
 
 

 

  
Abstract—An improved Heaviside approach to compute the 

partial fraction expansions of proper rational functions is 
presented.  This method involves simple substitutions and 
polynomial divisions only, without the use of differentiation or 
solution of a system of linear equations. Examples on its 
applications in some topics of engineering mathematics, such as 
indefinite integration, inverse Laplace transforms and 
differential equations, are included. 
 

Index Terms—partial fractions, Heaviside’s approach, 
inverse Laplace transform, differential equations.  
 

I. INTRODUCTION 
The problem of finding the partial fraction expansions of 

rational functions is often encountered in the study of integral 
calculus, differential equations, control theory and certain 
topics of applied mathematics. According to [1], there are 
two common methods for finding the numerators of the 
partial fractions. One approach is to multiply out the 
denominators of the rational functions involved and equate 
the like terms on both sides of the equality. Then, the 
unknown coefficients can be found by solving a system of 
linear equations. Another approach is to use the Heaviside’s 
cover-up technique, which involves substitutions to 
determine the numerators of the partial fraction expansions 
with single poles, and successive differentiations to handle 
those with multiple poles, as pointed out in [5].    

In [6], an improved Heaviside approach for computing the 
partial fraction expansions of proper rational functions was 
proposed by the author, which can be used to find the 
numerators of the partial fractions successively, via simple 
substitutions and polynomial divisions only. In this paper, a 
brief overview of the mathematical background of this new 
approach is provided. Examples on its applications in some 
topics of engineering mathematics, such as indefinite 
integration, inverse Laplace transforms and differential 
equations, are then provided.  

II. AN IMPROVED HEAVISIDE APPROACH 
The existence of the partial fraction expansion is based on 

the theorem below.  
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Theorem 2.1. Let F be a constant field and a(x) and b(x) be 
polynomials in F[x] such that )(deg)(deg xbxa < and  
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where Fs ∈ααα ,,, 21 L and snnn ,,, 21 L  are positive 
integers. Then )(/)( xbxa has a unique partial fraction 
expansion of the form 
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where Fa ji ∈, . 
 
An improved Heaviside approach for computing the 

unknown coefficients jia ,  is described below. The proof of 
its correctness can be found in  [6]. 

 
Theorem 2.2. The coefficients jia ,  in Theorem 2.1 can be 

determined by the following procedure: 
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where si ≤≤1  and 11 −≤≤ inj . 
 

    The substitutions involved in step S1 are called the 
Heaviside’s cover-up technique. To find the other 
coefficients, we can move the partial fractions already found 
to the left hand side of  (1) and rewrite it as a new rational 
function, as illustrated in S2. Simplification of this new 
rational function can be done by means of a single 
polynomial division only. Then, we can apply the whole 
procedure to this function recursively, until all the 1, −inia  have 
been found.  

Unlike the original Heaviside approach, which involves 
successive differentiations, namely 
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(4) 
where si ≤≤1  and 10 −≤≤ inj , the improved Heaviside 
approach is comparatively much more simple, which makes 
it very suitable for hand or  machine calculation.   

III. APPLICATIONS 
We now illustrate how to apply this new Heaviside 

approach to some topics of engineering mathematics, such as 
indefinite integrations, inverse Laplace transforms and 
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differential equations. 
 
Example 3.1. Evaluate ∫ −++ dxxxxx 22 )1)(1/()3( . 

Solution.  Let 
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c are unknown constants to be determined. Using the 
cover-up technique, we have 
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Hence, 
2
3

=b  and the whole partial fraction expansion is 
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the partial fractions, we have 
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The above technique is also applicable to some cases, 

which involve an irreducible quadratic factor in the 
denominator of the integrand, as illustrated in the example 
below. Compared with the method adopted in [2], we can see 
that solving a system of linear equations is not required in this 
new approach. 

 
Example 3.2. Evaluate ∫ −++ dxxx 12 ))3)(2(( . 

Solution.  Let 
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where a, b, c are unknown constants to be determined. Using 
the cover-up technique, we have 

 
7
1

34
1)()2(

2
=

+
=+=

−=x
xFxa . 

 Next, we consider 

.
)3(7

2
)3)(2(7

4
)2(7

1
)3)(2(

1
22

2

2 +
−

=
++

−
=

+
−

++ x
x

xx
x

xxx
 

Hence, 7/1−=b , c = 2/7.  Integrating the partial fractions, 
we have 
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In the study of advanced engineering mathematics, such as 

[3], [4], we often come across topics of inverse Laplace 
transform and its application to differential equations. We 
now illustrate how the improved Heaviside’s approach can 
be applied to these topics. 

 
Example 3.3. Find the inverse Laplace transform of the 

function )4(/)1( 2 ++ sss . 

Solution.  Let 
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C are unknown constants to be determined. Using the 
cover-up technique, we have 
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Hence, 4/1−=B , C = 1 and the inverse Laplace 

transform is .2sin
2
12cos
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Example 3.4. Solve the equation 1'3''3''' =+++ yyyy with 

the initial conditions .0)0('')0(')0( === yyy  
 

Solution. Let )()]([ sYtyL =  and apply Laplace transform to 
both sides of the differential equation. We have 
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are unknown constants to be determined. Using the cover-up 
technique, we have 
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Using the cover-up technique again, we have 
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Hence, 1−=D  and the partial fraction expansion is 
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Laplace transform, we obtain ttt etteety −−− −−−= 2
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IV. CONCLUDING REMARKS 
An improved Heaviside approach to compute the partial 

fraction expansions of proper rational functions has been 
introduced in this paper. This method can be used to find the 
unknown numerators of the partial fractions successively, via 
simple substitutions and polynomial divisions only, without 
the use of differentiation or solution of a system of linear 
equations. We have also illustrated its applications in some 
topics of engineering mathematics. Due to its simplicity and 
effectiveness, it can be introduced to undergraduate students 
or instructors who are studying or teaching engineering 
mathematics, as an alternative to those classical techniques 
found in the engineering mathematics textbooks.  

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008



 
 

 

REFERENCES 
[1] L.B. Norman,  Discrete Mathematics, 2nd ed.  New York: Oxford 

University Press, 1990, pp. 403–407. 
[2] J. Mikusinski & P. Mikusinski, An Introduction to Analysis. New York: 

John Wiley & Sons, 1993, pp. 184–186. 
[3] E. Kreyszig, Advanced Engineering Mathematics. New York: John 

Wiley & Sons, 1999, pp. 284–288. 
[4] D. W. Jordan & P. Smith, Mathematical Techniques: An Introduction 

for the Engineering, Physical and Mathematical Sciences. Oxford: 
Oxford University Press, 2002, pp. 455–464. 

[5] S. H. Hou & S.H. Edwin Hou, “On partial fraction expansion with 
multiple poles,” Int.  J. of Math. Edu in Sci. & Tech., vol. 35, 2004, pp. 
782–791. 

[6] Y. K. Man, “A simple algorithm for computing partial fraction 
expansions with multiple poles,” Int.  J. of Math. Edu in Sci. & Tech., 
vol. 38, 2007, pp. 247–251. 

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008


