
 
 

  
Abstract— A Finite Transfer numerical approximation 

method is presented to solve a system of linear ordinary 
differential equations with boundary conditions. It is applied to 
determine the structural behaviour of the problem of a spatially 
curved beam element. The approach of this boundary value 
problem yields a unique system of differential equations. A 
Runge-Kutta scheme is chosen to obtain Finite Transfer 
expressions. The use of a recurrence strategy in these equations 
permits to relate both ends in the domain where boundary 
conditions are defined. Example of a Catenary shaped arch is 
provided for validation. 
 

Index Terms— Finite Transfer Method, differential system, 
boundary conditions, curved beam, Frenet-Serret formulas, 
transfer matrix. 
 

I. INTRODUCTION 
The problem to solve a system of linear ordinary 

differential equations (ODE) with boundary conditions can 
be approached by using analytic or numerical strategies. 
Being not possible to always use an exact method, 
approximate procedures have been resorted to [1]. In last 
decades, several numerical methods have arisen to solve 
these boundary value problems: For example, the Shooting 
Method [2], the Finite Difference Method [3], the Finite 
Element Analysis [4] and the Boundary Element Method in 
elasticity [5]. 

There exists much literature on modelling arbitrary curved 
beam elements [6], [7]. Traditionally, the laws governing the 
mechanical behaviour of a curved warped beam (applying the 
Euler-Bernuolli and Timoshenko theories) are defined by 
static equilibrium and kinematics [8], [9] or dynamic motion 
equations [10]. Some authors present this definition by 
means of compact energy equations [11], [12], [13]. These 
interpretations have permitted to reach accurate results, for 
only some types of beams: for example, a circular arch 
element loaded in plane [14], [15], [16], [17], [18] and loaded 
perpendicular to its plane [19], parabolic and elliptical beams 
loaded in plane [20], [21], [22] or a helix uniformly loaded 
[23]. 

 
Manuscript received April 21, 2008. 
L. Gimena is with the Public University of Navarra, Dpt of Engineering 

Projects, Campus Arrosadía, Pamplona, Navarra, CP 31006, Spain 
( : +34 94816 9233; fax: ext.  9644; : lazaro.gimena@unavarra.es ). 

P. Gonzaga is with the Public University of Navarra, Dpt of Engineering 
Projects, Campus Arrosadía, Pamplona, Navarra, CP 31006, Spain 
( : pedro.gonzaga@unavarra.es). 

F. Gimena is with the Public University of Navarra, Dpt of Engineering 
Projects, Campus Arrosadía, Pamplona, Navarra, CP 31006, Spain 
( : faustino@unavarra.es). 

 

 
In this paper, a Finite Transfer Method is proposed and 

applied to a system of differential equations, obtaining an 
incremental equation based on the transfer matrix. First, 
second and fourth order Runge-Kutta approximations are 
adopted. Using the preceding finite expression as a 
recurrence scheme, both extremes are related, reaching a 
system of algebraic equations with constant dimension 
regardless of the number of intervals. This boundary value 
problem is solved identifying the known support values in the 
above algebraic system. Hence, all the extremes values are 
determined and the recurrence scheme gives the solution at 
any point in the domain. 

The authors focus on the arbitrary curved beam model, by 
means of a unique system of twelve ordinary differential 
equations with boundary conditions [24]. Accurate results 
are provided in examples for validation. 

II. SYSTEMS OF DIFFERENTIAL EQUATIONS 

A. System of linear ordinary differential equations of first 
order 

Let’s define the system of ODE of first order, which 
represents the differential problem to solve: 
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In vector notation can be written as 
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is the matrix of variable coefficients and 

{ }1 2( ) , , ,
T

pt b b b=b K  

is the independent vector term. 
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B. Differential equation of order p-1. 
A differential equation of p-1 order can be written as 

follows: 
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Making the proper change of variable: 
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We obtain, 
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Thus, the above equation can be expressed as a 
fundamental system of ODE of first order: 
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In vector notation form, we reach: 
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dt
⎡ ⎤= +⎣ ⎦

x A x b  (5) 

where 
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is the matrix of variable coefficients, and 

{ }( ) 0,0, ,0,
T

t b=b K  

is independent term. 

C. Analytical solution: 
The analytical solution at a general point t can be 

expressed in function of the values at the initial point tI, as 
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Therefore, the final point tII can be related with the initial 
point tI with next expression: 
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Boundary conditions are applied in the above formula to 
solve the differential system. 

III. FINITE TRANSFER METHOD 
Let’s establish the Finite Transfer procedure, for different 

order approximations. 

A. Finite Transfer equation of first order. 
Applying the approximation: 
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Thus, the Finite Transfer Equation in this case is: 
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If we use the above relation, we can write the expression of 
the functions at a general point ti+1 in terms of the initial point 
tI using a recurrence scheme 
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Establishing n intervals, the two end points I (or 0) and II 
(or n) of the curved line will be related, where boundary 
conditions are applied. 
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We can easily demonstrate that the above expression tends 
in the limit to the analytical expression given in (7): 
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B. Finite Transfer Equation for second order 
Runge-Kutta approximation 

Applying the second order RK approximation [2]: 
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C. Finite Transfer Equation for fourth order RK 
approximation 

Applying the fourth order approximation: 
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D. Recurrence scheme 
Using one of the above Finite Transfer Equations (Eq. 9, 

Eq. 14 or Eq. 16), a recurrence scheme could be applied to 
write the expression of the functions at a general point ti+1 in 
terms of the initial point tI  
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Establishing n intervals, the two end points I and II of the 
curved line are related by next equation, where the boundary 
conditions are applied. 
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IV. DIFFERENTIAL SYSTEM FOR SPATIALLY CURVED BEAMS 
A curved beam is generated by a plane cross section which 

centroid sweeps through all the points of an axis line. The 
vector radius r = r(s) expresses this curved line, where s (arc 
length of the centroid line) is the independent variable. 

