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Abstract—This paper proposes a method which
combines a clustering technique with asset alloca-
tion methods, to improve portfolio Sharpe ratios and
weights stability. The portfolio weights are com-
puted based on cluster members and cluster port-
folios, which are decided by an optimal cluster pat-
tern. The optimized cluster pattern tells the belong-
ing of assets to particular clusters, which is identified
by using a population-based method, i.e. the Differ-
ential Evolution, subject to maximizing the Sharpe
ratio of terminal portfolios. We employ two differ-
ent asset allocation methodologies, i.e. the mean-
variance Markowitz allocation and the parameter-free
equal weights allocation, with the Financial Times
and Stock Exchange market and Dow Jones Industrial
Average market data, to study the clustering impact
on Sharpe ratio and weights instability of the terminal
portfolios. As experimental results suggest that, the
terminal portfolios from the clustered markets have
higher Sharpe ratios than that without clustering.
Furthermore, as a side effect of the clustering, the
terminal portfolio weights become more stable than
that in the non-clustered markets. Portfolio man-
agers may cluster their assets with the Sharpe ratio
criterion before distributing asset weights to improve
portfolio weights stability and risk-adjusted returns.
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1 Introduction

At the Markowitz efficient frontier, an efficient portfolio
yields higher return than other portfolios given a same
risk level. However, two elements in the Markowitz anal-
ysis, i.e. the assets expected returns and covariance can
hardly be predicted precisely using historical data, due
to errors from estimation procedure and noise in finan-
cial data itself. Furthermore, the investors who man-
age large portfolios containing hundreds of assets, tends
to face the ‘information deficit’ problem when historical
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data has limited observations leading insufficient degrees
of freedom in estimating the two elements. The litera-
ture suggests several approaches to reduce or avoid the
error and noise impact on portfolios. For example, to re-
duce the error impact on the output stability after the
variance-covariance matrix inversion, Harris and Yilmaz
[1] combine the return-based and range-based measures
of volatility to improve the estimator of multivariate con-
ditional variance-covariance matrix. Some investors just
ignore the mean and variance measures and turn in favor
of the equally weighted investment strategy, or the so-
called 1/N rule. For example, Windcliff and Boyle [2] pro-
pose that 1/N rule should be optimal in a simple market
where the assets are indistinguishable and uncorrelated.
Benartzi and Thaler [3] discuses the 1/N puzzle in the
context of asset allocation decision in a contribution sav-
ing plan. In the research by DeMiguel et al. [4], the 1/N
strategy is found outperforming other thirteen allocation
models in terms of the Sharpe ratio, certainty-equivalent
return and turnover. This paper proposes a method that
introduces clustering to asset allocation procedure, to re-
duce the negative impacts from the estimation errors and
noise on the constructed portfolios.

Many researchers have applied traditional clustering
techniques to portfolio management. Pattarin et al. [5]
employ a clustering technique to analyze mutual fund
investment styles. Lisi and Corazza [6] develop an ac-
tive fund management strategy which selects stocks after
clustering equity markets. However, the clustering tech-
niques applied in finance area still follow the traditional
clustering criteria, i.e. minimizing a measure of dissimi-
larity between the objects inside clusters, whereas maxi-
mizing the dissimilarity between clusters. We propose a
different clustering criterion, which groups market assets
to maximize Sharpe ratio of portfolios. The proposed as-
set allocation model first groups the market assets to a
series of disjoint clusters according to the optimal clus-
tering pattern, then uses an asset allocation and clus-
ter members to construct cluster portfolios. After that,
the model employs the same asset allocation to construct
a terminal portfolio based on the cluster portfolios. In
this paper, we refer the assets in same clusters as cluster
members, the portfolios which are constructed using the
cluster members as cluster portfolios, and the portfolio
that is built up using the cluster portfolios as terminal

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



portfolio. The terminal asset weights are decided by two
parts, the cluster portfolio weights and cluster member
weights. Three asset allocation methods are employed for
the clustering study: the so-called naive 1/N allocation,
the Markowitz minimum variance portfolio (MVP) allo-
cation and the modified Tobin tangency portfolio alloca-
tion. A population-based evolutionary method, the Dif-
ferential Evolution (DE) is employed to tackle the clus-
tering problem.

The paper is organized as follows. Section 2 introduces
the clustering optimization problem, the data for empir-
ical experiments, and the heuristic approach to solve the
complex clustering optimization problem. Section 3 pro-
vides experimental results and discussions, and Section 4
draws the concluding remarks.

