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Abstract—Alternating direction finite element
(ADFE) simulation for moving boundary anisotropic
convection diffusion problems is studied. Through the
coordinate transformation of the spatial variants, a
new domain independent of the time is obtained on
which two ADFE algorithms are designed by intro-
ducing a small implicit viscous term and approaching
the anisotropic diffusion explicitly. Theoretical anal-
ysis show that both algorithms have the optimal H1

and L2 norm spacial convergency, while their preci-
sions for the temporal variant are O(∆t) and O((∆t)2)
respectively. Numerical tests are made on three-
dimensional model problem to verified the efficiency
of the algorithms.
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1 Introduction

Many practical problems such as fluid flows and fire com-
bustion in science and engineering have unfixed devel-
oping domain [1]-[3], and their simulation requires the
accurate tracking of moving boundaries. It presents a
challenge to numerical methods since not only is the do-
main shape irregular but it changes during the compu-
tation. Usually rather heavy computation is needed, es-
pecially in the more complicated multi-dimensional case.
Alternating direction (AD) method is an efficient way to
deal with multi-dimensional problems, since it can re-
duce their solving procedure to a series of simple one-
dimensional problems, hence greatly eliminates the cal-
culation. But it is difficult to be applied to the simula-
tion for moving boundary problems since the irregularity
and persistent variation of the boundary may bring much
complexity to its practical realization. However, for a
variety class of moving boundary problems, AD proce-
dure is feasible. In [3], alternating direction finite ele-
ment (ADFE) method for moving boundary problems is
studied for the first time, coordinate transformation [4]
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is used, algorithm construction and theoretical analysis
for 2-dimensional isotropic diffusion are provided. ADFE
method [3], [5], [6] can keep both the advantages of AD
method (efficiency) and finite element method (high accu-
racy). In many scientific fields, such as magnetohydrody-
namic, radiative hydrodynamic, geological formations, oil
reservation and transfer, thermal properties of structural
materials and crystals, image processing, plasma physics,
etc., anisotropic diffusion often occurs and has widely ap-
plication [7]. In many cases, these anisotropic diffusion
problems appear with moving boundaries. In this paper,
we study the ADFE schemes for d-dimensional (d ≥ 2)
anisotropic convection diffusion problems with moving
boundaries. Firstly, coordinate transformation is used,
with which the floating practical domain is changed to
a fixed one (with boundaries independent of time) called
as computational domain, then AD splitting is achieved
and ADFE calculations are done on this computational
domain. During the calculation procedure, AD splitting
is made only once, and the corresponding evaluations
can be turned back to the original domain whenever and
wherever needed.

The idea of the paper can also be extended to other re-
lated problems with moving boundaries and other numer-
ical schemes, for example, AD finite difference (ADFD),
etc., as long as they are efficient to solve the derived prob-
lems after the coordinate transformation.

Consider the moving boundary anisotropic convection
diffusion problem

ut −
d∑

i,j=1

∂
∂xj

(aij(u) ∂u
∂xi

) +
d∑

i=1

bi(u) ∂u
∂xi

= f(u),

x ∈ Ω(t), t ∈ J, (1.1)
u(x, 0) = u0(x), x ∈ Ω(0),
u(x, t) = 0, x ∈ ∂Ω(t), t ∈ J,

where Ω(t) = {x = (x1, x2, · · · , xd), xi ∈ (si,1(t), si,2(t)),
i = 1, 2, · · · , d} ⊂ Rd (d ≥ 2 is the dimension of the
space), J = [0, T ]. aij(u) = aij(x, t, u), bi(u) = bi(x, t, u),
f(u) = f(x, t, u), u0(x), si,1(t), si,2(t) (i, j = 1, 2, · · · , d)
are given functions with proper smoothness. Suppose
that there exist positive constants s∗, s∗, a∗ and a∗ such
that s∗ ≤ si,2(t) − si,1(t) ≤ s∗(i = 1, 2, · · · , d) and for

all γ = (γ1, γ2, · · · , γd) ∈ Rd, a∗|γ|2 ≤
d∑

i,j=1

(aij(x, t, φ)
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γi, γj) ≤ a∗|γ|2, ∀x ∈ Ω(t), t ∈ J, φ ∈ R, where |γ| =√
γ2
1 + γ2

2 + · · ·+ γ2
d .

