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Abstract—We present new interval oscillation cri-
teria for certain nonlinear delay second order differ-
ential equation that are different from some known
ones. Our results extend and improve some previ-
ous oscillation criteria and handle the cases which are
not covered by known results. In particular, several
examples that dwell upon the sharp condition of our
results are also included.
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1 Introduction

In this paper, we are concerned with the interval oscilla-
tion behavior for the second-order delay differential equa-
tion

(r(t)ψ(x(t))x′(τ(t)))′ + q(t)f(x(τ(t))) = 0, t ≥ t0 > 0
(1.1)

where
(c1) r, q, τ ∈ C([a,∞), R) with r(t) > 0 on [a,∞) for
some a ≥ 0, limt→∞ τ(t) =∞, τ ′(t) > 0;
(c2) f, ψ ∈ C(R,R), 0 < ψ(x) ≤ m for some positive
constants m > 0 and for x �= 0;

By a solution of Eq.(1.1), We mean a function
x ∈ C1[Tx,∞), Tx ≥ t0, which has the property
r(t)ψ(x(t))x′(τ(t)) ∈ C1[Tx,∞) and satisfies Eq.(1.1). A
solution of Eq.(1.1) is called oscillatory if it has arbitrar-
ily large zeros, otherwise it is called non-oscillatory. Fi-
nally, Eq.(1.1) is called oscillatory if all its solutions are
oscillatory.

The theory of oscillation is an important branch of the
qualitative theory of differential equations. It’s founda-
tion were laid down by the well-known results regarding
zeros of solutions of self-adjoint second-order differential
equations published in 1836 by Sturm. Since then, oscil-
lation behavior of solutions to different classes of linear
and nonlinear ordinary, functional, partial, discrete, im-
pulsive differential equations have attracted the attention
of many researchers.

In the last few decades, there has been increasing interest
in obtaining sufficient conditions for different classes of
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second order differential equations [1-6]. In particular,
much work has been down on the following particular
cases of Eq.(1.1):

x′′(t)+q(t)x(t) = 0 (r(t) ≡ 1, ψ(x(t)) ≡ 1, f(x(τ(t))) = x(t))
(1.2)

(a(t)x′(t))′+q(t)x(t) = 0, (ψ(x(t)) ≡ 1, f(x(τ(t))) = x(t))
(1.3)

(a(t)x′(t))′ + q(t)f(x(t)) = 0, (ψ(x(t)) ≡ 1, τ(t) ≡ t)
(1.4)

From the Sturm Separation Theorem, we see that oscil-
lation is only an interval property, i.e. if there exists a
sequence of subintervals [ai, bi] of [t0,∞), as ai → ∞,
such that for each i there exists a solution of Eq.(1.2)
that has at least two zeros in [ai, bi], then every solu-
tion of Eq.(1.2) is oscillatory. El-Sayed [7] established an
interval criterion for oscillation of a forced second order
equation, but the result is very sharp, because a com-
parison with equations of constant coefficient is used in
the proof. In 1997, Huang [8] and A. Elbert presented
some interval criteria for oscillation and non-oscillation
of Eq.(1.2). In 2000, Wan-Tong Li and Ravi P. Agarwal
[9] obtained several interval criteria for a particular case
of Eq.(1.1).

Motivated by the idea of El-Sayed [10], Kong [11], Li
and Agarwal [9], by using averaging functions and a gen-
eralized Riccati technique, in this paper we extend and
improve several earlier interval criteria that of previous
authors, that is, criteria given without any restriction on
the sign of ρ′.

In the sequel we say that a function H = H(t, s) belongs
to a function class X, denoted byH ∈ X, if H ∈ C(D,R),
where D = {(t, s),−∞ < s ≤ t <∞} which satisfies

H(t, t) = 0,H(t, s) > 0, t > s,

and has continuous partial derivatives ∂H/∂t and ∂H/∂s
on D such that

∂H

∂t
= h1(t, s)

√
H(t, s),

∂H

∂s
= −h2(t, s)

√
H(t, s).

2 Oscillation criteria for increasing f

In this section, we shall deal with the oscillation crite-
ria of Eq.(1.1) under the assumption (c1)− (c2) and the
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following assumption:

(c3) f ′(x) exists and f ′(x) ≥ μ for some μ > 0 and for
all x �= 0.

