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Abstract— In the paper, the authors have extended the 

classical coupon collector problem to the case of group drawings 

with indistinguishable items. The results are applied to a 

statistical quality control problem that arises in a dairy's bottle 

filling process with s nozzles. A sequential m sized samplings is 

made in order to detect the nozzles. The present research 

concerns the number of samplings, called the waiting time, 

required until each nozzle is detected at least once. Bose Einstein 

statistics is used to analyze the waiting time distribution and a 

numerical example is given. 

 

 
Index Terms—Bose Einstein statistics, indistinguishable 

items, waiting time  

 

I. INTRODUCTION 

  The classical coupon collector problem (CCCP) concerns 

a shopper who tries, in several attempts, to collect a complete 

set of s different coupons. Each attempt provides the collector 

with one coupon randomly chosen from s known types, and 

there is an unlimited supply of coupons of each type. 

Reference [1] analyzed the CCCP as an occupancy 

problem. He derived an expression for the expected waiting 

time, i.e. the number of attempts needed to obtain the 

complete set. 

Extending CCCP  has been a challenge for researchers 

during the last few decades. Many of the extensions that have 

been developed have been found to be useful models for 

scientific and engineering applications. 

Reference [2] derived estimators for the mean and variance 

of the waiting time for the unequal probability case. Their 

results can be used to analyze the mean time until a random 

walk on a star graph visits k distinct leafs and then returns to 

the origin. The IP traceback problem is considered in [3]. He 

derived bounds for the complementary cumulative 

distribution function of the detecting cost (waiting time). 

These bounds are very helpful for evaluating the efficiency of 

various PPM schemes.  Several researches extended the 

CCCP to the group drawing case, i.e. each attempt provides 

the collector with a group of distinct coupons. An exact 

solution for the distribution and factorial moments related to 
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the waiting time for obtaining a specified subset of coupons is 

reported by [4]. 

Reference [5] extended the results in [4] to random group 

sizes with unequal probabilities. They determined the 

expected waiting time and gave bounds on this number. An 

application to reliability engineering was also given. CCCP 

with equal probabilities and random size samples are 

researched in [6]. They computed the distribution and mean 

for the number of samplings needed to obtain j coupon types, 

given that there are currently i coupon types.   

In the present work, CCCP is generalized to the group 

sampling case in which the sample items are not necessarily 

distinct. The waiting time distribution and its factorial 

moments are computed in Section 2. In Section 3 the results 

are applied to a statistical quality control problem that arises 

in a dairy's bottle filling process and a numerical example is 

given. 

 

II. WAITING TIME DISTRIBUTION 

Consider a population that consists of s types of items, each 

of which has an unlimited number of copies. Sequential m 

sized samplings are made, when the items in each sample are 

not necessarily distinct, until any type of a complete set (i.e., 

all s types of items) is obtained at least once. In the particular 

case that m=1, we have a CCCP. 

In order to derive explicit formulas for the probability 

distribution function and probability generating function of 

the waiting time, we need some preliminary results 

concerning the number of different item types achieved after k 

samplings. We begin with the following lemma,  

Lemma 1: Let sjB j ,...,2,1  denote the event that a 

type j item was not detected after k samplings. We have 
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Proof:  A single m sized sample, chosen from an s type 

population, can be described in terms of a random distribution 

of m indistinguishable balls into s cells. Using Bose Einstein 

statistics [1] we get that it can be done in 
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equiprobable arrangements. There are 
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arrangements in which one cell is empty. Since successive 

samplings are statistically independent, the result follows. 
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Define the random variable kX to be the number of different 

item types achieved after k samplings; 

Theorem 1: The distribution of 1kX k  is given for 

every n (n=1,2,…,s)  by: 
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Proof: Define  nn jjA ,...,1)(   to be a fixed n sized 

subset of the complete type set.  The probability that these 

item types will be obtained after k samplings equals:  
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. 

