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Abstract—This paper proves that the complexity
of exact weight perfect matching problem is NP-
complete by reduction from the good perfect match-
ing problem. Following this result, the other two
open problems DNA sequence analysis and discrete
min-max assignment problems are proven to be NP-
complete.
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1 Introduction

Throughout this paper we only consider the finite simple
undirected graph G = (V,E), i.e. the graph has no multi-
edges and self loops. If each edge of G is assigned a color,
then G is an edge-colored graph G(C), where C is a color
partition C = {c1, c2, . . . , ck}. Let ci(ej) denotes the edge
ej assigned in color ci and ci(E) means the subset of edges
all in color ci. A matching in G is a subset of pairwise
non-adjacent edges; that is, no two edges share a common
vertex. A perfect matching M is that every vertex meets
exactly one memeber of M . A good matching is that all
the edges in M are of different colors. Let w(ei) denotes
the weight edge ei, ei ∈ E. And W (S) = w(e1)+w(e2)+
. . . + w(es) denotes the sum of weights of all the edges
S ⊆ E.

It is well known that the perfect matching or assignment
problem in weighted/unweighted bipartite graphs could
be solved efficiently [7]. But for the following question, it
becomes more difficult:

Name. Exact Weight Perfect Matching (EWPM for
short)

Input. An edge weight bipartite graph and a positive
integer α.
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Question. Does there exist a perfect matching M with
W (M) = α ?

The EWPM becomes a more and more famous open
problem in recent years. For instance, Jacek proved that
it is equivalent to the DNA sequencing analysis problem
in polynomial time [2]. Vladimir proved that it is equiv-
alent to the discrete mini-max assignment problem with
a fixed number of scenarios in polynomial time [4].

Input. A complete bipartite graph with bipartition X U
Y; a set of k cost scenarios that are specified by non-
negative integer edges costs b1, . . . , bk : X ×Y → N ;
a bound B.

Question. Find a perfect matching M ⊆ X × Y with
bi(M) ≤ B for i = 1, . . . , k.

In this paper, we study this problem by two known NP-
complete problems. The first one is the good perfect
matching problem.

Name. Good Perfect Matching (GPM for short)

Input. A edge colored bipartite graph.

Question. Does there exist a perfect matching M with
each edge in M has different color?

Good prefect matching problem is a special case of
maximum labeled perfect matching problem in [9]. And
Cameron [3] proved that

Theorem 1 [3] The good prefect matching problem in
bipartite graph is NP-complete.

But Cameron showed that the restricted GPM problem
could be solved in O(n2) when the graph is complete
bipartite graph and there are no more than two edges in
the same color existing in this complete bipartite graph
[3].

Another related NP-complete problem is 0-1 knapsack
problem, which can be expressed as follows:
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Name. 0− 1 Knapsack Problem

Input. A vector of positive integers A = {a1, a2, . . . , an}
and an integer T .

Question. Does there exist a binary vector X satisfying∑n
i=1 aixi = T?

In this paper, we only consider a simple 0 − 1 Knap-
sack problem: the sequence of A is superincreasing if∑i−1

j=1 aj ≤ ai − 1 (i = 2, . . . , n). This case is known
to be solvable in polynomial time [10].

All graph theoretical terms that do not defined in this
paper can be found in [5]. We refer to [6] for definitions
linked to complexity and knapsack problem.

2 Color coding

Itai studied the restricted matching problem with a single
restriction |M ∩ c1(E)| ≤ r[8]. His approach is to encode
the edges with binary coding, thus the restricted match-
ing problem can be solved in polynomial time by solving
the minimum cost maximum flow problem.

But the binary coding is so greedy that it lose a lot of
useful information in this solution. For instance, if there
is a K2,2 graph with 1 red edge, 1 green edge and 2 blue
colors and we encode red edge as 1, and other edges value
as 0. Since the perfect matching M of K2,2 only include
two edges, if W (M) = 1, it shows that there must be a
red edge in M . However, it could not tell us the color of
the another edge in M .

