
 
 

 
Abstract— The paper presents a comparison study between 

the numerical solutions obtained when using different kinds of 
boundary elements for solving the problem of the bidimensional 
compressible fluid flow around obstacles, by applying the 
boundary element method. The indirect boundary element 
method with sources distribution applied to this problem offers 
a singular boundary integral equation which is solved using 
constant, linear and quadratic boundary elements. For some 
particular cases exact solutions exist for this problem. Some 
computer codes are made for each of the considered boundary 
elements and numerical solutions are obtained for the case of a 
circular obstacle and an elliptical one. The numerical solutions 
obtained in these cases are compared with the exact ones and 
the errors are analyzed. Very good results are obtained, even 
for small numbers of boundary elements, when quadratic 
boundary elements are used. 

 
 

Index Terms— boundary element method, compressible fluid 
flow, linear boundary element, quadratic boundary element.   
 

I. INTRODUCTION 
The boundary integral method (BEM) is a modern 

numerical technique used to solve boundary value problems 
for systems of partial differential equations.  

There exist two principal variants of applying this method: 
the direct method and the indirect one. Both of them offer the 
principal advantage of the BEM over the other numerical 
method - the ability to reduce the problem dimension by one. 
This property is advantageous as it reduces the size of the 
system the problem is equivalent with, and so improves 
computational efficiency. To achieve this reduction of 
dimension it is necessary to formulate the governing equation 
as a boundary integral equation, which is usually a                                                                                           
singular one (see [1], [2]), and for this, both techniques the 
indirect technique and the direct one can be used.  

This paper is focused on solving the singular boundary 
integral equations obtained when the first variant is applied 
for the bidimensional problem of an inviscid, compressive 
subsonic fluid flow around bodies, considering the case of a 
non-lifting obstacle, by using different types of boundary 
elements. A comparison study between the numerical 
solutions obtained in these cases for the same number of 
nodes chosen on the boundary is also made. 

The problem of a uniform, steady, potential motion of an 
ideal inviscid fluid of subsonic velocity iU∞ , pressure 

∞p and density ∞ρ that is perturbed by the presence of a 
fixed body of a known boundary, noted C, assumed to be 

smooth and closed is described, using dimensionless 
variables, by the following mathematical model: 
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with the boundary condition:  

( ) 02 =++ yvnxnu ββ on C, and 0lim =
∞

v ,                (2) 

where u and v are the components along the axes of v , the 
dimensionless perturbation velocity, n  is the normal unit 
vector outward the fluid, β  has the usual 

signification, 21 M−=β  and M the Mach number for the 
unperturbed motion. We want to find out the perturbed 
motion, and the fluid action on the body.                   

II. THE BOUNDARY INTEGRAL EQUATION  
Applying the indirect method with sources distribution the 

singular boundary integral equation the problem is reduced at 
is obtained (see [3]): 
 Assimilating the boundary with a distribution of sources 
of unknown intensity,  f, first there are deduced the 
components of the perturbation velocity in the fluid domain 
and then with a limit process their expressions on the 
boundary. Using the boundary condition a singular boundary 
integral equation is obtained. For getting this boundaruy 
integral equation the definition of the Cauchy principal  value 
of an integral is used and the unknown function f  is assumed 
to satisfy a hölder condition-essential for the existence of the 
boundary equation.  
The boundary integral equation has the following form: 
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where 00 , yx nn are the components of the normal unit vector 

outward the fluid evaluated at 0x a point situated on C.  
The boundary integral equation is a singular one. The sign " ' 
" denotes the Cauchy principal value of the integral.  

In order to solve the singular boundary integral equation 
we  use three types of boundary elements: constant boundary 
elements, linear isoparametric boundary elements and 
quadratic ones  
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A. Case of constant boundary elements 
We approximate the boundary by a polygonal 

line{ } NjL j ,1, =  with the nodes on the real boundary and 

we consider that the unknown is constant on each segment. 
We consider that on each iL  the unknown is equal with the 
value taken in the midpoint of the segment, noted  

{ } 11,,...,2,1,
2

1
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In (3) we consider than 0
0 ixx = and we deduce the 

discrete form of the singular boundary integral equation:        
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Imposing relation (5) to be satisfied on every midpoint, we 

get (see [4]) the following linear algebraic system which 
unknowns are the values of the sources intensity for the 
middle points of the segments: 
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The coefficients depend only on the coordinates of the 

nodes chosen for the boundary discretization. All the 
coefficients in (6) can be analytically evaluated and no errors 
appear due to their evaluation. After solving the system (6) 
the components of the velocity are found and then the local 
pressure coefficient. 

B. Case of linear boundary elements    
In order to solve the singular boundary equation we chose 

now the case of linear isoparametric boundary elements. We 
approximate the contour C with a polygonal line having the 
segments iL , i=1,N and the extremes: ( )11, ii yx  şi 

( )22 , ii yx in a local numbering system. We have relations:  
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( )=22 , NN yx ( )1
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1 , yx , contour C being closed.  

