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Abstract—In this paper, we consider the existence
of common fixed points for a compatible pair of self
maps of Gregus type defined on a complete linear
metric space. We also establish the existence of com-
mon fixed points for these pair of compatible maps of
type (B) and consequently type (A). The results are
generalisations and extensions of the results of several
authors.

Keywords: linear metric space, common fixed point,

affine map, compatible maps, compatible maps of type

(A), compatible maps of type (B)

1 Introduction

Fisher and Sessa [5] generalised Gregus’ fixed point
Theorem [6] by proving the following.

THEOREM 1.1 [5]. Let T and I be two weakly commuting
self maps of a closed convex subset K of a Banach X
satisfying the inequality

‖Tx−Ty‖ ≤ a‖Ix−Iy‖+(1−a)max{‖Tx−Ix‖, ‖Ty−Iy‖}

for all x, y ∈ K, where 0 < a < 1. If I is linear and
nonexpansive in K such that TK ⊆ IK, then T and I
have a unique common fixed point.

If I is an identity map, we have an immediate general-
isation of the Gregus fixed point Theorem [6]. In [12],
the author generalised the Gregus fixed point Theorem
to when the underlying space is a complete metrisable
locally convex space. Diviccaro et al. [3] generalised
the Gregus fixed point Theorem to when 0 < a < 1

2p−1 ,
p ≥ 1. Mukherjee and Verma [11] generalised Theorem
1.1 by replacing the linearity of I with a more general
condition that I is affine, while Jungck [7] generalised it
further by replacing the commutativity and nonexpan-
siveness assumptions in the Theorem with compatibility
and continuity respectively. Murthy et al. [10] improved
on the result by replacing nonexpansiveness, linearity
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and weak commutativity with continuity and compati-
bity of type (A). Sing et al. [17] recently generalised the
Theorem 1.1 to set-valued mappings.
This paper deals with a triple generalisation of the
Theorem of Fisher and Sessa (Theorem 1.1). First, the
underlying space is generalised from Banach spaces to
complete linear metric spaces, which include Banach
spaces and complete metrisable locally convex spaces.
Second, we introduce d(Tx, Iy) and d(Ty, Iy) to the
distances under consideration. Thirdly, the linearity of
I is replaced with a more general assumption that I is
affine. Furthermore, in section 3, we prove the existence
of common fixed points with the same pair of maps
which are compatible of type (B) and consequently true
for comaptible maps of type (A).

The Theorem will also be a partial generalisation of the
recently proved result by the author and Akewe [13]
which states thus:

THEOREM 1.2 [13]. Let K be a closed convex
subset of a complete linear metric space (X, d) and
T : K → K a mapping that satisfies d(Tx, Ty) ≤
ad(x, y) + bd(x, Tx) + cd(y, Ty) + ed(y, Tx) + fd(x, Ty)
for all x, y ∈ K where 0 < a < 1, b ≥ 0, c ≥ 0, e ≥ 0,
f ≥ 0 and a + b + c + e + f = 1. Then T has a unique
fixed point.

Since the four points {x, y, Tx, Ty} determine six dis-
tances in X, in view of Theorem 1.2, it is logical and
natural to extend Theorem 1.1 to include d(Tx, Iy) and
d(Ty, Ix)

Definition 1. Two mappings T and I defined on a metric
space (X, d) into itself is said to be weakly commuting if

d(TIx, ITx) ≤ d(Ix, Tx)

for all x, y ∈ X [16]. Two commuting maps are weakly
commuting but the converse is generally not true [5].
In 1986, Jungck [7] introduced a generalisation of weakly
commuting maps which he termed compatible maps.
Definition 2 [7]. Two selfmaps T and I are said to be
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compatible if

limn→∞F (ITxn − TIxn) = 0

whenever {xn} is a sequence in X such that
limn→∞Txn = limn→∞Ixn = t for some t ∈ X.
It is clear that every weakly commuting pair of maps is
compatible but the converse is not true [7].
Definition 3. A mapping I : K → K is called affine
(where K is a convex set) if I(ax + by) = aIx + bIy for
all x, y ∈ K and a, b ≥ 0 with a + b = 1.
A linear map is an affine map but the converse need not
be true as we will show later with an example.