Therefore, it is necessary to distinguish all colors from
the perfect matching efficiently. Let us consider the nat-
ural primary colors: Red, Blue and Green. For any given
color, it is always composed of these primary colors; Con-
versely, if any value of primary colors is given, an unique
color can be obtained. Similarly, if each edge in a perfect
matching M is colored by the primary colors, then color
of M can be viewed as a mixed color; on the other hand,
if the mixed color of a M is given, we can get the color
of every edge in M .

Now suppose that there exists k different colors in graph
G. Let w(ei) equals to the weight of edge ei and c(ej)
the color of edge ej , we encode each weight of edge as a
superincreasing number by the following approach

wei =


1, if c(ei) = c1;
|c1(E)|+ 1, if c(ei) = c2;
. . . , . . .∑k−1

j=1 |Cj(E)|+ 1, if c(ei) = ck;

(1)

It is obvious that the color coding is an one-to-one map.
We can thus obtain the color of an edge if the weight of
the edge is given.

Finally, let us taken an example to show how to distin-
guish the color from a weight perfect matching. Given a
red-blue edge color K3,3 graph, let er be an edge in color
red and eb an edge in color blue. Then according to Equa-
tion (1), we have w(er) = 1 and w(eb) = 3, suppose the
W (M) = 3, then the matching M includes 3 red edges.

3 Exact weight perfect matching prob-
lem is NP-complete

In this section the EWPM problem is proven to be NP-
complete by reducing the good perfect matching problem.
In other words, EWPM problem is harder than GPM
problem. The main theorem is as follows:

Theorem 2 The exact weight perfect matching problem
of bipartite graph is NP-complete.

Proof : Given a perfect matching M of bipartite graph
and an integer k, it is easy to check that the sum of
weight edges in M equals to the value of k, thus EWPM
is NP.

Now let us reduce the good perfect matching problem to
EWPM of a bipartite graph G.

Suppose that an edge colored bipartite graph G has 2n
vertices, and the colors set C is {c1, c2, . . . , ck}, where
(k ≥ n). A good perfect matching M of G consists of a
set of edges {e1, e2, . . . , en}.

Let’s encode each edge with color coding according to
Equation (1). Thus the set of edges in M are labeled
with a set of weights {w(e1), w(e2), . . . , w(en)}. The sum
of weights of M is

W (M) = w(e1) + w(e2) + . . . + w(en). (2)

where w(ei) satisfies the superincreasing condition.

Thus Equation (2) could be rewritten as the following
equation:

W (M) = x1w(c1) + x2w(c2) + . . . + xkw(ck), (3)

where xi ∈ {0, 1} and w(ci) satisfies the superincreasing
condition.

Obviously, Equation (3) shows that it is a 0-1 knapsack
problem . Thus if there exists a good perfect matching M
in G, then there exists an exact weight perfect matching
satisfying Equation (3) and if an edge in M is labeled
with color ci, then we can get xi = 1, otherwise xi = 0.

Conversely, if there exists an exact weight perfect match-
ing W (M) in G, then it could solve Equation (3) in poly-
nomial time according to the complexity of superincreas-
ing knapsack problem [10]. 2
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According to Theorem 8 in [2], we can give the following
corollaries:

COROLLARY 1 DNA-SEQ problem is NP-completed.

Since Valdimir had proven that the discrete min-max as-
signment problem with a fixed number of scenarios is
reducible to the exact weight perfect matching problem
in polynomial time [4], a corollary is obtained according
to Theorem 2.

COROLLARY 2 Discrete min-max assignment problem
with a fixed number of k scenarios (k ≥ 2) is NP-
completed.

Valdimir also shown that the Discrete min-max regret as-
signment problem is equivalent to the exact perfect match-
ing problem in polynomial time [4].

COROLLARY 3 Discrete min-max regret assignment
problem is NP-completed.
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