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Abstract—The Fredholm integral equation of the
second kind is of widespread use in many realms of
engineering and applied mathematics. Among the
variety of numerical solutions to this equation, the
qudrature method and its modification are remark-
able. The latter aims at reducing the computational
complexity of the quadrature method. In this pa-
per, we present Mathematica programs that utilize
the modified quadrature method to solve the equa-
tion.
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1 Introduction

Integral equations are of high applicability in different ar-
eas of applied mathematics, physics, and engineering. In
particular, they are widely used in mechanics, geophysics,
electricity and magnetism, kinetic theory of gases, hered-
itary phenomena in biology, quantum mechanics, mathe-
matical economics, and queuing theory.

As witnessed by the literature, the Fredholm integral
equation of the second kind is one of the most prac-
tical ones. A number of numerical solutions, such as
quadrature collocation, Galerkin expansion, product in-
tegration, deferred correction, graded mesh, sinc colloca-
tion, Trefftz’s method, Taylor’s series, tau interpolation,
and decomposition method, have already been proposed
to this equation. Nevertheless, an efficient low-cost so-
lution to this equation has remained a scientific inquiry.
In particular, the modification made to the quadrature
method is still of high complexity [1-11].

The main contribution of this paper is to propose an algo-
rithm for solving the second kind of the Fredholm integral
equation so as to be easily implemented in Mathematica.
This paper goes on as follows: Section 2 provides a brief
outline of the quadrature method as it is used in solving
the Fredholm integral equation of the second kind. Sec-
tion 3 explains a modification made to the quadrature
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method. Our proposal for a mechanized solving process
is given in Section 4. Section 5 illustrates this process
and, finally, Section 6 concludes the paper.

2 The Quadrature Method

The Fredholm integral equation of the second kind (FK2)
is given by

f(x)− λ

∫ b

a

k(x, y)f(y)dy = g(x), (1)

where it is assumed that λ is a regular value of the kernel
and that k(x, y) and g(x) are piece-wise continuous.

Assume that
∫ b

a
φ(y)dy is approximated by the quadra-

ture rule J(φ) =
∑n

j=0 wjφ(yj). By such an approxima-
tion, for a ≤ x ≤ b, (1) is reduced to

f̃(x)− λ

n∑
j=0

wjk(x, yj)f̃(yj) = g(x), (2)

where its solution f̃(x) is an approximation of the exact
solution f(x) to (1). A solution to the functional equation
(2) may be obtained if we assign yi’s to x in which i =
0, 1, ..., n and a ≤ yi ≤ b. In this way, (2) is reduced to
the system of equations

f̃(yi)− λ
n∑

j=0

wjk(yi, yj)f̃(yj) = g(yi), (3)

where i = 0, 1, ..., n. Now, assume that f̃(y0), f̃(y1),...,
and f̃(yn) make a solution to (3). For any x ∈ [a, b], a
solution to (2) can then be obtained by

f̃(x) = λ
n∑

j=0

wjk(x, yj)f̃(yj) + g(x). (4)

Moreover, (2) can be represented by

(I− λKD)f̃ = g, (5)

where f̃ = [f̃(yi)]T , g = [g(yi)]T , K = [k(yi, yj)], and
D = diag(w0, w1, ..., wn). It is worth noting that I −
λKD may be singular for a chosen quadrature rule J(φ).
However, under mild restrictions, one can preserve the
non-singularity of I−λKD if he decides on a sufficiently
accurate J(φ). In addition, Whether a quadrature rule
is sufficiently accurate or not itself depends on λ, k(x, y),
and g(x).
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3 The Modified Quadrature Method

We can reduce the error in the quadrature method, even if
k(x, y) is of bad behavior. To do so, (1) can be rewritten
as follows:

f(x)− λf(x)
∫ b

a
k(x, y)dy−

λ
∫ b

a
k(x, y)(f(y)− f(x))dy = g(x).

(6)

Then, by using the quadrature rule J(φ), we have

f̂(x)(1− λA(x))− λ
n∑

j=0

wjk(x, yj)(f̂(yj)− f̂(x)) = g(x),

(7)
where

A(x) =
∫ b

a
k(x, y)dy.

Thus,

f̂(x)(1− λ∆(x))− λ

n∑
j=0

wjk(x, yj)f̂(yj) = g(x) (8)

with

∆(x) =
∑n

j=0 wjk(x, yj)−A(x).

By setting x = yi, (8) is reduced to the system of equa-
tions

f̂(x)(1− λ∆(yi))− λ
n∑

j=0

wjk(yi, yj)f̂(yj) = g(yi), (9)

or in matrix notation,

(I + λ(∆−KD))f̂ = g, (10)

where ∆ = diag(∆(y0),∆(y1), ...,∆(yn)). A method
based on (8) or (10) is called a modified quadrature
method.

The approximate solution to (1) obtained from comput-
ing f̂ assumes that k(x, y) is weakly singular and has a
discontinuous derivative at x = y. In fact, f̂ may yield
more accurate solutions than f̃ , even if k(x, y) is of good
behavior. In particular, if k(x, y) has a hump at x = y,
we prefer the method of this section to that of Section 2.

4 Algorithms for the Fredholm Integral
Equation

The mathematical mechanization is the deployment of
mathematics in a constructive and algorithmic manner
so that the reasoning about systems can be made au-
tomated [12]. The underlying notion of mathematical
mechanization is to design mathematical algorithms and,

then, convert them into the code [13-19]. The Mathe-
matica is a tool for such mechanization that enjoys form
high capability in symbolic operations and numerical cal-
culations. In this section, we first propose the algorithms
that can be used in solving the Fredholm integral equa-
tion of the second kind. Then, we code the algorithms
using Mathematica. By applying them to a variety of
equations, it is also shown that the proposed algorithms
are effective in the sense that they yield very accurate
approximate solutions.