The following Theorem will be needed for our result.

THEOREM 1.3 [1]. A linear topological space X is
metrisable if and only if it has a countable base of
neighbourhoods of zero. The topology of a linear metric
space can always be defined by a real-valued function
F : X → �, called F − norm such that for all x, y ∈ X
and scaler K, we have
(1). F (x) ≥ 0,
(2). F (x) = 0 ⇒ x = 0,
(3). F (x + y) ≤ F (x) + F (y),
(4). F (λx) ≤ F (x) for all λ ∈ K with |λ| ≤ 1,
(5). If λn → 0, and λn ∈ K, then F (λnx) → 0

Henceforth, unless otherwise indicated, F shall denote
an F-norm if it is characterising a linear metric space.
Observe that an F-norm will be a norm if it is defining a
normed linear space.

This is our Gregus type condition which we will call con-
dition (*):

F (Tx− Ty) ≤ aF (Ix− Iy) + (1− a)
max{F (Tx− Ix), F (Ty − Iy),
cF (Tx− Iy), bF (Ty − Ix)}

for all x, y ∈ K where 0 < a < 1, 0 ≤ b < 1, and
0 ≤ c ≤ 1

2 .
Observe that condition (*) is equivalent to the following:

F (Tx− Ty) ≤ aF (Ix− Iy) + (1− a)
max{F (Tx− Ix), F (Ty − Iy),
F (Tx−Iy)

2 , bF (Ty − Ix)}

for all x, y ∈ K where 0 < a < 1 and 0 ≤ b < 1.
We will use the second version of condition (*) through-
out this paper.
Observe that if b = c = 0, and X is restricted to
Banach spaces, condition (*) reduced to the pair of maps
considered by Fisher and Sessa in [5] (Theorem 1.1).

We now prove our main theorem. Our technique which
was originally due to Gregus [6] has been used by several
authors, e.g. see [2-13].

2 Main Results

PROPOSITION 2.1. Let T and I be selfmaps of X which
are compatible and satisfying condition (*). If I is con-
tinuous, then Tv = Iv for some v ∈ X if and only if
A = ∩{TKn : n ∈ N} �= φ, where Kn = {x ∈ X :
F (Ix− Tx) ≤ 1

n}.
Proof. Suppose Tv = Iv for some v ∈ X. Then v ∈ Kn

for all n and thus Tv ∈ TKn ⊆ TKn for all n. Hence
Tv ∈ A so that A is nonempty.
Conversely, suppose A �= φ. If v ∈ A for each n, then
there is a yn ∈ TKn such that F (v − yn) < 1

n . Hence
for each n, there is a xn ∈ Kn such that yn = Txn and
F (v − Txn) < 1

n for all n and so Txn → v as n → ∞.
Since xn ∈ Kn, we have F (Ixn − Txn) ≤ 1

n . Thus,

limn→∞Ixn = limn→∞Txn = v. (1)

Since T and I are compatible mappings, we have

F (ITxn − TIxn) → 0 as n→∞. (2)

Since I is continuous, from (1), we have that

I2xn, T Ixn, ITxn → Iv as n→∞. (3)

Taking x = v and y = Ixn in (*), we have

F (Tv − TIxn) ≤ aF (Iv − IIxn) + (1− a)
max{F (Tv − Iv), F (TIxn − I2xn),
F (Tv−I2xn)

2 , bF (TIxn − Iv)}

As n →∞, and using (3), we have

F (Tv − Iv) ≤ aF (Iv − Iv) + (1− a)max
{F (Tv − Iv), F (Iv − Iv),
F (Tv−Iv)

2 , bF (Iv − Iv)}
= (1− a)F (Tv − Iv)

Thus Tv = Iv since 1− a < 1.

