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Abstract—In this paper, the evaluation of I =∫ 1

−1

f(x)√
1−x2

dx is proposed by using the opened and

closed Gauss - Chebyshev integration rules in the
stochastic arithmetic. For this purpose, a theorem is
proved to show the accuracy of the Gauss-Chebyshev
rules. Then, the CESTAC 1 method and the stochas-
tic arithmetic are used to validate the results and im-
plement the numerical example.

Keywords: Stochastic Arithmetic, CESTAC method,
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1 Introduction

The basic idea of the CESTAC method [5,11] is to re-
place the usual floating-point arithmetic with a random
arithmetic. Consequently, each result appears as a ran-
dom variable. It has been explained in [1,2,4,7,10], one
can use the CESTAC method which is a method based
on the stochastic arithmetic, in order to evaluate a defi-
nite or an improper integral by using Newton-Cotes inte-
gration methods. In this paper, we are going to evaluate
I =

∫ 1

−1
f(x)√
1−x2 dx numerically using Gauss-Chebyshev in-

tegration rules [9] in the stochastic arithmetic.

In section 2, the idea of the stochastic arithmetic and
the CESTAC method are introduced. In section 3, the
numerical accuracy of the Gauss-Chebyshev integration
rules is given. In section 4, a numerical example is given
which is computed by using the stochastic arithmetic and
the CESTAC method.

We show that it is possible during the run of the code
of the Gauss-Chebyshev integration rules, to determine
the optimal number of the points, to correctly stop the
process, and to estimate the accuracy of the computed
result.
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2 CESTAC Method-Stochastic Arith-
metic

Let F be the set of all the values representable in the
computer. Thus, any value r ∈ R is represented in the
form of R ∈ F in the computer. It has been mentioned
in [11] that in a binary floating-point arithmetic with p
mantissa bits, the rounding error stems from assignment
operator is

R = r − ε2E−pα. (1)

In this relation ε is the sign of r and 2−pα is the lost
part of the mantissa due to round-off error and E is the
binary exponent of the result. In single precision case,
p = 24 and in double precision case, p = 53. Also if the
floating-point arithmetic is as rounding to +∞ or −∞
then −1 ≤ α ≤ 1.

According to (1) , if we want to perturb the last man-
tissa bit of the value r, it is sufficient that we change α in
the interval [−1, 1]. In the CESTAC method if the arith-
metic is considered as rounding to +∞ or −∞ , α can be
considered as a random variable uniformly distributed on
[−1, 1]. Thus R, the calculated result, is a random vari-
able and its precision depend s on its mean (μ) and its
standard deviation (σ).

The idea of the CESTAC method is to consider that every
result R ∈ F of a floating-point operation corresponds
to two informatical results, one rounded off from below
(R−) , the second rounded off from above (R+), each of
them representing the exact arithmetical result r ∈ R ,
with equal validity. If a computer program is performed
N times, the distribution of the results Ri, i = 1, ..., N
is quasi-Gaussian which their mean is equal to the exact
value r, that is E(R) = r [8,11]. These N samples are
used for estimating the values μ and σ.

In practice, the samples Ri are obtained by perturbation
of the last mantissa bit (or previous bits if necessary) of
every result R, then the mean of random samples Ri,

that is R =
∑N

i=1
Ri

N , is considered as the result of an
arithmetical operation. If N = 3, it has been proved in
[11] that the number of exact significant digits common
to R and to the exact value r can be estimated by,
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CR,r = log10

| R |
σ

− 0.39. (2)

In relation (2), σ is the standard deviation of the samples
Ri which is given by,

σ =

√∑N

i=1(Ri−R)2

N−1 .

In the CESTAC method if CR,r ≤ 0 or R = 0 then R is
called an informatical or stochastic zero. In this case, we
write R = @0 and it means the informatical result R is
insignificant.

In order to simultaneous implementation of the CESTAC
method we should substitute a stochastic arithmetic in
place of the floating-point arithmetic. In this way ev-
ery arithmetical operation is performed N times syn-
chronously before running the next operation. If N = 3,
the relation (2) can be used to estimate the number of
exact significant digits of any result of any arithmetical
operation. By using of the stochastic arithmetic, sud-
den losses of accuracy, numerical instabilities, and the
appearance of an insignificant result (stochastic zero) are
detected [3,6,8,11].

3 Numerical accuracy of the Gauss-
Chebyshev rules

As mentioned in [7], to correctly quantify the accuracy
of a computed result, one must estimate the number of
its exact significant digits, i. e., the number of significant
digits that are common to the computed result and the
exact result. Therefore, we need the following definition.