2 The Asset Allocation Model

2.1 The Optimization Problem

The optimization problem is to identify an optimal clus-
tering pattern set C, which is an union of optimal subsets
C1, C2, ..., CG. The terminal portfolio computed based on
the optimal pattern yields higher in-sample Sharpe ratio
than that are computed by using other patterns with a
same cluster number G. The optimization objective of
the clustering problem can be expressed as follows:

max
C

SR =
r̄p − r̄f

σp
, (1)

where SR represents the Sharpe ratio, C is the optimal
partition set, r̄p is the average return of the portfolio, r̄f

is an estimate of the risk-free return, and σp is a measure
of the portfolio risk over the evaluation period.

When we apply clustering techniques to segment equity
markets, there are several clustering constraints must be
satisfied. G is the number of subsets in cluster set C
with a value range 1 ≤ G ≤ N , and N is the number
of market assets. When G is set at 1 or N , we have the
non-clustered market. The union of segmented markets
contains all market assets, and there is no intersection
between two different clusters. If we denote Cg as the g-th
subset of assets and M as market assets, the constraints
can be expressed as:

⋃
C = M, (2)

Cg ∩ Cj = ∅, ∀g 6= j. (3)

To avoid the cases that one single cluster contains too
many assets or an empty cluster exists, we impose cardi-
nality constraints to cluster size, which are related to the
cluster number G; if we let Ñmin and Ñmax denote the
minimum and maximum asset number in a cluster, the

constrains are described as follows:

Ñmin ≤
N∑

s=1

Is∈Cg ≤ Ñmax ∀g ∈ G, (4)

where Is∈Cg =

{
1 if s ∈ Cg,

0 otherwise,
(5)

with

{
Ñmin = d N

2Ge,
Ñmax = d 3N

2G e.
(6)

When we apply asset allocations to construct portfolios,
we impose weight constraints to the cluster members and
cluster portfolios: the sum of cluster member weights in a
cluster, and the sum of cluster portfolio weights should be
equal to 1, respectively. In addition to that, depending
on the asset allocation allowing short sales or not, we
have positive or negative weights constraints. If we let
wg denote the weight of gth cluster portfolio, and wg,s

denote the weight of cluster member s in cluster Cg, the
constraints are described as follows:

G∑
g=1

wg = 1, and
∑

s∈Cg

wg,s = 1, (7)

with either

wg ≥ 0, wg,s

{
≥ 0 ∀s, g : s ∈ Cg

= 0 otherwise
, (8)

or

−∞ < wg < +∞, wg,s

{
∈ (−∞, +∞) ∀s, g : s ∈ Cg

= 0 otherwise
.

(9)

The terminal weight of an asset s is denoted by w̃s, which
is the product of the cluster portfolio weight wg and the
cluster member weight wg,s,

w̃s = wg · wg,s ∀g : s ∈ Cg. (10)

Thus the reward rp and risk σp of the portfolio can be
described as:

rp =
G∑

g=1

wgrg =
G∑

g=1

wg

∑

s∈Cg

wg,srs =
N∑

s=1

w̃srs, (11)

σp =

√√√√
N∑

s=1

N∑

k=1

w̃sw̃kσs,k. (12)

where rg is the return of cluster portfolio,

rg =
∑

s∈Cg

wg,srs, (13)

and σs,k is the covariance between asset s and k.

The above optimization problem can hardly be solved
by using traditional numerical methods, since Brucker
[7] points out that the problem turns out to be NP-hard
while the cluster number G turns higher.
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2.2 Asset Allocation Methods

This subsection introduces three asset allocation methods
which include the naive 1/N equal weights approach and
two methods from the Markowitz mean-variance frame-
work, to compute the cluster members weights wg,s and
cluster portfolio weights wg, respectively.

2.2.1 The 1/Ñ Allocation

We denote the equal weights allocation as 1/Ñ in this
paper, to distinguish it from the traditional 1/N strat-
egy. In the 1/Ñ allocating procedure, the cluster port-
folio weights are decided by the cluster number G, and
cluster member weights in a cluster are decided by the
cluster size, i.e. the number of assets in the cluster. One
should note that the cluster number G is manually as-
signed, whereas the cluster size depends on the optimized
pattern. Therefore, the cluster portfolio weights wg are
given by 1 over the cluster number G, and cluster mem-
ber weights wg,s in the subset Cg are computed by taking
1 over the number of cluster members ]{Cg} respectively,

wg =
1
G

, (14)

wg,s =
1

]{Cg} =
1∑N

s=1 Is∈Cg

. (15)