THEOREM 2.2.- Let T and I be two compatible self maps
of a closed convex subset K of a complete linear metric
space X satisfying the condition (*). If I is affine and
continuous on X such that TK ⊆ IK, then T and I have
a unique common fixed point.
PROOF.- Suppose x = xo is an arbitrary point in X and
x1, x2, x3 are chosen in K such that
Ix1 = Tx, Ix2 = Tx1, Ix3 = Tx2.
This is possible since TK ⊆ IK. For r = 1, 2, 3 and using
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condition (*), we have

F (Txr − Ixr) = F (Txr − Txr−1)
≤ aF (Ixr − Ixr−1) + (1− a)

max{F (Txr − Ixr),
F (Txr−1 − Ixr−1),
F (Txr−Ixr−1)

2 , bF (Txr−1 − Ixr)}
≤ aF (Ixr − Ixr−1) + (1− a)

max{F (Txr − Ixr),
F (Txr−1 − Ixr−1),
F (Txr−Ixr+Txr−1−Ixr−1)

2 }
It is easy to check that in all cases
F (Txr − Ixr) ≤ F (Txr−1 − Ixr−1) and consequently

F (Txr − Ixr) ≤ F (Tx− Ix) (4)

for r = 1, 2, 3. In view of (4), and the condition (*),
we have

F (Tx2 − Tx) ≤ aF (Ix2 − Ix) + (1− a)
max{F (Tx2 − Ix2), F (Tx− Ix),
F (Tx2−Ix)

2 , bF (Tx− Ix2)}
≤ aF (Tx1 − Ix1 + Tx− Ix)
+ (1− a)max{F (Tx− Ix),

F (Tx2−Tx)+F (Tx−Ix)
2 ,

bF (Ix1 − Tx1)}
On further computing, we have

F (Tx2−Tx) = F (Tx2− Ix1) ≤ 3a + 1
a + 1

F (Tx− Ix) (5)

Let us define a point z by

z =
1
2
x2 +

1
2
x3.

By the convexity of K, z ∈ K and by the fact that I is
affine, we have

Iz =
1
2
Ix2 +

1
2
Ix3 =

1
2
Tx1 +

1
2
Tx2.

Thus

F (Tz − Iz) ≤ 1
2F (Tz − Tx1) + 1

2F (Tz − Tx2)
≤ 1

2{aF (Iz − Ix1) + (1− a)
max{F (Tz − Iz), F (Tx1 − Ix1),
F (Tz−Ix1)

2 , bF (Tx1 − Iz)}
+ 1

2{aF (Iz − Ix2) + (1− a)
max{F (Tz − Iz), F (Tx2 − Ix2
F (Tz−Ix2)

2 , bF (Tx2 − Iz)} (∗∗)
In view of (5), we have

F (Iz − Ix1) ≤ 1
2F (Tx1 − Ix1) + 1

2F (Tx2 − Ix1)
≤ 1

2F (Tx− Ix) + 3a+1
2(a+1)F (Tx− Ix)

Hence
F (Iz − Ix1) ≤ 2a + 1

a + 1
F (Tx− Ix) (6)

Similarly, in view of (4)

F (Iz − Tx1) ≤ 1
2
F (Ix3 − Ix2) ≤ 1

2
F (Tx− Ix) (7)

Using (5), we have

F (Tz − Ix1) = F (Tz − Iz + Iz − Ix1)
≤ F (Tz − Iz) + F ( 1

2Tx1 − 1
2Ix1)

+ F ( 1
2 (Tx2 − 1

2Ix1)
≤ F (Tz − Iz) + 1

2F (Tx− Ix)
+ 3a+1

2(a+1)F (Tx− Ix)
≤ F (Tz − Iz) + 2a+1

a+1 F (Tx− Ix)

Thus

F (Tz − Ix1) ≤ F (Tz − Iz) +
2a + 1
a + 1

F (Tx− Ix) (8)

It is also easy to show that

F (Tx1 − Iz) ≤ 1
2
F (Ix2 − Tx2) ≤ 1

2
F (Tx− Ix) (9)

Similarly, it is easy to check that

F (Tz − Ix2) ≤ (Tz − Iz) +
1
2
F (Tx− Ix) (10)

and
F (Tx2 − Iz) ≤ 1

2
F (Tx− Ix) (11)

It therefore follows from (4) and (**), that

F (Tz − Iz) ≤ a
2 ( 2a+1

a+1 )F (Tx− Ix) + a
2 ( 1

2F (Tx− Ix))
+ 1−a

2 max{F (Tz − Iz), F (Tx1 − Ix1),
F (Tz−Ix1)

2 , bF (Tx1 − Iz)}
+ 1−a

2 max{F (Tz − Iz), F (Tx2 − Ix2),
F (Tz−Ix2)