The reference system used to represent the intervening 
known and unknown functions is the Frenet frame. Its unit 
vectors tangent t, normal n and binormal b are: 

t rD= ; 2 2D D=n r r ; = ∧b t n  

where, D d ds=  is the derivative with respect to the 
parameter s. 

The natural equations of the centroid line are expressed by 

the flexion curvature 2 2D Dχ = ⋅r r  and the torsion 

curvature ( ) ( )2 3 2 2D D D D Dτ = ∧ ⋅ ⋅r r r r r . 
The Frenet-Serret formulas are [25]. 
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Assuming the habitual principles and hypotheses 
(Euler-Bernuolli and Timoshenko classical beam theories) 
and considering the stresses associated with the normal 
cross-section (σ, τn, τb), the geometric characteristics of the 
section are: area A(s), shearing coefficients αn(s), αnb(s), 
αbn(s), αb(s), and moments of inertia It(s), In(s), Ib(s), Inb(s). 
Longitudinal E(s) and transversal G(s)  elasticity moduli give 
the elastic condition of the material. 

Applying equilibrium and kinematics laws in a differential 
element of the curve, the system of differential equations 
governing the structural behaviour of the curved beam can be 
obtained [24] (Equation 20 in next page bottom). 

The first six rows of the system (20) represent the 
equilibrium equations. 

The functions involved in the equilibrium equation are: 
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The last six rows of the system (20) represent the 
kinematics equations. 

Rotations t n bθ θ θ+ +t n b  

Displacements t n bu v w+ +  

Rotation load t n bt n bΘ Θ Θ+ +  

Displacement load t n bt n bΔ Δ Δ+ +  
The differential system (Eq. 20 at the bottom page) can be 

annotated in vector mode as follows: 
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is the infinitesimal Transfer Matrix, and 
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is the applied load. 

A. Applying the fourth order approximation: 
The approximation of the differential system (21) is given 

by: 
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Applying the recurrence scheme 
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Establishing n intervals, the two end points I and II of the 
curved line can be related: 
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(25) 

Where ( ),I IIT s s⎡ ⎤⎣ ⎦  is the Transfer Matrix and 

( ),T I IIq s s  the load transfer vector [26]. 
Finally, support conditions are applied to solve the problem. 
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Differential System for Spatially Curved Beams. Internal forces and deflections functions interconnected. 
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V. EXAMPLE. CATENARY SHAPED ARCHS 
Parametric equations of the Catenary arch in function of 

the arc length, are given by: 
arcsinhx a s a=  

2 2y f a a s= + − +  

Where (cosh 1)f a l a= −  is the height and 2l is the 
arch span shown in Figure 1. 

Vectors of the Frenet frame: 

{ }2 2 2 2, , 0a a s s a s= + − +t  

{ }2 2 2 2, ,0s a s a a s= + +n  

b z=  
Curvatures are determined: 

2 2( ) ( )s a a sχ = − + and ( ) 0sτ =  

Substituting these expressions in the general system of the 
spatially curved beam Eq. 20, for the case of Catenary arch 
loaded in plane, yields to Equation 26: 

For example, we consider a uniform distributed load (udl) 
q=1 kN/m. Dimensions of the arch are: f =10m; l =10m and 
the cross section is circular with diameter d = 0.5m. 

The geometric characteristics of the section are: A = π 
d.2/4, In = Ib = π d.4/64, and It = π d.4/32. Shearing deformation 
is neglected, thus αn=0, αz=0. The elastic isotropic 
homogenous material has longitudinal E = 3.107.kN/m2 and 
transversal G = 1,25.107.kN/m2 moduli. 

Graphs of accurate results are plotted in Figure 2. 
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q
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Figure 1. Fixed-fixed udl Catenary arch. 
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Differential System for the Catenary Arch 
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Figure 2. Graphs of Internal Forces and Deflections in the Catenary Arch. 
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VI. CONCLUSIONS 
The exposed Finite Transfer Method solves systems of 

linear ordinary differential equations with boundary 
conditions. 

It is suitable to determine the structural behaviour of the 
classical problem of an arbitrary curved beam element. 
Normally this problem is formulated in a compact energy 
equation form, but here the research is approached in an 
extended system of differential equations. 

Applying a proper numerical approximation, Finite 
Transfer Equations are obtained. The fourth order 
Runge-Kutta scheme offers accurate results. It has been 
demonstrate how this numerical approach, tends in the limit 
to the analytical solution. The use of a recurrence strategy 
permits obtaining the Finite Transfer Equation that relates 
unknown functions at both extremes of the domain where 
boundary conditions are applied. The dimension of the 
resultant algebraic system is always constant and equal to the 
number of functions in the system, regardless of the intervals 
adopted, without the need of defining a mesh. The showed 
method is general, consistent and easy to implement in a 
software application. 

Concerning arbitrary curved beam elements, the method 
presented does not distinguish between statically determinate 
or indeterminate beams (support conditions are applied at the 
end of the procedure), does not need the definition of 
reactions in the extremes and does not need extra formulation 
(virtual work principle, Castigliano’s theorems, or energy 
formulation). Example of a Catenary arch loaded in plane is 
given for verification. 
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