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Abstract— We describe the limit sets in affine con-
trol systems, in affine differential systems with im-
pulses. In contrast with the fixed points in ODE case,
these sets may have a fractal structure. We give esti-
mations of their Hausdorff dimension. For these sys-
tems we extend the notion of Shadowing Property
and state this property in the neighborhoods of the
attractors and repellers in control systems.
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1 Introduction

Let U denote the set of (simple) step functions u : R →
R, u =

+∞∑
j=−∞

cj1[j,j+1) with the sequence (cj)j∈Z, taking

values from a finite set U = {u1, . . . , ur}. For a given
control function u ∈ U consider the control system

ẋ(t) = A(u(t))x + b(u(t)) (t ∈ R \ Z, x ∈ Rm). (1)

A continuous and piecewise differentiable function x :
R → Rm is called a solution of the system (1) if it sat-
isfies the system (1) on every interval (j, j + 1), j ∈ Z.
Given τ ∈ R, x0 ∈ Rm, u ∈ U , denote by ϕ(·, τ, x0, u)
the solution of the system (1) which satisfies the initial
data ϕ(t, τ, x0, u)|t=τ = x0. We will also use the notation
ψj(·, τ, x0) to describe solution of the autonomous system

ẋ(t) = A(uj)x + b(uj), (2)

which satisfies the initial data ψj(t, τ, x0)|t=τ = x0. De-
note by Φj(t, τ) the evolution operator of the system (2),
i.e. Φj(t, τ)x = ψj(t, τ, x).

The dynamics of the control system (1) is generated by r
affine differential systems with constant coefficients. The
motion during the time (j, j + 1) is governed by one of
these systems. At the moment t = j + 1 the control
function u switches the system to another equation, ac-
cording to the value of u at this moment. As example,
Fig. 1 represents the first three arcs on [0, 3] of the tra-
jectory of a system of the type (1) on R2, starting at the
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point (1, 1) (each next arc on [j, j + 1] is drawn thicker
than the previous one).
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Figure 1: The first three arcs of a trajectory of a sys-
tem (1).

If the control sequence (cn)n∈Z (and the function u) is
periodic, the control system (1) admits at least one peri-
odic orbit, which, depending on the spectra of matrices,
may be attracting, or repelling. For general control se-
quences the behavior of the control system may drasti-
cally change; a strange attractor, or repeller, may arise.

A general question (see, e.g. [2]) is to describe the behav-
ior of motions (trajectories) of the system (1) as t tends
to +∞.

2 Poincaré IFS

If one denotes by x(n) the state of the system (1) at the
moment t = n, then by a straightforward calculation we
end up with a sequence of affine maps Fin : x(n) 7→ x(n+
1), n ∈ Z. Under the above assumptions, this sequence
has a finite rank, say {F1, F2, . . . , Fr}, Fj = Φj(1, 0).

Let {Rm;F1, F2, . . . , Fr} denote the corresponding Iter-
ated Function System (IFS) (see, e.g. [1]) generated by
the control system (1). Going forward, we assume that
all operators eA(uj) (1 ≤ j ≤ r) are either contracting,
i.e.

||eA(uj)|| ≤ s < 1 (1 ≤ j ≤ r), (3)

or expanding, i.e.

||e−A(uj)|| ≤ s < 1 (1 ≤ j ≤ r). (4)

In this case the IFS {Rm; F1, F2, . . . , Fr} determines in
Rm a global compact attractor or repeller K, which
is the unique fixed point of the corresponding Nadler-

Hutchinson operator F , F (V ) =
r⋃

j=1

Fj [V ] for any com-

pact V ⊂ Rm [6]. This IFS plays a role similar to that
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of the Poincaré map for a periodic differential system.
Hence, we call it the Poincaré IFS associated to the con-
trol system. The dynamics of the initial control system
is determined to a large extent by the dynamics of the
Poincaré IFS. That’s why we will concentrate on the be-
havior of this IFS (more general cases are studied in [3],
[4]).

Fix a natural number k. The sequence (cn)n∈Z is said to
be k-universal if it contains every word of length k from
the alphabet U . The sequence (cn)n∈Z is called universal
if it is k-universal for every natural k.

If the sequence (cn)n∈Z is universal, then the orbit of
each point in K is chaotic in the sense of Li-Yorke, in
particular it is dense in K [1].

3 Attractors

The system (1) is nonautonomous and we can consider
only its integral curves. Even in the case of periodic se-
quence (cn)n∈Z we cannot factorize the system to obtain
a (autonomous) system on the direct product S1×Rm =
[0, 1) ×Rm. However, since the switch actions occur at
the moments t ∈ Z, we can obtain a ”foliation” on the
cylinder S1 × Rm by factorization on time. This ”fo-
liation” consists of pieces of integral curves of the sys-
tem (1).

Let us project the system (1) to the cylinder S1 ×Rm,
using the projection π : (t, y) 7→ (t (mod 1), y).