2 , F (Tx2 − Iz)}
≤ 5a2+3a

4(a+1) F (Tx− Ix) + (1− a)max

{F (Tz − Iz), F (Tx− Ix), F (Tz−Ix1)
2 ,

bF (Tx1 − Iz),
F (Tz−Ix2)

2 , bF (Tx2 − Iz)}
≤ 5a2+3a

4(a+1) F (Tx− Ix) + (1− a)max

{F (Tz − Iz), F (Tx− Ix), F (Tz−Iz)
2

+ 2a+1
2(a+1)F (Tx− Ix), bF (Tz−Iz)

2

+ bF (Tx−Ix)
4 }

Since
F (Tz−Iz)

2 + 2a+1
2(a+1)F (Tx− Ix) >

bF (Tz−Iz)
2 + bF (Tx−Ix)

4 ,
we now consider the following possibilities.
Suppose that maximum is F (Tz − Iz), then

F (Tz − Iz) ≤ 5a2+3a
4(1+a) F (Tx− Ix) + (1− a)F (Tz − Iz)

≤ 5a+3
4(1+a)F (Tx− Ix)

Suppose the maximum is F (Tx− Ix)

F (Tz − Iz) ≤ ( 5a2+3a
4(a+1) + 1− a)F (Tx− Ix)

= a2+3a+4
4(a+1) F (Tx− Ix)
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Suppose the maximum is F (Tz−Iz)
2 + 2a+1

2(a+1)F (Tx− Ix),
then

F (Tz − Iz) ≤ 5a2+3a
4(a+1) F (Tx− Ix) + (1− a)

{F (Tz−Iz)
2 + 2a+1

2(a+1)F (Tx− Ix)}
After computation, it yields

F (Tz − Iz) ≤ a2 + 5a + 2
2(a + 1)2

F (Tx− Ix)

In view of the three possibilities, it is clear that

F (Tz − Iz) ≤ λF (Tx− Ix)

where

λ = max{ 5a + 3
4(1 + a)

,
a2 + 3a + 4

4(a + 1)
,
a2 + 5a + 2
2(a + 1)2

} < 1.

Hence, since x is arbitrary, we have

inf{F (Tx− Ix) : x ∈ K} = 0.

Each of the sets

Kn = {x ∈ K : F (Tx− Ix) ≤ 1
n
}

and
Hn = {x ∈ K : F (Tx− Ix) ≤ a + 1

an
}

for n = 1, 2, .. must therefore be nonempty and clearly

...Kn ⊆ ..K2 ⊆ K1.

Thus each of the sets TKn, where TKn denotes the clo-
sure of TKn, is nonempty for n = 1, 2, ... and

...TKn ⊆ ..TK2 ⊆ TK1

For an arbitrary x, y ∈ Kn,

F (Tx− Ty) ≤ aF (Ix− Iy) + (1− a)
max{F (Tx− Ix), F (Ty − Iy),
F (Tx−Iy)

2 , bF (Ty − Ix)}
Case 1: Suppose F (Tx− Ix) or F (Ty − Iy) is the maxi-
mum. Then

F (Tx− Ty) ≤ a{F (Ix− Tx) + F (Tx− Ty)
+ F (Ty − Iy)}+ 1−a

n≤ a+1
n + aF (Tx− Ty)

and so,

F (Tx− Ty) ≤ a + 1
(1− a)n

(12)

Case 2: Suppose 1
2F (Tx− Iy) = 1

2{F (Tx− Ix)+F (Ix−
Iy)} is the maximum, then,

F (Tx− Ty) ≤ aF (Ix− Iy) + 1−a
2 F (Tx− Ix)

+ 1−a
2 F (Ix− Iy)

≤ a+1
2 F (Ix− Iy) + 1−a

2n≤ a+1
2 {F (Ix− Tx) + F (Tx− Ty)

+ F (Ty − Iy)}+ 1−a
2n

Hence on further computing, in view of the fact that
x, y ∈ Kn , we have

F (Tx− Ty) ≤ 3− a

2n(1− a)
(13)

Case 3: Suppose bF (Ty − Ix) = b{F (Ty − Iy) + F (Iy −
Ix)} is the maximum. Similarly, as in case 2, it is clear
that

F (Tx− Ty) ≤ 3− a

bn(1− a)
(14)

Combining equations (12), (13) and (14), it is clear that

F (Tx− Ty) ≤ max{ a + 1
n(1− a)

3− a

2n(1− a)
,

3− a

bn(1− a)
}

goes to 0 as n → 0 for all x, y ∈ Kn. Thus

limn→∞diam(TKn) = limn→∞diam(TKn) = 0.