In this paper, the ADFE simulation for (1.1) is studied.
Firstly, two ADEF schemes are proposed in Section 2,
then corresponding approximation and stability proper-
ties are derived in Section 3, and the optimal H1 and
L2 norm spacial and O(∆t) and O((∆t)2) temporal con-
vergency is obtained. Finally, in Section 4, numerical
tests on both schemes for 3-dimensional model problem
are given, which demonstrate the validity of our ADFE
simulation, also further discussion is presented.

Here and below, K will be a generic positive constant,
and may be different each time it appears. ε is an arbi-
trarily small constant.

2 ADFE Schemes

Denote (φ, ψ)t =
∫
Ω(t)

φψdx, the variational form of (1.1)
can be described as: finding u ∈ L2(J,H1

0 (Ω(t))), ut ∈
L2(J,H−1(Ω(t))) such that

(ut, v)t −
d∑

i,j=1

(aij(u) ∂u
∂xi

, ∂v
∂xj

)t

+
d∑

i=1

(bi(u) ∂u
∂xi

, v)t = (f(u), v)t,∀v ∈ H1
0 (Ω(t)), t ∈ J,

(u(x, 0), v)0 = (u0, v)0, ∀v ∈ H1
0 (Ω(0)). (2.1)

Introduce the following coordinate transformation re-
lations: yi = xi−si,1(t)

si,2(t)−si,1(t)
, namely, xi = si,1(t) +

[si,2(t) − si,1(t)]yi, i = 1, 2, · · · , d; then yi ∈ [0, 1],
and the moving domain Ω(t) is transformed into the
fixed computational domain Ω̂ = (0, 1) × (0, 1) · · · ×
(0, 1). Denote y = (y1, y2, · · · , yd), û = û(y, t) =
u(x, t); âij(û) = âij(y, t, û) = aij(x, t, u), b̂i(û) =
b̂i(y, t, û) = bi(x, t, u), f̂(û) = f̂(y, t, û) = f(x, t, u),
and pij(û) = pij(y, t, û) = âij(û)

[si,2(t)−si,1(t)][(sj,2(t)−sj,1(t)]
,

qi(û) = qi(y, t, û) = 1
si,2(t)−si,1(t)

{b̂i(û)− ṡi,1(t)−[ṡi,2(t)−
ṡi,1(t)]yi}, where φ̇(t) = dφ

dt , i, j = 1, 2, · · · , d.

One sees from the coercive assumption on aij and si,1, si,2

that there exist positive constants p∗ and p∗ such that

for all γ ∈ Rd, p∗|γ|2 ≤
d∑

i,j=1

(pij(y, t, φ̂) γi, γj) ≤ p∗|γ|2,

∀y ∈ Ω̂, t ∈ J, φ̂ ∈ R.

Denote (φ̂, ψ̂) =
∫
Ω̂

φ̂ψ̂dy. The variational form (2.1)
is equivalent to finding û ∈ L2(J,H1

0 (Ω̂)), ût ∈ L2(J ,
H−1(Ω̂)) such that

(ût, v̂)−
d∑

i,j=1

(pij(û) ∂û
∂yi

, ∂v̂
∂yj

)

+
d∑

i=1

(qi(û) ∂û
∂yi

, v̂) = (f̂(û), v̂), ∀v̂ ∈ H1
0 (Ω̂), t ∈ J,

(û(y, 0), v̂) = (û0, v̂), ∀v̂ ∈ H1
0 (Ω̂). (2.2)

Divide Ω̂ into M1 × M2 × · · · × Md small equal in-
tervals and denote hi = 1/Mi, i = 1, 2, · · · , d, h =
max{h1, h2, · · · , hd}. Let αi ∈ {0, 1}, i = 1, 2, · · · , d;
|α| = α1 + α2 + · · · + αd and Dαφ = ∂|α|φ

∂y
α1
1 ∂y

α2
2 ···∂y

αd
d

,

obviously, D0φ = φ; denote H = {φ | φ, Dαφ ∈
L2(Ω) for |α| = 1, 2, · · · , d; and ‖Dαφ‖ ≤ Khj−|α|‖φ‖j

for j = 0, 1, 2, · · · , |α| and |α| = 2, · · · , d.}. Let
⊗ denote the tensor product operator, and let µi =
span{γi

1(yi), γi
2(yi), ...,γi

Mi
(yi)} ⊂ H1

0 ([0, 1]), i = 1, 2,
· · · , d; let µ = µ1⊗µ2⊗· · ·⊗µd = span(N1, N2, · · · , Nl) ⊂
H be k degree finite dimensional space.