For describeing the geometry of a boundary element we 
use a local system of coordinates which has the origin in the 
first node of an element , and so we have the relations: 
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where 21,ϕϕ  are the form functions given by 

( ) ( ) tttt =−= 21 ,1 ϕϕ .                                                  (9) 
Using isoparametric boundary elements we have, for the 

unknown f, the local representation: 

2211 ϕϕ ii fff +=  ,                                                     (10)   

where 21, ii ff  are the nodal values of the unknown, it means 

the values of  f at the extremes of the boundary element iL , 
in the local numbering. These values satisfy the relations: 

11,1
1
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For Njxx j ,1,1
0 =∀=  in (3), we get an algebraic 

system of N equations each of them of the following form:   
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For simplifying the writing we shall not use the prim 

sign to specify that an integral must be understand in its 
Cauchy sense.  

With the notations: 
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we get the following equivalent form for (11 ): 
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where jiforaa ijij ≠=′ , and  
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After some calculous we obtain for the coefficients of 
system (13) the following expressions: 
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For the components of the normal unit vector outward the 
fluid we have the following formulas: 
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The nonsingular integrals can be computed analitycally 
and for the singular ones the definition of the Cauchy 
principal value can be used  (see [5]). In paper [6] their 
expressions are givven.  

Using the same notations as before, the components of the 

velocity on the boundary (for the node 1
jx , Nj ,1= ) can be 

evaluated with the formulas: 
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So the local pressure coefficient can be obtained. 

C. Case of quadratic boundary elements 
In this paragraph we use quadratic isoparametric boundary 

elements of Lagrangean type to solve to solve the singular 
boundary integral equation (3), so the unknown function is 
approximated by polynomials of second degree, and the 
boundary by curved arcs. For obtaining the discret equation 
the boundary is divided into N unidimensional quadratic 
boundary elements, each of them with three nodes: two 
extreme nodes and an interior one. For getting this mesh we 
need 2N nodes on the boundary . Considering that the 
discrete equation is satisfied in every node, we have for 

Nj 2,1= :   
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The quadratic isoparametric boundary element uses the  
same set of basic functions, noted 321 ,, NNN , for 

describing the geometry and the unknown function. Using 
the intrinsic system of coordinates, with the origin in the 
interior node, these functions have the expressinons: 

 

( ) ( ) ( ) ( ) ( ) [ ]1,1,
2

1,1,
2

1
3

2
21 −∈

+
=−=

−
= ξξξξξξξξξ NNN  

                                                                                     (19) 
Using a matricial notation we obtain the following equation:  
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where 
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{ }{ },, ii yx  are column  matrices made with the global 

coordinates  of the element iL nodes, and i
lf  i=1,N, l=1,2,3 

are the nodal values of the unknown function for the three 
nodes of the mentioned element  (the value of the unknown 
for the node number l of the element number i). 

Returning to the global system of notation we obtain the 
following linear algebraic system:  
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 For getting the matrix [ ]A  we need to evaluate the 
integrals that appeare. One of them are usual integrals, but the 
other are singular integrals. For the singular integrals that 
appear there can be used more techniques, some of them 
being presented in [7]. One of these methods are: the 
truncation method, the Cauchy principal value method and 
the regularization method.  We have used in this paper the 
regularization method because the study made in [8] shows 
that this method leads in case of quadratic boundary elements 
to the best results.  

After solving the system (21), so after we find the values of 
f for the N2  nodes choosen for the discretization of the 
boundary we may also compute the velocity for these  nodes. 
We deduce (see [9]): 

( ) ( )∑
=

++−−=
N

i
ij

i
ij

i
ij

ij
xjj bfbfbfnfxu

1

3
3

2
2

1
12

1
2
1

π
, 

( ) ( )∑
=

++−−=
N

i
ij

i
ij

i
ij

ij
yjj cfcfcfnfxv

1

3
3

2
2

1
12

1
2
1

π
, (22) 

The coefficients from the above expressions depend only on 
the nodes coordinates chosen for the boundary discretization 
and they can be found in [9]. 

III. NUMERICAL RESULTS 
In some particular cases the considered problem has exact 

solution. In [10] there is presented the exact solution for the 
problem of the uniform ideal incompressible subsonic fluid 
flow around a circular obstacle. 

 Some computer codes made in MATHCAD, allow us to 
compare the numerical solutions obtained when using 
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constant, linear and quadratic boundary elements with the 
analytical one, and to evaluate the errors that appear in each 
situation.  

The comparison is made through the local pressure 
coefficient, noted pc , obtained when there are used 10 and 

20 nodes for the boundary discretization.  
The following graphics show good agreements and they 

demonstrate the fact that using quadratic boundary elements 
and an adequate method for evaluating the singularities we 
get very good results even for a small number of boundary 
elements.  