Hence, by the well known Cantor’s intersection Theorem,
we have that the intersection ∩∞n=1TKn contains exactly
one point v.
Thus from Proposition 2.1, we have that

Tv = Iv.

We claim that v is a common fixed point of T and I. If
we take x = v and y = xn in (*), we have

F (Tv − Txn) ≤ aF (Iv − Ixn) + (1− a)max
{F (Tv − Iv), F (Txn − Ixn),
F (Tv−Ixn)

2 , bF (Txn − Iv)}

As n →∞ and using (1) and (3), we have

F (Tv − v) ≤ aF (Tv − v) + (1− a)max{F (Tv − Iv),
F (v − v),
F (Tv−v)

2 , bF (v − Tv)}
= a + (1− a)bF (Tv − v) < F (Tv − v)

Thus Tv = v since a + (1− a)b < 1. Hence

Tv = Iv = v.

Thus v is the common fixed point of T and I. The
uniqueness follows from the condition (∗).

COROLLARY 2.3.- Let T and I be two compatible self
maps of a closed convex subset K of a complete metris-
able locally convex space X satisfying the condition (*).
If I is affine and continuous on X such that TK ⊆ IK,
then T and I have a unique common fixed point.

COROLLARY 2.4.- Let T and I be two compatible self
maps of a closed convex subset K of a Banach space X
satisfying the condition (*). If I is affine and continuous
on X such that TK ⊆ IK, then T and I have a unique
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common fixed point.

EXAMPLE. Let X be the set of all real (or com-
plex) valued functions continuous on (−∞,∞) and de-
noted C(−∞,∞). It forms a locally convex space un-
der the topology defined by the seminorms pn(x) =
sup−n≤t≤n|f(t)|, (n = 1, 2, ...). This space is Haursd-
off, metrisable and complete (thus complete linear met-
ric space)but not normable [15, pp75,236]. Suppose
K=C[1, 3] is the space of all real (or complex) valued
functions continuous on [1, 3] with the same metric topol-
ogy. Let
Tf = f

f+1 + 1
2 and If = f

2 + 1
2 .

It is easy to check that I is affine and continuous.
TK = C[1, 5

4 ] ⊆ IK = C[1, 2].

F (TIf, ITf) = f+1
f+3 + 1

2 − f
2f+2 − 1

4

= f+1
f+3 − f

2f+2 + 1
4

≤ f2−2f+1
2(f+1) ≤ f2−x

2(f+1) = d(If, Tf), f ≥ 1

Therefore, T and I are compatible.
Since Tf − Tg ≤ f−g

(f+1)(g+1) , then, for n ≥ 1, we have

F (Tf − Tg) ≤ 1
4F (f − g) ≤ 1

2
F (f−g)

2 = 1
2F (If − Ig)

If a = 1
2 in the condition (*), in view of the fact that all

the f, g ≥ 1 ∀ x, y ∈ K, then,

F (f−g)
2 + 1

2max{F (Tf − If), F (Tg − Ig),
1
2F (Tf − Ig), F (Tg − If)}

≤ F (g−f)
2 + F (f−g)

2 = F (If − Ig)

Thus all the conditions of our Theorem are satisfied. It
is easy to see that f(K) = 1 is the common fixed point
of T and I. It should also be noted that the map I,
though affine, is not linear.

A combination of Proposition 2.1 and Theorem 2.2 yield
the following Theorem.

THEOREM 2.5.- Let T and I be two compatible self
maps of a closed convex subset K of a complete linear
metric space X satisfying the condition (*). If I is
affine and continuous on X such that TK ⊆ IK,
then T and I have a unique common fixed point if
and only if A = ∩{TKn : n ∈ N} �= φ, where
Kn = {x ∈ X : F (Ix− Tx) ≤ 1

n}.