4.1 The Quadrature Method

The following algorithm implements the method of Sec-
tion 2. This algorithm yields good results for a normal
k(x, y).

Algorithm 1.

input a, b, n, λ, g(x), k(x, y)

h← (b− a)/n

for i = a to b step h do

Gi = g(i)
Si = i

for j = a to b step h do

Kij = k(i, j)

end do

end do

W0 = Wn ← h/2

for i = 1 to n− 1 do

Wi ← h

end do

D← diag(W0, ...,Wn)

lhs← I− λKD

q ← the answer of lhs z = G

p(x) ← the interpolating polynomial at [si, qi]
for 0 ≤ i ≤ n

output p(x)

For example, consider the following equation.

f(x) = − 2
π

cos(x) +
4
π

∫ π
2

0

cos(x− y)f(y)dy. (11)

The exact solution to this equation is f(x) = sin(x). To
solve this equation numerically, we make use of a pro-
gram that implements the quadrature method with the
trapezoid rule. Figure 1 compares the exact solution with
the approximate one when n = 60.
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Figure 1: The solid line shows the exact solution, while
the dashed line is the approximate one using the trape-
zoid rule.

4.2 The Modified Quadrature Method

The following algorithm modifies the Algorithm 1.

Algorithm 2.

input a, b, n, λ, g(x), k(x, y)

h← (b− a)/n

for i = a to b step h do

Gi = g(i)
Si = i

for j = a to b step h do

Kij = k(i, j)

end do

end do

W0 = Wn ← h/2

for i = 1 to n− 1 do

Wi ← h

end do

A(x)←
∫ b

a
k(x, y)dy

delta(x)←
∑n

j=0 WjKx,Sj −A(x)

ω ← delta(Sj) for 0 ≤ j ≤ n

∆← diag(ω0, ..., ωn)

D← diag(W0, ...,Wn)

lhs← I + λ(∆−KD)

q ← the answer of lhs z = G

p(x) ← the interpolating polynomial at [si, qi]
for 0 ≤ i ≤ n

output p(x)

Figure 2: The results of applying the Algorithm 2 to (11).
The solid and dashed lines are the exact and approximate
solutions, respectively.

We apply the above algorithm to (11) where n = 60. The
results are shown in Figure 2.

Now, consider the following equation with the exact so-
lution f(x) = 2

3

√
x.

f(x) +
∫ 1

0

√
xyf(y)dy =

√
x. (12)

Figure 3 shows the results of applying the Algorithm 2
to this equation with n = 60.

Figure 3: The results of applying the Algorithm 2 to (12).
The solid and dashed lines are the exact and approximate
solutions, respectively.

5 Examples

In this section, we give examples of the Fredholm integral
equations of the second kind. These examples show
that the Algorithm 2 yields good results for a variety of
kernels.

Example 1. Consider the following equation.

f(x) = x +
∫ 1

−1

xyf(y)dy. (13)
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The exact solution to this equation is f(x) = 3x. By
applying the Algorithm 2 to (13) with n = 40, the
maximum error is 0.0075. Figure 4 compares the exact
solution with the approximate one.

Figure 4: The results of applying the Algorithm 2 to (13).
The solid and dashed lines are the exact and approximate
solutions, respectively.

Example 2. Consider the following equation for 0 ≤
x ≤ 1.

f(x) = x +
∫ 1

0

k(x, y)f(y)dy, (14)

where

k(x, y) =
{

x, x < y
y, x ≥ y

. (15)

The exact solution to this equation is f(x) = sec 1 sinx.
By applying the Algorithm 2 to (15) with n = 40, the
maximum error is 0.0002. Figure 5 compares the exact
solution with the approximate one.

Figure 5: The results of applying the Algorithm 2 to (15).
The solid and dashed lines are the exact and approximate
solutions, respectively.

Example 3. Consider the equation

f(x) +
∫ 1

0

k(x, y)f(y)dy = xe + 1, (16)

where

k(x, y) = min(x, y).

The exact solution to this equation is f(x) = exp(x).
By applying the Algorithm 2 to (16) with n = 30, the
maximum error is 0.00034. Figure 6 compares the exact
solution with the approximate one.

Figure 6: The results of applying the Algorithm 2 to (16).
The solid and dashed lines are the exact and approximate
solutions, respectively.

Example 4. Consider the equation

f(x)− 1
2

∫ 1

−1

|x− y|f(y)dy = ex. (17)

The exact solution to this equation is f(x) =
1
2xex + c1e

x + c2e
−x, where c1 = c2 + (e2 + 1)−1

and c2 = (e4 + 6e2 + 1)/8(e2 + 1). By applying the
Algorithm 2 to (17) with n = 50, the maximum error is
0.0037. Figure 7 compares the exact solution with the
approximate one.

Figure 7: The results of applying the Algorithm 2 to (17).
The solid and dashed lines are the exact and approximate
solutions, respectively.
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Example 5. Consider the equation

f(x) = sin x− x

2
+

1
2

∫ π
2

0

xyf(y)dy. (18)

The exact solution to this equation is f(x) = sinx. By
applying the Algorithm 2 to (18) with n = 30, the max-
imum error is 0.0005. Figure 8 compares the exact solu-
tion with the approximate one.

Figure 8: The results of applying the Algorithm 2 to (18).
The solid and dashed lines are the exact and approximate
solutions, respectively.

6 Conclusion

This paper deals with the effective algorithms for solv-
ing the Fredholm integral equation of the second kind.
In fact, it provides the algorithms that implement the
quadrature and its modification using Mathematica. It
draws various examples of the Fredholm equations and
shows that the algorithms yield acceptable results.
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