We consider first the case of 20 nodes on the boundary and 
we perform the local pressure coefficient, pc  evaluated at 

these nodes, on the one hand when different kinds of 
boundary elements are used and on the other hand for the 
exact solution. 
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Fig.1. pc for the exact solution and the numerical one 

obtained for constant boundary elements. 
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Fig.2. pc for the exact solution and the numerical one 

obtained for linear boundary elements. 
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Fig.3. pc for the exact solution, the numerical ones 

obtained for constant and linear boundary elements. 
Evaluating the errors that appears we get the following 

graphic. 
errors

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
nodes

er
ro

rs error2

error1

 
Fig.4. The absolute error between the exact solution and 

the numerical one obtained: for the case of constant boundary 
elements (Error1), and linear boundary elements (Error2).  

As we notice the error is smaller for the case of linear 
boundary elements in case of  16 of the 20 nodes. 

When using quadratic boundary elements we get very 
good results as we can see from the next graphic. 
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Fig.5. pc for the exact solution and the numerical one 

obtained for quadratic boundary elements. 
We can see that the values obtained for the local pressure 

coefficient in case of using quadratic boundary elements are 
almost equal with the exact values. That is why we can see 
only one line on the graphic. The absolute error that appears 
is performed in the following graphic. 
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Fig.6.  The absolute error between the exact solution and 

the one obtained for quadratic boundary elements.  
The errors are so small not only for the reason of using 

quadratic boundary elements but also because the singular 
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integrals that appear have been treated with a special 
attention.  

Using a good method for evaluating the singular integrals 
that appear is a stage of great practical importance because 
the coefficients given by these singular integrals are 
dominants and situated near and on the diagonal of the 
system matrix, and so they play an important role for a well 
behavior of the system. 

All the nodal values obtained for 20 nodes on the boundary 
are performed in the next figure. 
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Fig.7. pc for the exact solution, the numerical one for 

constant, linear and quadratic boundary elements. 
When there are used 10 nodes for the boundary 

discretization the numerical results are performed in the 
following graphic and the comparison is also made through 
the local pressure coefficient. 
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Fig.8. pc for the exact solution, the numerical one for 

constant, linear and quadratic boundary elements, case of 10 
nodes. 

As we can notice the numerical results are not as good as 
before especially when constant and linear boundary 
elements are used. The best results, for 10 nodes on the 
boundary, are obtained as before in case of quadratic 
boundary elements. 

The following graph shows the errors that appear in this 
case. 
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 Fig.9. The errors in case of quadratic boundary elements and 
10 nodes. 

Comparing the errors from Fig.6 and Fig.9 we deduce the 
fact that the numerical solution obtained when 20 nodes are 
used for the boundary discretization is well improved. 

We can run the computer codes for different numbers of 
nodes to see which is the optimal number of nodes in each 
case, a number big enough to lead to a small enough error and  
also not to big for a justified computational effort.  

We can deduce which is the best number of nodes that 
must be chosen for the boundary discretization for obtaining 
the best ratio computational efficiency good results. 

The computer codes can be used for obstacles with 
different geometries. In paper [10] the exact solution of the 
mentioned problem for the case of an elliptical obstacle can 
be found.  

In the following graphic there is made, for an elliptical 
obstacle, a comparison between the exact solution and the 
numerical ones obtained for the same cases of boundary 
elements. There are used 20 nodes for the boundary 
discretization.  
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Fig.10. pc for the exact solution, the numerical one for 

constant, linear and quadratic boundary element for an 
elliptical obstacle. 

As we see from the above graphic the numerical solution 
obtained when using quadratic boundary elements is the best 
and is nearby the exact one even when we choose 20 nodes 
on the boundary.  

The distribution of errors that appear for the chosen types 
of boundary elements in case of an elliptical obstacle is 
performed in the following graph. 
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Fig.11. The errors between the exact solution and the 

numerical one obtained: for the case of constant boundary 
elements (Error1), linear boundary elements (Error2), and 
quadratic boundary elements (Error3).  

For better seeing the errors in case of quadratic boundary 
elements we have the following graphic. 
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Fig.12 The errors between the exact solution and the 

numerical one obtained for the case of quadratic boundary 
elements (Error3).  

As it is naturally better results can be obtained by using 
higher order boundary elements or more nodes for the 
boundary discretization, but as we see the results are 
satisfactory when choosing quadratic boundary elements and 
only 20 nodes on the boundary. 

From the above graphics we can observe that the analyzed 
obstacles are non-lifting ones because of the symmetry of the 
local pressure coefficient: for corresponding nodes on the 
upper and the lower boundary it takes the same value. As we 
know this is a consequence of the fact that the analyzed 
profiles have smooth boundaries.  

With the same computer codes numerical solutions can be 
obtained for any kind of compressible fluid flows, for 
different values of Mach number, not only for the ideal case 
and for other kinds of obstacles with smooth boundaries too.   

For profiles with cusped trailing edge using a 
Kutta-Jukovsky condition and making adequate changes to 
the computer codes, numerical solutions of the mentioned 
problem can be found too. 
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