Using the inclusion-exclusion formula, the probability that 

at least one of the item types in )(nA   will not be obtained in k 

samplings is: 
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Equation (3) is derived from (2) with the aid of Lemma 2 in 

[4]. The cumulative distribution function is 
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which derived (3). 

Corollary 1: The expected number of distinct item types 

that are achieved after a series of 1k   samplings is given by 
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One can easily see that: 

1

s

k j

j

X I


  

Clearly, 

     

2

1 1
1

k

j j j

s m

m
P I E I P B

s m

m

    
  
      
   
  
   

. 

Using the additive property of expectation, we get:  

 
1

2

1
1

k

s

k j

j

s m

m
E X E I s

s m

m



 

   
 

  
          

     
       

 . 

We now return to our main purpose: determining the 

waiting time. Let  nZ  be the number of samplings needed 

until one collects at least n item types from the complete set.   
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Theorem 2: The distribution of snZn 1  is given 

(for every 1k ) by: 
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 Moreover, the probability generating function (p.g.f.) of 

nZ  is given by 
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Proof: The probability distribution function of nZ  can be 

obtained from (3) using the following relation: 
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Equation (6) follows (7) in the case that 
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less than 1. 

Corollary 2: The p-factorial moments  p N  of Z
n
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given by: 

    

 
1

1

0

1

1 ... 1

1
! 1

1 1

1 1

n n n

n
n

p

p

E Z Z Z p

s s
p

s n

s m m

m m

s m m

m m














 







      

    
     

      

      
    

   
   

       
    
        



                        (8) 

 
Proof: The result in (8) follows (7) by deriving the p.g.f. of 

nZ according to , p times and substituting 1 . 

Corollary 3: The expectation and the variance of the 

waiting time until we achieve the complete set are given by: 

 

 

s

s 1
s 1

0

E Z

s m 1

s m
1

s m 1 m 1

m m



 


 





  
 

   
  

       
   

   


     (9) 

 

  

 
1

1

0

2

1

2! 1

1 1

1 1

s s

s
s

E Z Z

s

s m m

m m

s m m

m m



 






 



  

 
  

 
 

      
   

   
   

       
    
        

                                  (10)                 

        2

s s s s sVAR Z E Z Z 1 E Z E Z        (11) 

Proof: Formulas (9) and (10) are derived from (8) by 

substituting p=1 and p=2, respectively; and n=s. 

 

III. NUMERICAL EXAMPLE 

The model described in Section II has a direct application 

to a statistical quality control problem. Consider a dairy's 

bottle filling process consisting of a 24-nozzle machine. After 

the bottles are filled with milk, they are gathered in a 

collection area. Each hour a random sample of five bottles is 

drawn from the collection area and tested in order to control 

the filling process. There is no marking on a bottle indicating 

which nozzle filled it. The quality engineer wants to know, 

after how many hours on the average, bottles filled by any one 

of the nozzles will be tested. 

Using the notations of Section II, the 24 nozzles form a 
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complete set of s types (s=24). An hourly random drawing of 

five bottles defines the sample size m=5. Since the bottles are 

not marked, the model that assumes that the items in each 

sample are not necessarily distinct is suitable here. Using (2), 

the probability distribution function of 24Z  is shown in Fig. 1 

as a function of k – the number of hourly drawings that are 

done in order to test all the nozzles. 

 

 

Fig. 1. Waiting time probability distribution function for  

k=1,2,…,50 (s=24, m=5) 

 

Using (9), the expectation of 24Z  is shown in Fig. 2 as a 

function of m – the sample size. This can be useful for the 

quality control engineer. If there is any constraint on how 

many hourly samplings he can draw, the analyst will easily 

find the required sample size for detecting the complete set.  

