
 
 

  
Abstract—The integral of a curl of a vector field, defined in 

the paper, and extended over the lateral surface of a cylinder, 
will be transformed into a surface integral extended only over 
the bases of the cylinder, not containing differential vector 
operators. The transformation will be carried out using only the 
general formulae of vector analysis without resorting to other 
proofs of the field theory. The type of integral is an interesting 
one because it permits to obtain directly, without physical 
considerations, only mathematically, certain formulae useful in 
physics. 
 

Index Terms—Vector Analysis, Vector integral transforma-
tion, Field theory.  
 

I. INTRODUCTION 
In the field theory many types of vector integral arise. In 

what follows, we shall consider the integral of a curl of a 
vector field, defined further on. This integral is extended over 
the lateral surface of the cylinder. In the application, which 
follows, this cylinder will represent a solenoid current sheet. 
The mentioned integral will be transformed into a surface 
integral not containing differential vector operators. The 
transformation will be carried out using only the general 
formulae of vector analysis [1]-[4], without resorting to other 
proofs of the field theory, what is not to be found in literature. 
The chosen integral is an interesting one because it permits to 
obtain directly, without physical considerations, only 
mathematically, certain useful formulae.  

 

II. DEFINITION OF THE INTEGRAL 
In order to fix the ideas, we shall consider, as shown in 

Fig.  1, a right cylinder, with the symbols given in the figure. 
For the simplicity of the figure, we shall consider a cylinder 
of a circular or elliptic cross-section. This circumstance will 
not restrict the generality of the solution because all the 
relations will have a general use. The bases will be 
considered to be perpendicular to the cylinder generatrix. 

The following symbols will be used: cylΣ  – the closed 

surface of the cylinder, i.e., the lateral surface, latΣ , unified 
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with the surface of each of both bases, basesS ; r  – position 
vector having its origin at any source point denoted by P, 
placed at any point of the cylinder surface, and its arrow end 
at the field (observation) point denoted by N; k – unit vector 
of the cylinder axis or generatrix; n – unit normal to the 
surface element of the cylinder, at any point; t  – unit vector 
of the tangent to any element of the lateral surface of the 
cylinder, and normal to its generatrix or axis; )(rf  – a 
harmonic function of the modulus of the position vector that 
has to satisfy the conditions to be continuous and have he 
partial derivatives of the first and second orders with respect 
to the space co-ordinates at each point of the volume bounded 
by the considered surface, except the observation points 
placed on the cylinder surface. The first derivative with 
respect to r will be denoted )(rf ′ . 
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Fig. 1. A cylinder of finite length: P – source point, running 
point, in three positions; N – field point; Slat – lateral surface of 
the solenoid cylinder; Sbase 1, Sbase 2, – surfaces of bases;  
Σi – small sphere surface surrounding the field point N. The 
field point is inside the cylinder but it may be also outside. 
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We want to calculate the integral:  
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where the curl has to be calculated at the field (observation) 
point N. Then, we can write: 

[ ] ,)(curl
lat

dSrf
S∫ ×= nkI  (3)

or 

[ ] ,)(curl
cyl

dSrf∫Σ
×= nkI  (4)

because the vector product is zero on both bases, so that the 
value of the integral will not change although it is extended 
over another, closed, surface. Hence, we have transformed 
the integral over an open surface into one over a closed 
surface, what will lighten the calculations. 
 Further, for simplicity we shall use, in several relations, 
instead of the scalar surface element, a vector surface 
element. Therefore, the integral to be calculated is: 
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We shall prove that under the definitions above, the 
following relationship is satisfied: 

[ ]

( ),)(

4)(curl

bases

lat

∫

∫
⋅′−

=×=

S

S

d
r

rf

πmdrf

Skr

kSkI
 (6)

where the constant m has the value zero if the field point N is 
outside the cylinder and has the value zero or unity, 
according to the form of function )(rf , if the field point is 
inside the cylinder. 

 

III. TRANSFORMATION OF THE INTEGRAL 
 We shall consider the vector quantity of (5), the curl of 
which has to be calculated, as composed of two factors: k  
and Sdrf )( . Taking into account that the first factor is 
constant; when differentiating at point N, we shall obtain [2], 
[3], [4, p. 229]: 

[ ] [ ] ( )[ ].)()(div)(curl nknknk rfrfrf ∇⋅−=× (7)

The right hand side contains a term that appears also in 
the expression of the gradient of the scalar product, one 
vector of which is constant, as follows [1]-[3], [4, p. 228]:  
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 Adding up side by side the equations (7) and (8), we shall 
obtain: 
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 From relations (4) and (9), it follows that:  
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 We shall calculate the component produced by each of the 
three terms contained by the integral. 
 The first term yields [3], [4, p. 214]: 
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In the integral extended over the lateral surface of the 
cylinder, the scalar product Sk d⋅  is zero because the two 
vectors are, at any point of this surface, perpendicular to each 
other. Hence: 
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d
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 The second term yields [4, p. 228]: 
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 In order to simplify the calculation, we shall apply the 
theorem of Gauss and Ostrogradski for obtaining the 
transformation of a surface integral into a volume one. For 
applying the usual formulae containing differential operators, 
taking into account that the point N is fixed, we shall 
consider, when performing the calculation, the vector 