Divide [0, T ] into L small equal intervals, denote ∆t = T
L ,

and tn = n∆t. Let dtφ
n = φn+1−φn

∆t , ∂tφ
n = φn+1−φn−1

2∆t ,

and ∂ttφ
n = φn+1−2φn+φn−1

(∆t)2 .

Denote pn
ij(Û) = pij(y, tn, Ûn), qn

i (Û) = qi(y, tn, Ûn),
f̂n(Û)= f̂(y, tn, Ûn), i, j = 1, 2, · · · , d. Let λ be a prop-
erly selected positive constant. By introducing a small
implicit viscous term and approaching the anisotropic dif-
fusion explicitly, we propose two ADFE discrete schemes
as follows:

(1) Let λ > 1
2p∗, finding Ûn ∈ µ such that

(dtÛ
n, v̂) +

d∑
i,j=1

(pn
ij(Û)∂Ûn

∂yi
, ∂v̂

∂yj
)

+
d∑

i=1

(qn
i (Û)∂Ûn

∂yi
, v̂) + λ∆t(∇dtÛ

n,∇v̂)

+
d∑

|α|=2

(λ∆t)|α|(DαdtÛ
n, Dαv̂)

= (fn(Û), v̂), ∀v̂ ∈ µ. (2.3)

(2) Let λ > 1
4p∗, finding Ûn ∈ µ such that

(∂tÛ
n, v̂) +

d∑
i,j=1

(pn
ij(Û)∂Ûn

∂yi
, ∂v̂

∂yj
)

+
d∑

i=1

(qn
i (Û)∂Ûn

∂yi
, v̂) + λ(∆t)2(∇∂ttÛ

n,∇v̂)

+ 1
2∆t

d∑
|α|=2

(2λ∆t)|α|(Dα∂ttÛ
n, Dαv̂)

= (fn(Û), v̂), ∀v̂ ∈ µ. (2.4)

Let Ûn =
l∑

j=1

Γn
j Nj ; set Cirm = (γi

r(yi), γi
m(yi)), Airm =

((γi
r(yi))

′
, (γi

m(yi))
′
), for r,m = 1, ..., Mi; let Ci =

(Cirm)r,m, Ai = (Airm)r,m be Mi × Mi matrices, let Ij

be Mj × Mj unit matrix, i = 1, 2, · · · , d. If the nodes
are numbered in x1 direction first, then x2 and so on,
and finally xd, then equivalently, (2.3) and (2.4) can be
respectively written into the following AD solving series
of unknown vectors:

(C1 + λ∆tA1)⊗ I2 ⊗ I3 · · · ⊗ IdΥn+1
1 = ∆tΦn,

· · · ,
I1 ⊗ · · · ⊗ Ij−1 ⊗ (Cj + λ∆tAj)⊗ Ij+1 ⊗ · · ·
⊗IdΥn+1

j = Υn+1
j−1 ,
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· · · ,
I1 ⊗ I2 ⊗ · · · ⊗ Id−1 ⊗ (Cd + λ∆tAd)Υn+1

d = Υn+1
d−1 ,

Γn+1 = Γn + Υn+1
d . (2.5)

(C1 + 2λ∆tA1)⊗ I2 ⊗ I3 · · · ⊗ IdΥn+1
1 = 2∆tΨn,

· · · ,
I1 ⊗ · · · ⊗ Ij−1 ⊗ (Cj + 2λ∆tAj)⊗ Ij+1 ⊗ · · ·
⊗IdΥn+1

j = Υn+1
j−1 ,

· · · ,
I1 ⊗ I2 ⊗ · · · ⊗ Id−1 ⊗ (Cd + 2λ∆tAd)Υn+1

d = Υn+1
d−1 ,

Γn+1 = 2Γn − Γn−1 + Υn+1
d . (2.6)

where Φn = −
d∑

i,j=1

(pn
ij(Û)∂Ûn

∂yi
, ∂v̂

∂yj
) −

d∑
i=1

(qn
i (Û)∂Ûn

∂yi
, v̂i)

+(f̂n(Û), v̂) and Ψn = Φn − 1
2 (dtÛ

n−1, v̂), Γn+1 is the
expected unknown vector.