We will say that a set V ⊂ S1 × Rm is invariant (pos-
itive invariant) with respect to the system (1) if for
every point (τ, x) ∈ V there is a natural k such that
(t (mod 1), ϕ(t, τ + k, x, u)) ∈ V for t ∈ R (t ≥ τ + k).
In other words, V consists of pieces of integral curves of
the systems (2).

By definition, such a set V ⊂ S1 ×Rm covers the whole
base S1 by projection. Denote by (t, Vt) = {(t, x) ∈ S1×
Rm | (t, x) ∈ V } the fiber over the point t ∈ [0, 1). For
convenience, we will identify this fiber with Vt. Moreover,
in the rest of the paper the notation Vt for t ∈ R will
mean Vt (mod 1).

Theorem 1. The set V ⊂ S1×Rm is positive invariant
(invariant) with respect to the system (1) if and only if it
satisfies the following conditions:

1. Φj(t, 0)V0 ⊂ Vt (
r⋃

j=1

Φj(t, 0)V0 = Vt) for 0 ≤ t < 1;

2. V0 is positive invariant (invariant) with respect to
the Nadler-Hutchinson operator F , i.e. F (V0) =

r⋃
j=1

Fj [V0] ⊂ V0 (F (V0) = V0).

Let the distance from point x ∈ Rm to compact M ⊂ Rm

be %(x,M) := min{d(x, y) | y ∈ M}.
A bounded and closed subset V ⊂ S1 ×Rm is called an
attractor of the system (1) if it is positive invariant and
for every solution ϕ(·, τ, x, u), %(ϕ(t, τ, x, u), Vt) → 0 as
t → +∞.

Recall that the attractor of a hyperbolic IFS is defined
as the unique fixed point of the corresponding Nadler-
Hatchinson operator. This attractor may be character-
ized as follows: it is a nonempty positive invariant un-
der the action of each function of the IFS and is minimal
with respect to these properties. Similarly, the nonempty
compact subset V ⊂ S1 ×Rm will be an attractor of the
system (1) if it is positive invariant with respect to the
system and is minimal with respect to this property.

Theorem 2. Assume that (3) holds. Then

1. for any control function u ∈ U there is an attractor
K∗ ⊂ S1 ×Rm of the system (1),

K∗ =
r⋃

j=1

{(t, ψj(t, 0, x)) | t ∈ [0, 1), x ∈ K} ,

where K is the attractor of the associated Poincaré
IFS, with the Hausdorff dimension DH(K∗), verify-
ing the inequalities:

1 < DH(K∗) ≤ 1− ln r

ln s
;

2. this attractor K∗ does not depend on the control
function u;

3. a point ξ = (τ, x0) belongs to K∗ if and only if there
exists a control function u ∈ U such that

lim
n→−∞

ϕ(τ, n, x, u) = x0

for any x ∈ Rm.

When the condition (4) is satisfied one speaks about the
repeller of the system (1).

Recall some notions. A set is called totally disconnected
if for every point from this set the only connected com-
ponent, containing this point, is the point itself. A set S
is called perfect if it is closed and every point p ∈ S is the
limit of points qn ∈ S \ {p}. A set is called a Cantor set
if it is totally disconnected, perfect and compact.

Theorem 3. Assume that the hypothesis of Theorem 2
are valid with s < 1

r . Let the sequence (cn)n∈Z be univer-
sal. Then the attractor K∗ is homeomorphic to the union
of r direct products of a half-open interval and a Can-
tor set, its Hausdorff dimension verifying the inequalities:
1 < DH(K∗) < 2.
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Figure 2: Attractor K∗ as an union of ”tori”.

Fig. 2 represents an attractor K∗ of a system (1) on the
cylinder S1 × Rm as union of ”tori”, having a triangle
shape K in the section t = 0. Note that each such ”torus”
has a shape similar to that on Fig. 3.

Theorem 4. If the sequence (cn)n∈Z is universal, then
every trajectory of the system (1), starting in K∗, is
chaotic as per Li-Yorke.

Corollary. If the sequence (cn)n∈Z is universal, then ev-
ery trajectory of the system (1) is asymptotically chaotic
according to Li-Yorke definition.

4 Impulsive systems

A similar idea is applied in [5] to study the system of
impulsive affine differential equations (see, e.g. [7])

ẋ = Ax + b (x ∈ Rm), (5)

∆x
∣∣
t=n

:= x(n + 0)− x(n− 0) =
Cin

x(n) + din
(n ∈ N), (6)

where A is a nonsingular matrix. The matrices Cin
and

the vectors din belong to some (finite or infinite) given
sets.

Between any two consecutive kicks the motion of system
obeys (5). At the moment t = n the elements Cin

and
din

, which determine the jump by (6), are chosen, say
randomly. For convenience, we will consider that each
solution of system (5)-(6) is right continuous at any mo-
ment t ∈ N.

Assume that

||(E + Cn)eA|| ≤ s < 1 (1 ≤ n ≤ r). (7)

Sometimes, if necessary, it is required that all operators
(E + Cn) (1 ≤ n ≤ r) are invertible.

The results will be similar to the ones obtained above.

Figure 3: Attractor K∗, constructed on a compact K
with a triangular shape.

Project again the system (5)-(6) on the cylinder S1×Rm.