3 Compatible mappings of Type (A),
Compatible maps of type (B) and com-
mon fixed points

Definition [9]. Two maps I and T are said to be com-
patible of type (A) if

limn→∞F (ITxn, T 2xn) = 0 (15)

and

limn→∞F (TIxn, S2xn) = 0, (16)

whenever {xn} is a sequence in X such that
limn→∞ Ixn = limn→∞ Txn = t for some t ∈ X.
Weakly commuting maps are compatible of type (A) but
the converse is not true [9]. However, compatible maps
and compatible maps of type (A) are independent [9].
Definition 5 [15]. Two maps I and T said to be
compatible of type (B) if
limn→∞F (ITxn, T 2xn) ≤
1
2 [limn→∞F (ITxn, It) + limn→∞F (It, I2xn)]
and
limn→∞F (TIxn, I2xn)
≤ 1

2 [limn→∞F (TIxn, T t)
+ limn→∞F (Tt, T 2xn)],
whenever {xn} is a sequence in X such that
limn→∞ Ixn = limn→∞ Txn = t for some t ∈ X.
Compatible maps of type (A) are compatible maps of
type (B) but the converse is not true [15]. However, com-
patibility, compatibility of type (A) and compatibility of
type (B) are all equivalent if I and T are continuous [14].

PROPOSITION 3.1[14]. Suppose two maps I
and T are compatible of type (B) such that
limn→∞ Ixn = limn→∞ Txn = t for some t ∈ X.
If I is continuous at t, then limn→∞T 2xn = It.

The proof of the following proposition is essentially the
same as Proposition 2.1 in view of Proposition 3.1.

PROPOSITION 3.2. Let T and I be selfmaps of X
which are compatible maps of type (B) and satisfying
condition (*). If I is continuous, then Tv = Iv for some
v ∈ X if and only if A = ∩{TKn : n ∈ N} �= φ, where
Kn = {x ∈ X : F (Ix− Tx) ≤ 1

n}.

The proof of the following Theorem follows the same
argument as that of Theorem 2.2 and Proposition 3.2.

THEOREM 3.3.- Let T and I be two compatible self
maps of type (B) defined on a closed convex subset
K of a complete linear metric space X satisfying the
condition (*). If I is affine and continuous on X such
that TK ⊆ IK, then T and I have a unique common
fixed point in X.

COROLLARY 3.4.- Let T and I be two compatible self
maps of type (B) defined on a closed convex subset
K of a complete locally convex space X satisfying the
condition (*). If I is affine and continuous on X such
that TK ⊆ IK, then T and I have a unique common
fixed point in X.
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COROLLARY 3.5.- Let T and I be two compatible self
maps of type (B) defined on a closed convex subset K of
a Banach space X satisfying the condition (*). If I is
affine and continuous on X such that TK ⊆ IK, then T
and I have a unique common fixed point in X.

THEOREM 3.5.- Let T and I be two compatible self
maps of type (B) defined on a closed convex subset
K of a complete linear metric space X satisfying the
condition (*). If I is affine and continuous on X such
that TK ⊆ IK, then T and I have a unique common
fixed point if and only if A = ∩{TKn : n ∈ N} �= φ,
where Kn = {x ∈ X : F (Ix− Tx) ≤ 1

n}.

REMARK. Babu and Prasad [2] proved similar results for
Ciric’s contraction type condition which is defined thus:
there exists real number a, b, c with 0 < a < 1, b ≥ 0,
a + b = 1, 0 ≤ c < η such that

‖Tx− Ty‖ ≤ amax{‖Ix− Iy‖, c[‖Ix− Ty‖
+ ‖Iy − Tx‖]}+ bmax{‖Ix− Tx‖,

‖Iy − Ty‖}

for all x, y ∈ X, where η < 1
2 . However, we note that

their results are restricted to Banach spaces and our
Gregus type condition (*) is independent of their Ciric
type condition.

OPEN PROBLEM

Jungck and Rhoades [8] defined I and T to be weakly
compatible if they commute at their concident points;
i.e., if Iu = Tu for some u ∈ X, then ITu = TIu. Can
we replace the compatibility of type (B) of I and T in our
Theorems with a more general weakly compatibility?.
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