Since Ci and Ai are independent of time, the AD decom-
position in (2.5) and (2.6) only need to be manipulated
once, and can be used at each time step, hence the cal-
culation is highly economic.

3 Approximation and Stability Proper-
ties

We define the Ritz projector of the solution û into space
µ as ũ, which satisfies

d∑
i,j=1

(pij(û)∂(û−ũ)
∂yi

, ∂v̂
∂yj

) +
d∑

i=1

(qi(û)∂(û−ũ)
∂yi

, v̂)

+κ(û− ũ, v̂) = 0, ∀v̂,∈ µ (3.1)

where κ is a proper positive constant. Set û− ũ = η, then
similarly as [8], we can get the following approximation
properties:

‖ηt‖L2(L2) + ‖η‖L∞(L2) + h‖η‖L∞(H1)

= O(hk+1). (3.2)

Denote ξn = ũn− Ûn, then ûn− Ûn = ξn + ηn. We have
the following approximation property.

Theorem 1 For λ > 1
2p∗, k ≥ 1, if

‖ξ0‖+ (∆t)
1
2 ‖∇ξ0‖+

d∑
|α|=2

(∆t)
|α|
2 ‖Dαξ0‖

= O(hk+1 + ∆t) (3.3)

satisfies, then for the ADFE scheme (2.3), there is

max
0≤n≤N

‖ûn − Ûn‖+ h(
N∑

n=0
∆t‖∇(ûn − Ûn)‖2) 1

2

= O(hk+1 + ∆t).

Theorem 2 For λ > 1
4p∗, k ≥ 3− 6

d+1 , if

‖ξ0‖1 + ‖ξ1‖1 +
d∑

|α|=2

(∆t)
|α|+1

2 ‖ Dαdtξ
0‖

= O(hk+1 + (∆t)2) (3.4)

satisfies, then for the ADFE scheme (2.4), there is

(∆t
N−1∑
n=1

‖∂t(ûn − Ûn)‖2) 1
2 + max

0≤n≤N
‖ûn − Ûn‖

+h max
0≤n≤N

‖∇(ûn − Ûn)‖ = O(hk+1 + (∆t)2).

From these theorems, we see for ADFE scheme (2.3) dis-
crete L∞(L2) and L2(H1) approximation norm are all
optimal and for (2.4) discrete L∞(L2) and L∞(H1) ap-
proximation norm are all optimal on the computational
domain.

Proof of Theorem 1: Subtracting (2.4) from (2.2), and
noting the relation (3.1), we derive the error equation:

[(dtξ
n, v̂) +

d∑
|α|=2

(λ∆t)|α|(Dαdtξ
n, Dαv̂)]

+[
d∑

i,j=1

(pn
ij(Û)∂ξn

∂yi
, ∂v̂

∂yj
) + λ∆t(∇dtξ

n,∇v̂)]

= (dtû
n − ûn

t − dtη
n −

d∑
i=1

[qn
i (û)− qn

i (Û)]∂ũn

∂yi

−
d∑

i=1

qn
i (Û)∂ξn

∂yi
+ κηn + [fn(û)− fn(Û)], v̂)

−
d∑

i,j=1

([pn
ij(û)− pn

ij(Û)]∂ũn

∂yi
, ∂v̂

∂yj
)

+[λ∆t(∇dtũ
n,∇v̂)

+
d∑

|α|=2

(λ∆t)|α|(Dαdtũ
n, Dαv̂)]. (3.5)

Taking v̂ = ξn+1 as a test function, multiplying (3.5) by
2∆t and summing for n = 0, 1, ..., N − 1 (1 ≤ N ≤ L),

and denoting the derived relation as
2∑

i=1

PN
i =

3∑
i=1

QN
i ,

estimating these terms one by one, we show for the left
hand, there are

PN
1 =

d∑
|α|=2

(λ∆t)|α|(‖DαξN‖2 − ‖Dαξ0‖2)
+‖ξN‖2 − ‖ξ0‖2. (3.6)

PN
2 = 2∆t

N−1∑
n=0

[(λI∇ξn+1,∇ξn+1)

+([Pn(Û)− λI]∇ξn,∇ξn+1)]

≥ 2∆t[
N−1∑
n=1

(λ− 1
2‖pn−1(Û)− λI‖ − 1

2‖pn(Û)