Similarly, we associate to system (5)-(6) an IFS
{Rm; Fi1 , Fi2 , . . . , }, Fin : x(n) 7→ x(n + 1), consisting of
affine contractions. This IFS determines in Rm a global
compact attractor K, which is the unique fixed point of
the corresponding Nadler-Hutchinson operator F . As-
sume that the sequence (Fin)n∈N consists of only r dis-
tinct maps.

Using [8], one can obtain the following result.

Theorem 5. Assume that (7) holds and s < 1
r . Then

the attractor K is totally disconnected.

Theorem 6. Assume that (7) holds. Then there exists
an attractor K∗ ⊂ S1 ×Rm of the system (5)-(6),

K∗ = {(t, etAx + (eA − E)A−1b) | t ∈ [0, 1), x ∈ K},
with the Hausdorff dimension DH(K∗), verifying the in-
equalities:

1 < DH(K∗) ≤ 1− ln r

ln s
. (8)

Theorem 7. In addition to the hypothesis in The-
orem 5 assume that the sequence (Fin)n∈N is univer-
sal. Then the attractor K∗ is homeomorphic to the
direct product of a half-open interval and a Cantor
set, its Hausdorff dimension verifying the inequalities:
1 < DH(K∗) < 2.

Theorem 8. Assume that (7) holds and the sequence
(Fin)n∈N is universal. Then every trajectory of the sys-
tem (5)-(6) is asymptotically chaotic as per Li-Yorke.

Fig. 3 represents an attractor K∗ on the cylinder S1×Rm

with the section K for t = 0 of a triangular shape.

5 Linear oscillator

Let us consider, as an example, the linear oscillator with
impulsive actions

ẍ + cẋ + kx = 0 (c > 0, k > 0), (9)

∆ẋ
∣∣
t=n

:= ẋ(n + 0)− ẋ(n− 0) = ξin (n ≥ 1). (10)

Assume that the range of the sequence (ξin)n≥1 contains
only r distinct elements.
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Figure 4: A totally disconnected (left) and a connected
(right) attractor K.

Figure 5: Attractor K of an infinite IFS.

We can reduce the equations (9)-(10) to an affine system
of impulsive differential equations (5)-(6) in the phase
space x1 = x, x2 = ẋ. In this case we obtain similar
results as in the previous theorems.

Theorem 9. There exists an attractor K∗ ⊂ S1×R2
(x,ẋ)

of the system (9)-(10). If

2 ln r < c <
k

ln r
+ ln r

and the sequence (ξin)n∈N is universal, then the attractor
K∗ is homeomorphic to the direct product of a half-open
interval and a Cantor set and its Hausdorff dimension

DH(K∗) = 1 +
2
√

2 ln r√
2c−

√
c2 − 4k + |c2 − 4k|

verifies the inequalities: 1 < DH(K∗) < 2.

Fig. 4 represents the respective attractors K ⊂ R2
(x,ẋ) for

distinct parameter values for two impulsive differential
equations (9)-(10): on the left for c = 5/2, k = 2 and
r = 3 (K is totally disconnected), on the right for c = 1,
k = 5/4 and r = 3 (K is connected).

Remark. If the value set of sequence (ξin
)n≥1 is infinite

but bounded, then system (9)-(10) admits an attractor
as well.

Fig. 5 represents the attractor K (of an infinite IFS) for
an impulsive differential equation (9)-(10) with c = 2,
k = 2, where values (ξin

)n≥1 are randomly chosen from
[0, 1].

6 Shadowing Property

We will say that a function ψ : [0, +∞) → Rm is a
δ-pseudo-solution of the equation (1) if:

• it is piecewise differentiable and

‖ψ̇(t)−A(u(t))ψ(t)− b(u(t))‖ < δ (t /∈ N);

• ‖∆ψ
∣∣
t=n

‖ < δ (n ∈ N).

We will say that a δ-pseudo-solution ψ is ε-shadowed by
the solution ϕ if there exists a differentiable parametriza-
tion γ : [0, +∞) → [0, +∞), |γ̇ − 1| < ε, γ(n) = n for
n ∈ N, and ‖ϕ(t)− ψ(γ(t))‖ < ε for t ≥ 0.

Theorem 10 (Shadowing Property). Let K∗ stand for
the attractor (repeller) of the equation (1). Then there
exists a neighborhood V (K∗) in [0, 1)×Rm such that for
any ε > 0 there exists δ > 0 such that any δ-pseudo-
solution in V (K∗) is ε-shadowed by an actual solution.

7 Conclusions

For simplest control systems defined by affine differential
equations and with simple control functions, including
impulsive control, we give conditions for the existence of
strange attractors or repellers. We prove the Shadowing
Property near these limit sets and thus we obtain a the-
oretical justification for computer simulation of control
and impulsive systems.

All calculations and graphic objects have been done using
the Computer Algebra System Mathematica.

References

[1] Barnsley, M., Fractals Everywhere. Acad. Press Pro-
fess., Boston, 1993.

[2] Colonius, F., Kliemann, W., The Dynamics of Con-
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