Definition 1 Let a and b be two real numbers, the num-
ber of significant digits that are common to a and b, de-
noted Ca,b can be defined by

Ca,b = log10

∣∣∣∣ a + b

2(a− b)

∣∣∣∣ = log10

∣∣∣∣ a

a− b
− 1

2

∣∣∣∣ , a �= b

(3)

and for all real numbers a, Ca,a = +∞.

One can use the relation (3) in order to find the accuracy
of the Gauss-Chebyshev integration rules. Then, one can
use the CESTAC method to find the optimal number of
points using these rules.

Let f be a function which its Chebyshev expansion is
rapidly convergent. Let I =

∫ 1

−1
f(x)√
1−x2 dx and IN be

an approximation of I using closed or opened Gauss-
Chebyshev integration rules. The aim is to find Nopt

such that, IN − I2N = @0.

It has been proved in [9], the errors of IN and I2N are:

ENf = IN − I = πa2N − πa4N + πa6N − . . . ,

E2Nf = I2N − I = πa4N − πa8N + πa12N − . . . ,

where, ai, i = kN, k = 2, 4, 6, . . . , are the coefficients of
Chebyshev expansion of f . Since, f has a rapidly con-
vergent Chebyshev expansion, the error can be found by

ENf ≈ πa2N , E2Nf ≈ πa4N . (4)

If ai, i = 0, 1, . . . are the coefficients of Chebyshev expan-
sion of f , the real numbers r > 1 and Cf exist such that
[9],

|ai| ≤ Cf î−r, (5)

where, î = max{i, 1}, i ≥ 0. Therefore from (5), ai =
O(i−r). Hence from (4),

ENf = O((2N)−r), E2Nf = O((4N)−r). (6)

The following theorem shows the numerical accuracy of
the Gauss-Chebyshev integration rules.

Theorem 1 let f be a function which its Chebyshev ex-
pansion be rapidly convergent. Let I =

∫ 1

−1
f(x)√
1−x2 dx and

IN be an approximation of I by using closed or opened
Gauss - Chebyshev integration method then,

CIN ,I2N
= CIN ,I − log10

∣∣∣∣1− a4N

a2N

∣∣∣∣ + O(
1

(2N)r
), (7)

where, a2N , a4N , are the first coefficients of the Cheby-
shev expansion of f and r > 1 is a real value.

Proof. According to definition 1,

CIN ,I2N
= log10

∣∣∣∣ IN

IN − I2N
− 1

2

∣∣∣∣ =

log10

∣∣∣∣ IN

IN − I2N

∣∣∣∣ + log10

∣∣∣∣1− 1
2IN

(IN − I2N )
∣∣∣∣ =

log10

∣∣∣∣ IN

IN − I2N

∣∣∣∣ + O(IN − I2N ).

Since, IN − I2N = IN − I − (I2N − I) = ENf − E2Nf,
thus from (6), IN − I2N = O( 1

(2N)r ).

Therefore,

CIN ,I2N
= log10

∣∣∣∣ IN

IN − I2N

∣∣∣∣ + O(
1

(2N)r
). (8)
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Furthermore,

CIN ,I = log10

∣∣∣∣ IN

IN − I
− 1

2

∣∣∣∣ =

log10

∣∣∣∣ IN

IN − I

∣∣∣∣+O(IN −I) = log10

∣∣∣∣ IN

IN − I

∣∣∣∣+O(
1

(2N)r
).

According to (8),

CIN ,I2N
= log10

∣∣∣∣ IN

IN − I − (I2N − I)

∣∣∣∣ + O(
1

(2N)r
) =

log10

∣∣∣∣∣
IN

(IN − I)(1− I2N−I
IN−I )

∣∣∣∣∣
+O(

1
(2N)r

) =

log10

∣∣∣∣ IN

IN − I

∣∣∣∣− log10

∣∣∣∣1− I2N − I

IN − I

∣∣∣∣ + O(
1

(2N)r
).

Consequently,

CIN ,I2N
= CIN ,I − log10

∣∣∣∣1− I2N − I

IN − I

∣∣∣∣ + O(
1

(2N)r
)

Since, I2N−I
IN−I = a4N

a2N
+ O( 1

(4N)r ). Therefore,

CIN ,I2N
= CIN ,I − log10

∣∣∣∣1− a4N

a2N

∣∣∣∣ + O(
1

(2N)r
).

The relation (7) shows that, if the Gauss-Chebyshev in-
tegration rules are used in order to estimate I then, for
N large enough, the number of common significant digits
between IN and I2N are almost equal to the number of
common significant digits between I and IN . The term
log10

∣∣∣1− a4N

a2N

∣∣∣ is near zero when N increases, because

0 < a4N

a2N
<< 1. Also, O( 1

(2N)r ) is small and negligible.