−λI‖)‖∇ξn‖2 − 1
2‖p0(Û)− λI‖‖∇ξ0‖2

+(λ− 1
2‖pN−1(Û)− λI‖)‖∇ξN‖2],

where pn(Û) − λI is a d × d matrix whose elements are
pn

ii(Û) − λ and pn
ij(Û) (i, j = 1, 2, · · · , d and i 6= j) re-

spectively. Since λ > 1
2p∗, for any small positive ε, there

exist positive constant p0 such that λ− 1
2‖Pn(Û)−λI‖−

1
2‖Pn+1(Û) − λI‖ − ε ≥ p0 > 0, where ‖pn(Û) − λI‖ is
the ordinary metric norm of pn(Û)− λI, hence

PN
2 − ε∆t

N∑
n=0

‖∇ξn‖2

≥ 2p0∆t
N∑

n=1
‖∇ξn‖2 −K∆t‖∇ξ0‖2. (3.7)
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Now we turn our attention to each Qn
i on the right side.

We have

QN
1 ≤ K∆t

N−1∑
n=0

‖ξn‖2 + ε∆t
N−1∑
n=0

‖∇ξn‖2

+K[(∆t)2 + ‖η‖2L2(L2) + ‖ηt‖2L2(L2)]. (3.8)

QN
2 ≤ K∆t

N−1∑
n=0

‖ξn‖2 + ε∆t
N−1∑
n=0

‖∇ξn‖2

+K‖η‖2L2(L2). (3.9)

QN
3 ≤ K∆t

N−1∑
n=0

d∑
|α|=2

(λ∆t)|α|‖Dαξn‖2

+K(∆t)2 + ε∆t
N−1∑
n=0

‖∇ξn‖2. (3.10)

where (3.10) is valid for k ≥ 1.

Combining relations (3.5)-(3.10) and manipulating the
above inequality with the standardization of the constant
coefficients, we see

‖ξN‖2 + ∆t
N∑

n=0
‖∇ξn‖2 +

d∑
|α|=2

(λ∆t)|α|‖DαξN‖2

≤ K[‖ξ0‖2 + ∆t‖∇ξ0‖2 +
d∑

|α|=2

(λ∆t)|α|‖Dαξ0‖2

+(∆t)2 + ‖η‖2L2(L2) + ‖ηt‖2L2(L2)] + K∆t
N−1∑
n=0

‖ξn‖2

+K∆t
N−1∑
n=0

d∑
|α|=2

(λ∆t)|α|‖Dαξn‖2.

Using Gronwall’s lemma, we deduce

‖ξN‖2 + ∆t
N∑

n=0
‖∇ξn‖2 +

d∑
|α|=2

(∆t)|α|‖DαξN‖2

≤ K[‖ξ0‖2 + ∆t‖∇ξ0‖2 +
d∑

|α|=2

(∆t)|α|‖Dαξ0‖2

+(∆t)2 + ‖η‖2L2(L2) + ‖ηt‖2L2(L2)]. (3.11)

Summarizing estimates (3.11) and (3.2), we accomplish
the proof of Theorem 1. ¶
Proof of Theorem 2: Subtracting (2.4) from (2.2), and
noticing (3.1), we get the error equation:

[(∂tξ
n, v̂) + 1

2∆t
d∑

|α|=2

(2λ∆t)|α|(Dα∂ttξ
n, Dαv̂)]

+[
d∑

i,j=1

(pn
ij(Û)∂ξn

∂yi
, ∂v̂

∂yj
) + λ(∆t)2(∇∂ttξ

n,∇v̂)]

= (∂tû
n − ûn

t − ∂tη
n −

d∑
i=1

[qn
i (û)− qn

i (Û)]∂ũn

∂yi

−
d∑

i=1

qn
i (Û)∂ξn

∂yi
+ κηn + [fn(û)− fn(Û)], v̂)

−
d∑

i,j=1

([pn
ij(û)− pn

ij(Û)]∂ũn

∂yi
, ∂v̂

∂yj
)

+[λ(∆t)2(∇∂ttũ
n,∇v̂)

+ 1
2∆t

d∑
|α|=2

(2λ∆t)|α|(Dα∂ttũ
n, Dαv̂)]. (3.12)