2.2.2 The Markowitz MVP Allocation

The MVP portfolio is the safest portfolio yielding the
minimum variance at the Markowitz efficient frontier. We
use quadratic programming to compute the cluster mem-
ber weights, as well as the cluster portfolio weights:

max
w

λr′w − (1− λ)w′Σw, (16)

where w is either the cluster portfolio weights vector or
cluster member weights vector, depending on whether the
r represents the expected return vector of cluster portfo-
lios or cluster members, and Σ is the variance-covariance
matrix describing the correlation of cluster portfolios or
cluster members. The λ is set at 0 for a minimum vari-
ance portfolio. The MVP allocation is a special portfolio
at the Markowitz efficient frontier, which can be used as
a proxy of other efficient portfolios, the cluster effect on
the MVP is same as on the portfolios which locate on
the efficient frontier. By setting the λ at a value range
0 < λ < 1, we have other efficient portfolios at the fron-
tier.

2.2.3 The Modified Tobin Tangency Allocation

The third asset allocation is an extension from the To-
bin’s original framework, which has an analytical solution

when short sales is allowed and a market safe rate is avail-
able. In this study, the terminal portfolio is a tangency
portfolio based on the cluster tangency portfolio returns,
which are constructed using the assets returns in each
cluster as inputs of the tangency allocation. The tan-
gency allocation is also employed to construct the termi-
nal portfolio based on the cluster portfolios return. The
weights distribution from the tangency portfolio alloca-
tion is described as follows:

A =
[

r′

I′

]
Σ−1

[
r I

] ≡
[

a b
b c

]
, (17)

w = Σ−1
[

r I
]
[

1
b−rf ·c−rs

b−rf ·c

]
, (18)

where I is the unity vector, rf is the risk-free rate. r rep-
resents a vector of the expected returns of either cluster
portfolios or cluster members, Σ is a variance-covariance
matrix describing the correlation of cluster portfolios or
cluster members, and correspondingly the w is the vector
representing either cluster portfolio weights wg or cluster
member weights wg,s.

2.3 Optimization method

Most of the heuristic algorithms provide a way to con-
struct possible solutions and find a best solution based
on an evolutionary concept. The algorithms generate new
solutions by recombining or modifying existing solutions,
then select better solutions comparing with their prede-
cessors given a function that measures how good each
solution is. Heuristic methods have been applied by Gilli
et al. [8], Gilli and Winker [9] to solve optimization prob-
lems in finance and econometrics. Maringer [10] discusses
constrained index tracking problems under investor loss
aversion behavior.

Storn and Price [11] propose the Differential Evolution
algorithm which is originally designed for the problems
with continuous solution space. Here we propose an ap-
plication of the algorithm to the clustering problem by
using a variant of the original DE, which takes the advan-
tage of diversity from noise to escape from local optima
convergence and avoid premature convergence. Let the
row vectors vp, p = 1...P denoted as solutions, for each
current solution p, a new solution vc is generated by ran-
domly choosing three different members from the current
population (p1 6= p2 6= p3 6= p) with linear combination
their corresponding solution vectors in probability (π1),
otherwise the new solution inherits the original pth solu-
tion with probability 1−π1. In the standard DE, only the
population size P , the scaling factor F and the cross-over
probability π1 need to be considered. The extra noise is
generated by adding normally distributed random num-
ber vectors with the mean value being zero, to F value
and the difference of two solution vectors1, respectively.

1Details of the standard DE algorithm please refer to Storn and
Price’s paper [11].
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The noise vectors z1 and z2 have the property: they are
random variables being zero in two probability π2 and
π3, otherwise following normally distribution N(0, σ2

1)
and N(0, σ2

2) respectively. Thus the modified linear com-
bination of the cross-over procedure is decried as follows:

vc[i] :=
{

vp[i] with probabiltiy 1− π1, or
vp1[i] + (F + z1[i]) · (vp2[i]− vp3[i] + z2[i]),

(19)
where π1 is the cross-over probability. We translate
the solutions to cluster sets by rounding them to the
nearest integers, which tell the belonging of each asset.
After the linear combination, the algorithm updates the
elitist by using the solution with higher fitness, which is
defined as the Sharpe ratio value in this paper. Whether
a replacement of the solution of vp with vc will process
is decided from running a comparison, i.e. if the fitness
value of vc is better than the one of vp, the solution
vp is replaced by vc, and the updated vp exists in the
current population. The process is repeated until a
halting criterion met. The DE optimization procedure is
described using the following pseudo code.