rr −=′ , and, after the calculation has been performed, we 
shall return to vector r. However, for conciseness reason, we 
shall not write this intermediary transformation. 
 In order to ensure the applicability of the mentioned 
theorem, we shall first separate, inside the cylinder, the 
singular point, that is the point N, corresponding to 0=r , by 
surrounding it with a sphere, having the center at that point, 
and small enough, so that it does not touch the cylinder. 
Then, we have to calculate the integral: 
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where Σi represents the surface of the sphere, which 
surrounds the singular point above. 
 For the sphere surface, the unit normal is oriented, as in 
general, outwards the considered volume, that is, towards the 
sphere center, as ir  in Fig. 1, and since )(rf  is assumed to 
be a harmonic function, we shall obtain: 
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 Therefore, relations (14), (15) yield: 
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 Taking into account the symbols of (5), relations (13) and 
(16) yield: 
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where the value of m is depending on the expression of )(rf . 
For the function )(rf  to be harmonic, it has to satisfy the 
Laplace equation. 

From the Laplace equation, expressed in spherical 
co-ordinates, [2], [4, p. 244], it follows that this function has 
to be of the form nr , apart from a multiplicative constant and 
an additive constant, and the exponent n can take only the 
values zero or –1. For 0=n , we shall obtain 02 =I , hence 

0=m . For 1−=n , we shall obtain 1=m .  
 If the point N is outside the cylinder, the term I2 is zero. 
 The third term is: 
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 We have [4, p. 232]: 
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and: 
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hence: 
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 Therefore: 

.03 =I  (22)

The result will be given by summing up the three terms, 
according to relation (10), and we obtain: 
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which represents the resulting formula. 
 

IV. APPLICATION TO THE CALCULATION OF THE MAGNETIC 
FIELD STRENGTH PRODUCED BY A SOLENOID STARTING FROM 

THE BIOT-SAVART-LAPLACE FORMULA 
 In order to fix the ideas, we shall consider that the cylinder 
shown in Fig. 1 represents an electric current sheet, hence a 
solenoid with the symbols given in the figure. 
 The current sheet round the cylinder will be considered 
infinitely thin and constant with time. The medium is 
assumed as vacuum. Under the preceding assumptions, the 
magnetic field strength produced by the electric current 
carried by the solenoid can be calculated by the 
Biot-Savart-Laplace formula, [4], as follows: 

⎮⌡
⌠ ×

⋅=
Γ

,
4 3r

d
π
i rlH  (24)

where the following symbols have been used: Γ – helical 
curve, a very closed one, considered as the mean curve of a 
very thin and narrow strip, which forms the lateral surface of 
the cylinder; i – intensity of the electric current carried by the 
path corresponding to that curve; LJ 0  – linear current 
density of the current sheet; dldhdS =  – area of an element 
of the lateral surface of the cylinder; hΔ  and dh  –width of 
the strip along the generatrix of the cylinder; lΔ  and dl  – 
element of length of curve Γ ; r  – position vector having its 
origin at any source point denoted by P, of the curve above, 
and its arrow end at the field (observation) point denoted by 
N; k – unit vector of the cylinder generatrix or axis. 
 The link between the vector representing an element of the 
lateral surface of the cylinder, and the current carried by the 
strip represented by curve Γ, can be expressed as follows: 

( )( ) ( ) ;;; 0 hJillhS L Δ=Δ×=ΔΔΔ=Δ nkl  (25)

and from relations (24) and (25), we get: 
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 Let us consider the integrand of the integral (26) as 

composed of two factors: 3r
r  and nkt ×= . Then, taking 

into account the expansion of any term of the form 
[ ])(curl rϕa , where a  is a constant vector, the integral of 

(26) can be written [4, p. 228]: 
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 If we denote 1)( −= rrf  we can obtain the result by 
applying formula (6) or (23), and we obtain immediately: 
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where the symbols above have been used. We recall: k – unit 
vector along the cylinder generatrix or axis; r – position 
vector of observation (field) point N with respect to the origin 
(source) point P, placed at any point of the bases surfaces. 
Therefore: If the point N is outside the cylinder, the first term 
of the right-hand side is zero, and if it is inside, it is different 
from zero.  
 In order to verify the accuracy of the established formula 
we have compared the results obtained by formulae (24) and 
(28). Generally, it is the formula (24) that is used in literature. 
Results in closed form can be obtained only for circular 
cross-section, and only for points having particular positions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For this reason, the results in any case may be obtained only 
by numerical computation. In order to verify the accuracy of 
formula (28), we have used both formulae for the same case.  
If both formulae ensure a good accuracy, they have to give 
results very close to each other. Having compared the results 
for various points placed at various positions with respect to 
the cylinder, we have found that the greatest relative 
deviation  

has been of the order of magnitude of 510− , even at points in 
the neighborhood of singular points. Having verified the 
results at points for which the solution of the last integral in 
closed form is known, errors of the same order have been 
found. For using and compare both formulae, we have 
prepared and used programs in Fortran language [5], [6]. 

In electrical engineering the calculation of magnetic field 
strengths is necessary. The generally used methods are 
combinations of physical and mathematical considerations. 
For certain cases (like for the thought introduction of a 
magnetic field state quantity, at a very small scale), a 
mathematical pure deduction is very useful. Moreover, the 
obtained formula is in many cases easier for computation 
than the usual ones. 
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