Taking v̂ = ∂tξ
n as a test function, multiplying (3.12) by

2∆t and summing for n = 1, 2, ..., N − 1 (2 ≤ N ≤ L),

denoting the derived relation as
2∑

i=1

LN
i =

3∑
i=1

RN
i , esti-

mating these terms in turn, noting that ∂ttξ
n = (dtξ

n −
dtξ

n−1)/∆t, ∂tξ
n = (dtξ

n +dtξ
n−1)/2, we see for the left

hand, there are

LN
1 = ∆t

2

d∑
|α|=2

(2λ∆t)|α|(‖Dαdtξ
N−1‖2 − ‖Dαdtξ

0‖2)

+2∆t
N−1∑
n=1

‖∂tξ
n‖2. (3.13)

LN
2 = λ(‖∇ξN‖2 + ‖∇ξN−1‖2 − ‖∇ξ1‖2 − ‖∇ξ0‖2)

+2∆t
N−1∑
n=1

([Pn(Û)− 2λI]∇ξn,∇∂tξ
n)

:= LN
2,1 + LN

2,2. (3.14)

Using summation by parts, we know

|LN
2,2| ≤ 1

2‖pN−1(Û)− 2λI‖(‖∇ξN−1‖2 + ‖∇ξN‖2)
+ 1

2‖p0(Û)− 2λI‖(‖∇ξ0‖2 + ‖∇ξ1‖2)
+K∆t

N−1∑
n=1

‖∇ξn‖2, (3.15)

where ‖pn(Û)−2λI‖ is the ordinary metric norm of d×d
matrix pn(Û)− 2λI whose elements are pn

ii(Û)− 2λ and
pn

ij(Û) (i, j = 1, 2, · · · , d and i 6= j) respectively.

As to the right side, firstly,

RN
1 ≤ K[(∆t)4 + ‖η‖2L2(L2) + ‖ηt‖2L2(L2)]

+K∆t
N−1∑
n=1

‖ξn‖21 + ε∆t
N−1∑
n=1

‖∂tξ
n‖2. (3.16)

Secondly, using summation by parts, and noting

|[pn+1
ij (û)− pn+1

ij (Û)]− [pn−1
ij (û)− pn−1

ij (Û)]|
≤ K0∆t(|ξn+1|+ |ηn+1|+ |ξn−1|+ |ηn−1|

+|∂tξ
n|+ |∂tη

n|),
we obtain

RN
2 ≤ K[‖ξ1‖21 + ‖ξ0‖21 + ‖η1‖2 + ‖η0‖2

+‖η‖2L2(L2) + ‖ηt‖2L2(L2)] + K∆t
N−1∑
n=1

‖ξn‖21

+ε[‖∇ξN‖2 + ∆t
N−1∑
n=1

‖∂tξ
n‖2]. (3.17)

RN
3 ≤ K∆t

N−1∑
n=1

‖∇ξn‖2 + ε[‖∇ξN‖2 + ‖∇ξN−1‖2]
+K[(∆t)4 + ‖∇ξ0‖2 + ‖∇ξ1‖2]. (3.18)

where (3.18) stands for k ≥ 3− 6
d+1 .

Now combine relations (3.12)-(3.18). It implies that

2∆t
N−1∑
n=1

‖∂tξ
n‖2 + ∆t

2

d∑
|α|=2

(2λ∆t)|α|‖Dαdtξ
N−1‖2

+[λ− 1
2‖pN−1(Û)− 2λI‖](‖∇ξN‖2 + ‖∇ξN−1‖2)

≤ K[(∆t)4 + ‖ξ0‖21 + ‖ξ1‖21 + ‖η‖2L∞(L2) + ‖ηt‖2L2(L2)]

+∆t
2

d∑
|α|=2

(2λ∆t)|α|‖Dαdtξ
0‖2 + K∆t

N−1∑
n=1

‖ξn‖21
+[ 12‖p0(Û)− 2λI‖+ λ](‖∇ξ0‖2 + ‖∇ξ1‖2).
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Noting λ > 1
4p∗, manipulating this relation with the stan-

dardization of the constant coefficients, and then using
Gronwall’s lemma, we deduce

∆t
N−1∑
n=1

‖∂tξ
n‖2 + ‖ξN‖21 + ‖ξN−1‖21

+
d∑

|α|=2

(∆t)|α|+1‖Dαdtξ
N−1‖2

≤ K[(∆t)4 + ‖η‖2L∞(L2) + ‖ηt‖2L2(L2)

+‖ξ0‖21 + ‖ξ1‖21 +
d∑

|α|=2

(∆t)|α|+1‖Dαdtξ
0‖2].(3.19)

Summarizing (3.19) and (3.2), we derive Theorem 2. ¶
Taking the test function v̂ = Ûn+1 in (2.3), v̂ = ∂tÛ

n

in (2.4), and using analogous reasoning procedures as in
the proof of Theorem 1 and Theorem 2 respectively, we
obtain the stability result on the computational domain.

