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Spectral Domain for Scattering by Impedance
Polygons
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Abstract—Some features of functional and integral equations
involved in the spectral approach developed by the author (in
Qu. J. of Mech. and Appl. Math., 59, 4, pp.517-550, 2006)
for scattering by two-dimensional polygonal objects with ar-
bitrary surface impedance conditions are presented. In this
problem, the Wiener-Hopf method cannot be applied, while
asymptotic methods can only be used if corners are widely
spaced compared to wavelength, and the presence of imperfectly
reflective surfaces particularly complicates the problem. After
presenting our method to handle in a global manner the problem
of n-part polygonal objects using the Sommerfeld-Maliuzhinets
representation of the field, we detail the functional equations for
the spectral functions, and the way to reduce them to a system of
integral equations of the second kind with non-singular kernels,
allowing approximations. We apply in particular this approach to
the important class of three-part impedance polygons composed
of a finite segment attached to two semi-infinite planes.

Index Terms—spectral method, integral equations, functional
equations, helmholtz equation, polygonal surface.

I. INTRODUCTION

OME features of functional and integral equations in-
volved in the spectral approach developed by the author
in [5] for scattering by two-dimensional polygonal objects
with impedance boundary conditions are presented. In this
delicate exterior problem, the Wiener-Hopf method cannot be
applied [1-2], while asymptotic methods can only be used
if corners are widely spaced compared to wavelength [3],
and the presence of imperfectly reflective surfaces particularly
complicates the problem.
To handle the problem, we consider the Sommerfeld-
Maliuzhinets representation of the field,

1 i
u(p, @) = 3 / fla+ @)etreseda, (1)
Y

which satisfies the Helmholtz equation (A + k2)u(p, ¢) = 0,
in free space sector —® < ¢ < ® which contains the scatterer.

In this representation, f is an analytic function and the
path ~ consists of two branches: one, named ., going from
(ico+arg(ik) + (a1 + §)) to (ioo+targ(ik) — (a2 + 5)) with
0 < a1z <, as Ima > d, above all the singularities of the
integrand, and the other, named ~_, obtained by inversion of
v+ with respect to a = 0.
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Fig. 1. geometry

Fig. 2.

coordinates and complex path

This representation has long been devoted to the rigorous
analysis of isolated wedges. However, some of our recent
developments permit us to consider a new integral expres-
sion of the spectral function, in some domain of complex
angles, where it becomes possible to take globally account
of boundary conditions on a complex geometry [4],[5]. The
problem can be then reduced to original difference and integral
equations that are studied.

II. SINGLE-FACE EXPRESSION OF f AND ITS USE FOR
POLYGONAL OBJECTS

An expression allows to consider arbitrary shapes. For this,
we show first [4-5] that

flen )= [ (ihu(s £0)sino 7 @

i%(pﬁ £P))e TG ()

as 2 <P Fpo,<Fand I < ®Fop <3, |arg(ik)| <

5, where ¢, is the incident plane wave direction, with some
general properties of the field permitting the convergence.

WCE 2008



Proceedings of the World Congress on Engineering 2008 Vol 11
WCE 2008, July 2 - 4, 2008, London, U.K.

Using Green’s theorem, we then note that the contour of
integration along ¢ = £® can be deformed into any path
Lgfoc, provided that the integral remains bounded and no
source passes through the path during the deformation. So,
if we divide the semi-infinite paths L(ﬂioo (deriving from a
deformation of the faces ¢ = +® enclosing the scatterer,
described above) into LO as (e 0 <V < A%) and Lioo
(ie. I’ > A%), we have

1 0
flamte)=g [, (husinte )+ 5
0,a%
ke’ COS(w—%D')dl’(p’ gp’) +fLii (£7+ ), 3)

() = eikpaz cosla—eas) ££(q), £ (q) is the

spectral ﬁlnctlon related to the Sommerfeld-Maliuzhinets rep-

where f L,

resentation of the field in coordinates with origin at I’ = A¥.
We can then write, by analytic continuation,
1 0
f) =5 [, (cibusinfa—g) £ 51
0,a%t
xe WO () ) g e (a), @)

that is called henceforth the single-face expressions of f.