 

 

Fig. 2. Waiting time expectation as a function of the 

sample size m (s=24)  

 
In Table 1, for s=24, the expectations and standard 

deviations of the waiting time as a function of the sample size 

(i.e., as a function of m) are given for the following two cases: 

1. In each sampling a set of m different items is drawn. The 

factorial moments related to the waiting, in this case, were 

obtained in [4] by: 
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                 (12) 

 The expectation and the standard deviation follow from 

(12). 

2. In each sampling, a group of m items is drawn, but the 

items are not necessarily distinct. The expectation and the 

standard deviation can be computed using (9) and (11), 

respectively. 

Substituting m=1, in (8)-(12) yields the known results for 

the CCCP when s=24. On average, one needs around 91 

samplings in order to be sure of detecting all 24 different 

types.  

In the diary problem when  m=5;  the calculations yield that 

on average, after 20 hours all the nozzles will have been 

examined.    

 
Table 1. Expectation and standard deviation of the waiting 

time s=24 

 

Distinct items Indistinguishable 

items 

Drawin

g group 

size Expecta- 

tion 

S.D. Expecta- 

tion 

S.D. 

90.6230 28.8678 90.6230 28.8678 1 

44.5973 14.1120 46.4861 14.7463 2 

29.2456 9.1909 31.7659 10.0372 3 

21.5619 6.7285 24.4002 7.6813 4 

16.9449 5.2494 19.9765 6.2667 5 

13.8609 4.2618 17.0240 5.3228 6 

11.6523 3.5549 14.9123 4.6480 7 

9.9905 3.0235 13.3263 4.1413 8 

8.6928 2.6088 12.0908 3.7468 9 

7.6494 2.2758 11.1008 3.4308 10 

6.7906 2.0019 10.2893 3.1719 11 

6.0696 1.7721 9.6118 2.9558 12 

5.4538 1.5769 9.0374 2.7727 13 

4.9195 1.4085 8.5441 2.6156 14 

4.4509 1.2589 8.1157 2.4791 15 

4.0363 1.1229 7.7400 2.3596 16 

3.6632 1.0034 7.4077 2.2539 17 

3.3172 0.9058 7.1118 2.1598 18 

2.9872 0.8230 6.8464 2.0755 19 

2.6745 0.7305 6.6069 1.9995 20 

2.3961 0.6008 6.3898 1.9306 21 

2.1782 0.4236 6.1919 1.8679 22 

2.0435 0.2130 6.0108 1.8105 23 

 

IV. CONCLUSIONS 

A well known problem, called the CCCP, is extended to the 

case of group sampling with indistinguishable items, using an 
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occupancy model. Clearly, group drawings help to reduce the 

expected number of samplings required in order to detect the 

complete set. The probability generating function has been 

developed for computing the expectation and standard 

deviation of the waiting time. Quality engineers may find the 

given expressions useful for controlling processes such as the 

bottle filling process described in this paper.    

 

REFERENCES 

[1] W. Feller, An Introduction to Probability Theory and Its Application, 

Wiley: New York, Third Edition, 1970, ch. 4. 

[2] E. Pekoz and S. M. Ross, Applied Probability and Stochastic 

Processes, vol. 19, J. S. Shanthikumar and U. Sumita, Eds. Boston: 

Kluwer, 1999, pp. 83–94. 

[3] S. Shioda, “Some upper and lower bounds on the coupon collector 

problem,” Journal of Computational and Applied Mathematics, vol. 

200, 2007, pp. 154–167, 

[4] W. Stadje, “The collector’s problem with group drawings,” Advances 

in Applied Probability, vol. 22, 1990, pp. 866–882. 

[5] I. Adler and S. M. Ross, “The coupon subset collection problem,” 

Journal of Applied Probability, vol. 38, 2001, pp. 737–746. 

[6] J. E. Kobza, S. H. Jacobson, and D. E. Vaughan, “A survey of the 

coupon collector’s problem with random sample sizes,” Methodology 

and Computing in Applied Probability, vol. 9(4), 2007, pp. 573–584.  

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008