Theorem 3 Under the condition of Theorem 1, there is

‖ÛN‖2 + ∆t
N∑

n=0
‖∇Ûn‖2 +

d∑
|α|=2

(∆t)|α|‖DαÛN‖2

≤ K[‖Û0‖2 + ∆t‖∇Û0‖2 +
d∑

|α|=2

(∆t)|α|‖DαÛ0‖2

+∆t
N−1∑
n=0

‖fn(Û)‖2].

Theorem 4 Under the condition of Theorem 2, there is

∆t
N−1∑
n=1

‖∂tÛ
n‖2 + ‖∇ÛN‖2 + ‖∇ÛN−1‖2

+
d∑

|α|=2

(∆t)|α|+1‖DdtÛ
N−1‖2

≤ K[‖∇Û0‖2 + ‖∇Û1‖2 +
d∑

|α|=2

(∆t)|α|+1‖DdtÛ
0‖2

+∆t
N−1∑
n=1

‖fn(Û)‖2].

Hence from Theorem 1-4, we conclude that ADFE
schemes (2.3) and (2.4) are both uniquely solvable, and
have optimal H1 and L2 norm convergence properties
on the computational domain. Since the transformation
is invertible between the computational domain and the
practical domain, by using the equivalent norm property
(Lemma 2.2 in [4]), we get the same conclusion for the
corresponding approximation solution U and the exact
solution u of (2.1) on the practical domain Ω(t).

4 Numerical Results and Discussion

To start procedures (2.3) and (2.4), perfect initial values
are needed to satisfy (3.3) and (3.4) respectively. In fact,
these conditions are easy to fulfill. For example, letting

(Û0, v̂) = (û0, v̂), ∀v̂ ∈ µ.

or Û0 = ũ0, naturally for k ≥ 1, (3.3) stands; letting
Û0 = ũ0, and defining Û1 as

( Û1−Û0

∆t , v̂) +
d∑

i,j=1

(pij(Û
1
2 )∂Û

1
2

∂yi
, ∂v̂

∂yj
)

+
d∑

i=1

(qi(Û
1
2 )∂Û

1
2

∂yi
, v̂) = (f̂(Û

1
2 ), v̂), ∀v̂ ∈ µ.

where Û
1
2 = Û0+Û1

2 , then (3.4) is available for k ≥ 1.

Now we present some numerical examples for the ADFE
simulation studied here to show the efficiency of our
schemes. Consider 3-dimensional model problem (1.1)
with the following characters. We slightly change the
former notation x = (x1, x2, · · · , xd) into X = (x, y, z)
now to write the formulas in a more popular way.

si,1(t) = −2 + cos(t), si,2(t) = 2 + cos(t), i = 1, 2, 3;
a11(u) = 0.5 cos[c(u)] + 3.5 + 0.5 sin[π(x− cos(t))],
a22(u) = 0.5 cos[c(u)] + 3.5 + 0.5 sin[π(y − cos(t))],
a33(u) = 0.5 cos[c(u)] + 3.5 + 0.5 sin[π(z − cos(t))],
a12(u) = a21(u) = 0.5 sin[c(u)] + 0.5 sin[π(x− cos(t))]

+0.5 sin[π(y − cos(t))],
a13(u) = a31(u) = 0.5 sin[c(u)] + 0.5 sin[π(x− cos(t))]

+0.5 sin[π(z − cos(t))],
a23(u) = a32(u) = 0.5 sin[c(u)] + 0.5 sin[π(y − cos(t))]

+0.5 sin[π(z − cos(t))],
b1(u) = sin[c(u)]− sin(t)− 0.5π cos[π(x− cos(t))]