Let us consider a polygonal surface located inside the do-
main |¢| > ® enclosing a scatterer. This surface is composed
of two joined semi- inﬁnite polygonal faces, denoted + and
—, respectively with m* segments of lengths di with tangent
angles :i:(IDi, j=1,2,..,m* and a semi- 1nﬁn1te plane with
tangent angles i(I)i Then the single face expression of the
spectral function f becomes [5]

. + +
f(Ol) _ ; Z e—lk‘ Zl§i<j d;" cos(aFP3)
1<j<m*
4 + +
/0 (—iku(p}, £®F ) sin(a F &)

Ou + —ikp’, Cos(a:F@j.:) /
O 0t )

_ ) +
+e lngigm,i dif cos(aFP}) imi (av),

+

)

where feimi () is the analytic continuation of the integral

expression
1 oo
£ (o £0F) = 5/ (—iku(pl, £®F) sina’
0

e,m*
ou

o ©)

— cos(@f F o)) > 0, [Red| <

—ikp, cosa’ 3 7
+ dpe,

,£0F))e

valid as Re(ik(cos o’
m,|arg(ik)| < F.

This original expression of the spectral function and its
properties enable us to derive, for the first time, the functional
equations for the spectral functions for scattering by a general
impedance polygon with finite or infinite surface [5], and to
reduce generally the problem to a system of integral equations
of the second kind with non-singular kernels.

We apply in particular this approach to the important
class of three-part impedance polygons composed of a finite
segment attached to two semi-infinite planes.
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Fig. 3. geometry of three-part impedance polygons

ITI. FUNCTIONAL AND INTEGRAL EQUATIONS FOR A
SEMI-INFINITE THREE-PART IMPEDANCE POLYGON

The functions f, and f;, are the spectral functions associated
with the Sommerfeld-Maliuzhinets representation of the field,
in cylindrical coordinate systems (pq, ©,) and (pp, ©p), With
origins at opposite ends of the finite segment. We have, in
(pa, pa) coordinates,

®,) with 9% — iksinf_u = 0,
) Wlth o2 — zk sinf1u = 0,

(pa E]0,00[, Pa = —9

(pa €[0,A], 00 = @)

with the incident field u? = e**ra COS(%*‘PO), and, in coordi-

s
2

(py € [0, A, pp = —Z) with 9% — iksin@lu =0,
(po €]0,00[, pp = 5 4 Pp) Wlth gu _jksinfiu =0, (8)

with the incident field u’ = e*(pv cos(ev=po)FAsingo),

IV. FUNCTIONAL EQUATIONS FOR THE SPECTRAL
FUNCTIONS

Functional difference equations for f, and f; are obtained
from (5)-(6) with (7)- (8) using parity of some expressions [5].
So, denoting f-(av — ) = fy(a) et 4 = T + %, we have

(sina +sin ) for (o + &4) —

—(—sina +sinfy) for(—a+ &) =0,
(sina — sin ) for (o — &4) —

—(—sina —sinby) o (—a — 04 ) =

= e~ A ((gin — sin ) fo(a — g) —

—(—sina —sinby) fo(—a — g)) =R, (o), (9
while, denoting fu-(a+ 22) = f,(a) and ®_ = 2 + 22 we
obtain

(sina +sin ) for(a+ D) —
—(—sina +sinby) for(—a+P_) =
= e~ RACOs A ((gin o+ sinBy) fo (o + g) -
—(—sina+sin01)fb(—a—|—g)) R (),
(sina —sin@_) for (o — D)
—(—sina —sinf_) for(—a—P_) =0. (10)
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A. Derivation of integral expressions and equations

From functional theory equations, the analytic function
x(«) verifying

x(a£ @) — x(—a+ ) =95 (a), (11)

and regular in the band |Rea| < @ (even at infinity), is given
as |Rea < @, by

x(a) = (07 (a) x

2 3P
,19*(

x(io0) + x(—ico) = —i /+oo

x tan(v(a + ® — o))

with v = %, when the ¥*(a) are regular and summable

on imaginary axis. We then use the solutions ¥, () (resp.
U, _ («)), without pole or zero in the band |Rea| < &, (resp.
[Rea| < ®_) and O(cos(ma/2®)) (resp. O(cos(ma/2®_)))
in this domain, of previous functional equations taken without
second member.