Therefore, if the CESTAC method is used then, the com-
putations of the sequence IN ’s are stopped when for an
index like Nopt, INopt − I2Nopt = @0. In this case, INopt is
an approximation of I.

4 Numerical Example

In this section, we evaluate a numerical example which
has been provided by Visual Fortran in double preci-
sion in the Stochastic arithmetic. The computed values
have obtained by using the opened and closed Gauss-
Chebyshev rules with step size h = b−a

N , N = 2n, n ≥
1. The successive values IN and I2N are computed
and at each iteration, the number of significant digits
of |IN − I2N | and |IN − I| can be estimated. When
|IN − I2N | = @0, IN and I2N are equal stochastically.

The computations of the sequence IN ’s are stopped when
for an index like Nopt the number of common significant
digits in the difference between INopt

and I2Nopt
become

zero. In this case, one can say, before Noptth iteration,
|IN − I2N | and |IN − I| has exact significant digits. But,
the computation after Noptth iteration are useless. In
other words, the number of iteration in Nopt has been
optimized. Also, according to theorem 1, the significant
digits of the last approximation INopt

are in common
with the mathematical value of the integral I. There-
fore, INopt is an approximation of I with optimal step
size hopt = b−a

N .

Example 1 In this example, the numerical solution

of the integral I =
∫ 1

−1

√
(1+x)3√
1−x2 dx = 8

√
2

3 ≈
3.77123616632825 is considered [9]. The results are shown
in tables 1 and 2 by using the opened and closed Gauss-
Chebyshev rules in the stochastic arithmetic.

The last values of n in the tables are the optimal num-
bers of the points. The values CEN

and CerrN are the
number of the significant digits of EN = |IN − I2N | and
the absolute error of IN respectively. As we observe
the optimal value of I using the closed Gauss-Chebyshev
rule is IN = 3.77123616632851 and using the opened
Gauss-Chebyshev rule is IN = 3.77123616632799 with
Nopt = 210 = 1024. In both cases, CIN ,I 	 12.

5 Conclusion

In this paper, we have explained that by using the CES-
TAC method based on stochastic arithmetic one can use
the Gauss-Chebyshev integration rules to approximate I
and validate the result step by step. According to theo-
rem 1, one can find an optimal value Nopt so that INopt

is the best approximation for I from the computer point
of view.
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n IN EN = |IN − I2N | CEN
errN = |IN − I| CerrN

1 3.79223779587407 1.983789877463875E-002 12.59 2.100162954582041E-002 12.59
2 3.77239989709944 1.093014948547892E-003 11.00 1.163730771181666E-003 11.24
3 3.77130688215089 6.632656578453577E-005 9.72 7.071582263377489E-005 10.21
4 3.77124055558510 4.115400662474400E-006 8.46 4.389256849239113E-006 8.72
5 3.77123644018444 2.567475423376209E-007 7.71 2.738561867647131E-007 7.50
6 3.77123618343690 1.603947404523372E-008 5.91 1.710864442709218E-008 6.10
7 3.77123616739742 1.002347094214429E-009 4.71 1.069170381858460E-009 5.25
8 3.77123616639508 6.264988527959758E-011 3.98 6.682328764403185E-011 3.57
9 3.77123616633243 3.920567574292970E-012 2.81 4.173402364434272E-012 2.42
10 3.77123616632851 2.341830433275997E-013 1.13 2.528347901413023E-013 1.28
11 3.77123616632827 @0 -3.94 1.865174681370263E-014 0.33

Table 1 (Closed Gauss-Chebyshev rule)

n IN EN = |IN − I2N | CEN
errN = |IN − I| CerrN

1 3.75256199832475 1.765186887755347E-002 11.80 1.867416800350104E-002 11.69
2 3.77021386720231 9.603618169763036E-004 10.02 1.022299125947572E-003 10.32
3 3.77117422901928 5.809576446728452E-005 8.73 6.193730897126788E-005 9.14
4 3.77123232478375 3.601905590085626E-006 7.48 3.841544503983367E-006 7.78
5 3.77123592668934 2.246686025368187E-007 6.86 2.396389138977402E-007 6.44
6 3.77123615135794 1.403475128706570E-008 4.96 1.497031136092157E-008 5.14
7 3.77123616539269 8.770747091565075E-010 3.94 9.355600738558678E-010 4.31
8 3.77123616626977 5.480875013101164E-011 2.98 5.848536469936032E-011 2.78
9 3.77123616632458 3.411641339804798E-012 1.87 3.676614568348668E-012 1.60
10 3.77123616632799 2.147911478308136E-013 0.21 2.649732285438707E-013 0.33
11 3.77123616632822 @0 -0.26 @0 -0.15

Table 2 (Opened Gauss-Chebyshev rule)
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