−1.5π cos[π(y − cos(t))]
−1.5π cos[π(z − cos(t))],

b2(u) = sin[c(u)]− sin(t)− 1.5π cos[π(x− cos(t))]
−0.5π cos[π(y − cos(t))]
−1.5π cos[π(z − cos(t))],

b3(u) = sin[c(u)]− sin(t)− 1.5π cos[π(x− cos(t))]
−1.5π cos[π(y − cos(t))]
−0.5π cos[π(z − cos(t))],

f(u) = (−π2{12 + 0.5 sin[π(x− cos(t))]
+0.5 sin[π(y − cos(t))]
+0.5 sin[π(z − cos(t))]} − 1)u,

u(x, y, z, 0) = − sin(πx) sin(πy) sin(πz),

where c(u) = e−t sin[π(x − cos(t))] sin[π(y − cos(t))]
sin[π(z− cos(t))]−u. Its exact solution can be expressed
as

u(x, y, z, t) = e−t sin[π(x− cos(t))] sin[π(y − cos(t))]
sin[π(z − cos(t))].

Numerical tests are given with both ADFE scheme (2.3)
and (2.4) after coordinate transformation on the linear
finite element space (k = 1). Let’s denote UERRMAX=

max
0≤n≤N

‖ûn − Ûn‖, UTERRL2= (∆t
N−1∑
n=1

‖∂t(ûn −
Ûn)‖2) 1

2 , UPERRMAX= h max
0≤n≤N

‖∇(ûn − Ûn)‖ and

UPERRL2= h(∆t
N∑

n=0
‖∇(ûn − Ûn)‖2) 1

2 . Let Mi = 13,

hence hi = 1/13 (i = 1, 2, 3). For (2.3), set J =

Proceedings of the World Congress on Engineering 2009 Vol II
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN:978-988-18210-1-0 WCE 2009



[0, 1], L = 100, hence ∆t = 1/100, correspondingly,
h2

1 +h2
2 +h2

3 +∆t = 0.02775147928994083. The upper er-
ror bounds given by numerical calculation on the compu-
tational domain are UERRMAX= 0.01104986816058213
and UPERRL2= 0.02304097874653152 which are ac-
cordant with O(h2

1 + h2
2 + h2

3 + ∆t). For (2.4), set
J = [0, 2], L = 50, hence ∆t = 1/40 and h2

1 + h2
2 +

h2
3 + ∆t2 =0.01935147928994083. Note that for d = 3,

k = 1 is less than 3 − 6
d+1 = 3

2 . The computational
error bounds are UTERRL2= 0.02423442011282067,
UERRMAX= 0.02247563471115946 and UPERRMAX=
0.05941795483815188, almost accordant with O(h2

1+h2
2+

h2
3 + ∆t2).

Figs. 1- 4 show the absolute error ûn − Ûn on the X-
planes slices on the computational domain at different
time, from which it can be seen that after certain time,
the error decreases with time developing. Similar results
are got on the Y-planes and Z-planes slices. Figs. 5 and 6
respectively illustrate the development of various errors
between the exact solution of (2.2) and the approxima-
tion solutions got from (2.3) and (2.4) along with time
advancing. Numerical results verify the theoretical con-
clusion.

X

0

0.2

0.4

0.6

0.8

1

Y

0

0.2

0.4

0.6

0.8

1

Z

0

0.2

0.4

0.6

0.8

1

X Y

Z

USUE

0.09
0.0771429
0.0642857
0.0514286
0.0385714
0.0257143
0.0128571
0

-0.0128571
-0.0257143
-0.0385714
-0.0514286
-0.0642857
-0.0771429
-0.09

Figure 1: Absolute error at
t = 0.25 on X-planes slices
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Figure 2: Absolute error at
t = 0.5 on X-planes slices
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Figure 3: Absolute error at
t = 0.75 on X-planes slices
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Figure 4: Absolute error at
t = 1 on X-planes slices

By transforming the domain with perfect coordinate
transformation, the ADFE method can be applied to
solve a class of moving boundary problems, for example,
parabolic integro-differential problems and so on. For
certain more complicated boundaries whose movements
depend on both the temporal and the spatial variants

t
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Figure 5: Errors develop-
ment for scheme (2.3)
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Figure 6: Errors develop-
ment for scheme (2.4)

with enough smoothness, this strategy can also be con-
sidered. Other efficient numerical procedures, such as
ADFD method, etc., can also be used to solve moving
boundary problems under coordinate transformation.
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