We then obtain for —7/2 < ¢,
—(I)+ <Rea < 3(I)+,

< 7/2 + ¥, and

be.(Oé) 4

U () - xp(a) =

_ 7 +i°°R ( )tan(4q> (

N E/ (sine/ —sin €)W 4 (o’ —

=i (T f (o — /24 ©,/2)

4Dy ‘I’+1(0/ -0y
—ikAcosa’

eTIRA oS gin (e

— 0, —a))
)

do/

—100

—100
20 ) ’

" coslg (o~ 0)) +eos(G) -

cos(w (a

where the source term xj () is given by

A S ) ezkA sin o (o 2“’;,!}
et Sin o Xz a) = us ‘+mp and
1) = 5 (G o e e 2oy ) 2nds

for —7/2 — @y < o < /2 et —3P_ <Rea < P_,

Jar () i _
\Ijl_(a) Xa(a) -

—; ¥ R (o) tan(3— (a+<1>_fa))d )
80 [im (sina’ +sin 6y )¥_(a/ + D) “
I /+i°° oo/ +7/2—®y/2)

R N
e—ikAcosoc sin
x (5) do/, (14)

cos(52— (o + ®_)) + cos(Z2)

cos T¥Yo,a
2<I>+

ﬁ(\lfl—(%,a)(sm
Po,a = Po + CI)Q/Q et Po,b = Po — (bb/2

Integral equations for fp.(av + 7/2 — ®5/2) and for (v
/2 + ®,/2) can be then derived.

where Y’ ()

TYo,a ))) Wlth

—sin 2%
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a)tan(v(a — @ — o')))da’ (12)

B. non singular integral equations when @, > —m/2
When ®,;, > —n/2, we have, from previous expressions,
for(a+7/2 — ®y/2)
Ui(a+m/2 —®p/2)
—i [T fur(e — )2+ Do /2)

— X (a+T)2 - By)2) =

)

49, ‘I’+1(0/ —®y4)
e—ikAcosa bln( )
e dd, (15)
COS(Q(I) ( - (I)b)) + COb(E)

—®, <Re(a+7/2 — ®,/2) < 30,4, and,
farla —7/240,/2)
U (a—1/2+®,/2) Yer

i [T f(a + /2 — By )2)
_4<1>_/,» ( \1/1_(0/+<1>_) )

(a—7/24+®,/2) =

—100
efikAcosoc sm( )
20 e, (16)
cos(52— (o + ®,)) + cos(Z2)
as —3P_ <Re(a — 7/2 + 9,/2) < P_, for —7/2 <

Yo < m/2. The equations can be solved numerically, or
analytically by approximations, since the term depending on
kA is simple and the source terms are not oscillating. Suitable
for approximations when kA is large, we can also transform
them by semi-inversion for approximations when kA is small.

V. A SEMI-INVERSION TO OBTAIN INTEGRAL EQUATIONS
WITH KERNELS VANISHING AS kA — 0

We can modify equations and derive integral equations with
kernels vanishing as kA — 0 for the three-part semi-infinite
impedance polygon, for approximations when kA is small. For
this, we begin with changing the unknowns in the equations
(15)-(16), considering furo(a) = far(a) — fola — (P4 —
3)7 SDO)a fbrO(a) = flﬂ"(a) - eikASinwofO(O‘ + ((I)* - %)a <Po)
where fo(o, o), corresponding to the solution for A = 0, is
known [5]. These functions vanish as A = 0, and satisfy, from
(15)-(16),

fbro(oz—&-f—: _ =i ( +'iOC(fa7~0((¥/—%+(I)Ta))
Uy (atF—3b) 494 \J —joco Uyq(a/—P4)

sin( g5
do/
(0= p))+cos(Fg- +

cos(—2£+

+f+1oo Bao(a’)sin(%)

100 cos( 2£+ (a—®p))+cos( 55"

—da') (17)

where

Jaro( =5+ —ikA cos o’

Bao(o) = (P20 B30 ) (emikdeosa’ ) 4

A @0 iy (o —Z4(Pq éb)/Z))(67ikA(cosa/+Sinapo) _
Vii(a'—2q)

as —®; <Re(a+ % — %) < 3., and

1)(18)

faro(a—Z+%2) (f+100(fbro(04 +*—T )
qjl_(a,%_i_%a) T 4D 100 Ui_(a’'+P_)

/
sin(3g—)

cos( 33— (a+@a,))+cos(%

. Byo(a
+200 b0 !
+ f,ioo cos(5f— (a+®q))+cos(F2- dao!)

do/ +

') sin(F25)