Algorithm 2.1: SR maximization(vp)

1: randomly initialize population of vectors vp,
p= 1...P ;

2: while do
3: {generate new solutions v′

p:}
4: for all current solutions vp, p=1...P do
5: randomly pick p1 6= p2 6= p3 6= p;
6: vc[i] ← vp1[i] + (F + z1[i])·

(vp2[i]− vp3[i] + z2[i]) at probability π1;
7: or vc[i] ← vp[i] at probability 1− π1;
8: interpret vc into clustering partition;
9: apply asset allocations to compute portfolio

return and SR;
10: end for;
11: {select new population:}
12: for all current solutions vp, p = 1...P do
13: if Fitness(vc) > Fitness(vp) then;
14: vp ← vc ;
15: end if ;
16: end for;
17: until halting criterion met.

2.4 Data and Implementation

We downloaded the adjusted daily prices of FTSE 100
stocks in the period from January 2005 to December
2006, and the prices of DJIA 65 stocks in the period from
January 2003 to December 2004 from Yahoo.com. We
computed the asset returns by taking log return of the
daily price series. The in-sample experiments and out-of-
sample experiments employ the first year and second year

data respectively. All experiments were performed on
Matlab version 2007b and a Pentium 4 machine. Based
on preliminary tests, the technical parameters of DE al-
gorithm are set as follows. Population size is set at 100,
although a general rule of thumb advises that the popu-
lation size should be at least three times the number of
variables, i.e. the size should be over 300. Instead of us-
ing such a large population, we set the iteration number
at a higher level, says 100 thousands times. The weight-
ing factor F is set at 0.7, the crossover probability π1

is 50 percent. The parameters for generating the arti-
ficial noise z1 and z2 are listed as follows: π2 = 70%,
π3 = 30%, σ2

1 = 0.1 and σ2
2 = 0.03.

Portfolio stability issue has been widely discussed in the
literature. The portfolio stability issue in this paper refer-
ring how assets weights in a portfolio are sensitive to the
errors in parameters inputs of an allocation. We use an
instability measure which is proposed by Farrelly [12] to
study weights changes due to estimation errors and noise
subject to portfolio rebalance and transactions, which is
defined as follows:

I =
∑N

i=1 |w̃i,o − ŵi,e|
2

, (20)

where w̃i,o stands for the asset weights in a portfolio that
is constructed based on the ‘true’ asset information, while
ŵi,e are the asset weights of the portfolio that are com-
puted by using the estimates containing errors and noise.
In the instability experiments, we use the in-sample as-
set returns as ‘the true’ asset information, and artificially
generate the asset returns containing errors and noise by
adding noise disturbances to assets which are randomly
selected each time. We randomly choose 20% of the mar-
ket assets each time, and set the noise expected value
at 0, standard deviation at 0.5% in the experiment. We
compute the instability I each time and take the average
as the final instability after 10,000 times, while setting
the cluster number G at five different values, to tell the
clustering impact on weights instability.

Since Sharpe ratio is widely used as a measure of portfo-
lio performance, we use it to evaluate risk-adjusted return
performance of the terminal portfolios over the both in-
sample and out-of-sample period. The risk-free return rf

is set at 0 because the experiments employ daily returns.
Furthermore, we employ the two sample Kolmogorov-
Smirnov (KS) test to statistically judge whether the ter-
minal portfolio return distributions over the in-sample
and out-of-sample period will be affected by the cluster-
ing.

3 Computational Results

The section discusses the clustering impact on the weights
instability, Sharpe ratios, and return distribution of the
terminal portfolios over the in-sample and out-of-sample
period.
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Figure 1: Clustering Impact on Portfolio Weights Insta-
bility, FTSE Market
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Figure 2: Clustering Impact on Portfolio Weights Insta-
bility, DJIA Market

3.1 Portfolio Instability

Figure 1 and Figure 2 show the instability I which is
computed from the simulated FTSE and DJIA returns
containing the errors and noise in five cluster number
cases, i.e. the G value being 1, 3, 5, 7 and 9. We studied
the weights instability of portfolios from the MVP alloca-
tion and Tobin tangency allocation using the FTSE and
DJIA data respectively. We did not include the 1/Ñ allo-
cation in this experiment since the allocation distributes
weights independently of return means and variances. As
the figure shows that, the instability I turns lower while
we set the cluster number G at larger values in the Tobin
allocation case, and the weights instability from the MVP
allocation is decreased further while the cluster number
G turns higher. The above evidences support that the
portfolio weights from the clustered markets are less sen-
sitive to the changes, or to the estimation errors and noise
in the input parameters than that from the non-clustered
markets.

