10 51.93 51.10 1 
DMU4 1 2 1 1 2 2 3 3 74.80 77.03 61.27 55.03 1 
DMU5 1 2 2 2 3 3 1 1 75.37 75.93 82.97 59.80 1 
DMU6 1 2 3 3 1 1 2 2 71.83 73.93 35.83 42.30 1 
DMU7 1 3 1 2 1 3 2 3 75.10 71.97 54.47 60.07 1 
DMU8 1 3 2 3 2 1 3 1 77.03 74.80 56.17 44.90 1 
DMU9 1 3 3 1 3 2 1 2 77.63 72.27 57.87 59.83 1 
DMU10 2 1 1 3 3 2 2 1 73.67 76.80 42.33 47.10 1 
DMU11 2 1 2 1 1 3 3 2 74.23 79.03 48.83 34.20 1 
DMU12 2 1 3 2 2 1 1 3 71.97 75.37 42.03 30.77 1 
DMU13 2 2 1 2 3 1 3 2 75.10 74.53 34.17 34.73 1 
DMU14 2 2 2 3 1 2 1 3 76.50 74.50 40.33 37.83 1 
DMU15 2 2 3 1 2 3 2 1 72.83 74.77 42.33 40.37 1 
DMU16 2 3 1 3 2 3 1 2 75.63 78.73 45.17 35.27 1 
DMU17 2 3 2 1 3 1 2 3 75.40 77.07 42.93 39.27 1 
DMU18 2 3 3 2 1 2 3 1 75.90 72.00 50.90 47.40 1 

 
 
 
 

Table 6. The results of aggressive formulation. 
 

Aggressive formulation (weights) 
Inputs   Output    DMUj 

CCR-Model  
(Ejj) *

1 jv  *
2 jv  *

3 jv  *
4 jv  *

1 ju  ej 
Ordinal 
values 

DMU1 0.996769 0.000000 0.000000 0.000000 0.001317 0.056334 0.870804 8 
DMU2 1.000000 0.000000 0.000000 0.001195 0.000000 0.038750 1.017562 17 
DMU3 0.995628 0.000000 0.000783 0.000000 0.000000 0.056996 0.807809 6 
DMU4 0.960339 0.000787 0.000000 0.000000 0.000000 0.056535 0.740510 2 
DMU5 0.965977 0.000787 0.000000 0.000000 0.000000 0.057326 0.671432 1 
DMU6 1.000000 0.000000 0.000000 0.001200 0.000000 0.042987 0.965613 15 
DMU7 1.000000 0.000000 0.000782 0.000000 0.000000 0.056312 0.768230 4 
DMU8 0.972930 0.000000 0.000784 0.000000 0.000000 0.057068 0.807354 5 
DMU9 0.995866 0.000000 0.000783 0.000000 0.000000 0.056326 0.749967 3 
DMU10 0.975113 0.000000 0.000000 0.001209 0.000000 0.049911 0.871228 9 
DMU11 0.969096 0.000000 0.000000 0.000000 0.001302 0.043168 0.905022 10 
DMU12 1.000000 0.000000 0.000000 0.000000 0.001297 0.039899 0.998115 16 
DMU13 1.000000 0.000000 0.000000 0.001197 0.000000 0.040914 1.030143 18 
DMU14 0.992851 0.000000 0.000000 0.001206 0.000000 0.048301 0.944495 14 
DMU15 0.991241 0.000000 0.000000 0.001209 0.000000 0.050737 0.916241 12 
DMU16 0.952392 0.000000 0.000000 0.000000 0.001304 0.043812 0.917718 13 
DMU17 0.963499 0.000000 0.000000 0.000000 0.001311 0.049609 0.908288 11 
DMU18 1.000000 0.000000 0.000782 0.000000 0.000000 0.056337 0.830599 7 
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Fig. 2. Optimal factor levels for gear hobbing operation (optimal level is identified by circle). 

 
 
 

Table 7. The anticipated improvement for gear hobbing operation. 
 

Optimal condition (II) Anticipated improvement =(II) – (I) Quality 
response (dB) 

Initial condition 
(I) Genetic algorithm 

[7] Proposed approach Genetic algorithm 
[7] Proposed approach 

LP error  -37.8581 -37.4917 -37.1800 0.3664 0.6781 
RP error   -37.4952 -37.4045 -37.4984 0.0907 -0.0032 
LH error   -36.6009 -34.4082 -31.4320 2.1927 5.1688 
RH error   -35.7397 -34.2396 -30.3328 1.5001 5.4069 

Total anticipated improvement (dB) 4.1498 11.2506 
 
 
 

V. CONCLUSIONS 
An effective approach for solving the multiresponse 
problem in Taguchi method is proposed in this 
research. Two case studies were presented for 
illustration. In conclusion, DEA techniques are not 
only efficient at organizational level, but also 
effective in manufacturing at operational level.  
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