(19)
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Where
foro(c 2 2 —ikA cos o’
Bbo( . /) — (W)( ik )
f Ot/+ — qu ®,)/2 —l A(cos a’ —sin Yo I !“

as —30_ <Re(a— %+ 22) < ®_, for —min(3, % + ¢,) <
Yo <min(F, § + @y).
We then notice some similarity with the equations satisfied

by fo when A = 0. Thus, we let

fbrO( 9 %) =
= [ G fola+ T+ (®g — By)/2,¢")dy,
(;TO(O‘ - g + %) =
= [ G(¢) fola — T+ (B — ) /2,¢')d¢’  (21)

as [Re(a)| < T, and search to define G(¢') so that f;
and f,., verifies (17)-(19). The functions fo(a & § + (P4 —
®y,)/2,¢") are regular and O(1/ cos(my’/2®,4)) on the imag-
inary axis, and a pole at ¢’ = a + 7 ensures that, even if
O, = &, =0, generally f} o # firo-

Using the equations (15)-(16) when A = 0 satisfied by f,
we remark that we can write

folatE =) _
‘1’+1(a+7—®,—
foro(e/ =5+ %) sin(F2-

= —i er’LOO da/

A4 =100 Wiy (o~ ) (cos(gF (= Bp))Fcos(F5))
, sin (o' +Z)

o G(e) g /
+or ) ¥ - dy',(22)
20, J—ioco \I/+1(<p’77") (cos ﬂ(g(;fb)+co‘ (s;;; ) )

Jaro(o— 5 +%2)
Vi (a—5+5)
’ s ‘I>b s mal
o +i00 Foro(e +5—= 28 _ dov ’
4@ —100 Wy (a/+P_ )(cos(zg— (at+®q))+cos( 35 ))
sin (! ~%)
G(so ) 2%
oo f ico Uy B dg'(23)

99 '+ a) (cos "(ggf“)qtcos

In the case where G(¢’) is regular in the band |Re(¢’)| <
5, we can shift the integral paths in the integrals containing
G(¢'). Comparing (17)-(19) with (22)-(23), we notice that
(ftros faro) 1s a solution of the system of equations (17)-(19)
if G satisfies the conditions

G+ 7F) G(=a'+3)
Uio(0 @) U (—a D)
— L Biolet) ~ Bua(-a)
Ga'-3)  Ga'—F)
Vir(o/ = ®y)  Vin(—a’ = Dy)
— S (Bue) - Buol =), C4)

where & = %—k% and ®_ =
properites of ¥, 1 and ¥;_ , and letting G(a’

5+ %. Taking account of the
) = (cosa’ +
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sinf1)g(a’), (24) can be written
Ty g+ Ty =
oo+ 5) —g(—a'+ 7

W (o + @) (Byo() —

Byo(—a'))
27 (—sina’ + sin 6q)

gla' = %) —g(=a' = 3)

_ 7;\1}4*1(0/ — ®+)(Ba0(a/) — BGO(_O/)) (25)

27(—sina’/ — sin6y)

)

Since G(a') is regular in the band [Rea/| < 7 and
Re(sinfy) > 0, g(a’) is regular in this band. We can then

use (11)-(12), and write, as |Rea| < %,

i +i00 iU _ (o' +P B "Y\—B @
g(Oé) = ir f 300 ( = Zﬂ(szr(l oﬁof(sm)Gl)bO( ))

0 o

T A4 o —d a')—Bgo(—a
X tan(%(a + 9 = O/)) - l 2w2rs)151 oz’Jisin)Ol) of

x tan(3(a — 2 —a')))do/, (26)
Using (21) and (26), we obtain the equations with kernels
vanishing as kA — 0 :

foro(a+ 5 — 7) =
_ 1 [ftico do! (‘1/1 (a'+® ) (Boo(a')—Byo(— ))M ( /)

— 872 J—ico sin o/ —sin 6,
4 o —P Ba Ba a
_ 9 Ii?n(a’jr)iin)ol o= ))M_ (a, ), 7)
farO(a - g + %) =
= s [ (e R EIN (o, )
W (0 =) (Ba Ba
et e PN (a,a)))do!, - (28)
where Mi(a o)=Li(a+ 7+ L“;%),O/), Ni(a,a) =
L:t( _|_ w’ O/),
(o' +H(Pa—Pp)/2)
_ wsinad'Vy_(a) cos(~ 23 )
Li(a,0f) = =5 == f P = ¢ e v )
(cos ¢’ +sin 01) 1
COS(c/)/f:%)-‘rCOlSO/ (sin(%)—sin("(W*—(i‘g_@b)/z)))dwl’ (29)
d d

In the particular case ®, = &, = 0, &4 = 7, the functions
L can be simplified so that we recover the expressions found
in [4] for the three-part impedance plane.
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