3.2 Sharpe Ratios and Return Distribution

The second and third column in Table 1 provide the in-
sample and out-of-sample Sharpe ratios, which are com-
puted from the terminal portfolios returns based on the
FTSE data using the three asset allocations. In the cases
of using the 1/Ñ and MVP allocation, we find that the

Table 1: Sharpe Ratios and p-values, FTSE Market

SR(I) SR(O) p-values

1/Ñ
G=1 0.159 0.077 0.095
G=3 0.207 0.079 0.053
G=5 0.213 0.078 0.041
G=7 0.214 0.075 0.041
G=9 0.220 0.079 0.032

MVP
G=1 0.155 0.083 0.008
G=3 0.207 0.085 0.008
G=5 0.230 0.082 0.006
G=7 0.239 0.081 0.012
G=9 0.245 0.076 0.012

Tobin
G=1 0.622 0.073 0
G=3 0.610 0.064 0.001
G=5 0.610 0.082 0.002
G=7 0.611 0.088 0.001
G=9 0.612 0.066 0.001

out-of-sample Sharpe ratios are increased by 0.25% when
the cluster number is set at 3 respectively. In the mod-
ified Tobin allocation case, the out-of-sample Sharpe ra-
tio is increased by 20% when the cluster number G is
set at 7. The fourth column in Table 1 provides the
p-values from the K-S test. According to the p-values,
the test rejects the hypothesis that the in-sample returns
and out-of-sample returns follow a same distribution at
a 10% confidence level. Surprisingly, the non-clustered
cases from the three allocations have the p-values less
than 10%, which indicates a structural break happened
in the FTSE market between 2005 and 2006. To reconcile
that the clustering improves the Sharpe ratio of terminal
portfolios, we shall provide the experimental results using
a different market data in different periods.

Table 2 reports the experimental results using the DJIA
market data in 2003 and 2004. Again we find the ev-
idence that clustering the DJIA market improves the
Sharpe ratios of the terminal portfolios in the out-of-
sample period. Particularly, in the best scenarios, the
out-of-sample Sharpe ratios are increased by 5.7%, 78%
and 28% while using the 1/Ñ , MVP and the modified
Tobin allocation respectively. Therefore, we are confident
that the clustering can improve Sharpe ratio of the termi-
nal portfolios. Now turning to results from the K-S test,
in the cases of using the first two allocations, it is hardly
to reject that the terminal portfolio returns over the in-
sample and out-of-sample period are different since the
p-values are close 1. However, the p-values in the modi-
fied Tobin allocation case are all close to zero, implying
the difference in return distribution comes from the mod-
ified Tobin allocation, rather than the clustering.
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Table 2: Sharpe Ratios and p-values, DJIA Market

SR(I) SR(O) p-values

1/Ñ
G=1 0.069 0.087 1.000
G=3 0.102 0.092 0.936
G=5 0.104 0.092 0.967
G=7 0.103 0.088 0.893
G=9 0.102 0.091 0.967

MVP
G=1 0.073 0.038 0.329
G=3 0.118 0.060 0.238
G=5 0.129 0.068 0.167
G=7 0.129 0.058 0.093
G=9 0.128 0.064 0.167

Tobin
G=1 0.494 0.063 0
G=3 0.477 0.064 0
G=5 0.470 0.074 0
G=7 0.467 0.081 0
G=9 0.453 0.050 0

4 Conclusion

This paper presents a new asset allocation model that
combines a clustering technique with asset allocation
methods to improve portfolio Sharpe ratios and portfolio
weights stability. Using the Differential Evolution algo-
rithm, we identify optimal clustering patterns in different
cluster number cases, which contribute to higher Sharpe
ratios and lower portfolio instability than that of port-
folios from the non-clustered markets over the both in-
sample and out-of-sample period. Market practitioners
may cluster assets before they distribute portfolio weights
when they have desires to improve portfolio weights sta-
bility and risk-adjusted returns. In future research, we
shall discuss the Differential Evolution stability and ef-
ficiency, in the comparison with that of other evolution-
ary methods, such as Threshold Accepting and Simulated
Annealing while tackling the clustering problem, since the
Differential Evolution is originally designed for problems
with continuous solution space rather than the discrete
solution space.
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