Theorem2.1 Suppose (c1) − (c3) be fulfilled and for
any T ≥ t0. If there exists (a, b) ⊂ [t0,∞), c ∈ (a, b) and
a positive function ρ ∈ C1([t0,∞), R) such that

1

H(c, a)

∫ c

a

H(s, a)ρ(s)q(s)ds +
1

H(b, c)

∫ b

c

H(b, s)ρ(s)q(s)ds

>
1

4H(c, a)

∫ c

a

ρ(s)r(s)

k1τ
′(s)

Q2
1(s, a)ds

+
1

4H(b, c)

∫ b

c

ρ(s)r(s)

k1τ
′(s)

Q2
2(b, s)ds. (2.1)

where Q1(s, t) = h1(s, t) + ρ′(s)
ρ(s)

√
H(s, t),

Q2(t, s) = h2(t, s)− ρ′(s)
ρ(s)

√
H(t, s)

Then every solution of Eq.(1.1) is oscillatory.

Proof : Suppose to the contrary. Suppose that x(t)
be a non-oscillatory solution of Eq.(1.1), say x(t) �= 0 on
[t0,∞) for some sufficient large T0 ≥ t0. Define

ω(t) = ρ(t)
r(t)ψ(x(t))x′(τ(t))

f(x(τ(t)))
, t ≥ t0 (2.2)

Then differentiating (2.2) and making use of Eq.(1.1),
assumptions (c1)− (c3), we have

ω′(t) = −ρ(t)q(t) +
ρ′(t)
ρ(t)

ω(t)− f ′(x(τ(t)))τ ′(t)
ρ(t)r(t)ψ(x(t))

ω2(t) ≤

−ρ(t)q(t) +
ρ′(t)
ρ(t)

ω(t)− k1
τ ′(t)ω2(t)
ρ(t)r(t)

(k1 =
μ

m
) (2.3)

Multiplying (2.3) by H(t, s) and integrating it (with t
replaced by s) over [c, t) for t ∈ [c, b), we have for s ∈ [c, t)∫ t

c
H(t, s)ρ(s)q(s)ds≤ − ∫ t

c
H(t, s)ω′(s)ds∫ t

c
H(t, s)

[
ρ′(s)
ρ(s) ω(s)− k1

τ ′(s)ω2(s)
ρ(s)r(s)

]
ds

= H(t, c)ω(c)− ∫ t

c
ω(s)h2(t, s)

√
H(t, s)ds

+

∫ t

c

H(t, s)

[
ρ′(s)
ρ(s)

ω(s)− k1
τ ′(s)ω2(s)

ρ(s)r(s)

]
ds = H(t, c)ω(c)−

∫ t

c

[(
H(t, s)k1τ

′(s)
ρ(s)r(s)

)1/2

ω(s)− 1

2

(
ρ(s)r(s)

k1τ
′(s)

)1/2

Q2(t, s)

]2

ds

+

∫ t

c

ρ(s)r(s)

4k1τ
′(s)

Q2
2(t, s)ds ≤ H(t, c)ω(c)+

∫ t

c

ρ(s)r(s)

4k1τ
′(s)

Q2
2(t, s)ds

(2.4)

Letting t → b− in (2.4) and dividing it by H(b, c), we
obtain

1
H(b, c)

∫ b

c

H(b, s)ρ(s)q(s)ds

≤ ω(c) +
1

H(b, c)

∫ b

c

ρ(s)r(s)
4k1τ

′(s)
Q2

2(b, s)ds (2.5)

On the other hand, if we multiply H(s, t) through (2.3)
and integrate it (with t replaced by s) over (t, c) for
t ∈ [a, c), we yield for s ∈ (t, c]

∫ c

t

H(s, t)ρ(s)q(s)ds ≤ −
∫ c

t

H(s, t)ω′(s)ds

+
∫ c

t

H(s, t)
[
ρ′(s)
ρ(s)

ω(s)− k1
τ ′(s)ω2(s)
ρ(s)r(s)

]
ds

= −H(t, c)ω(c)−
∫ c

t

ω(s)h1(s, t)
√
H(s, t)ds

+
∫ c

t

H(s, t)
[
ρ′(s)
ρ(s)

ω(s)− k1
τ ′(s)ω2(s)
ρ(s)r(s)

]
ds

≤ −H(c, t)ω(c) +
∫ c

t

ρ(s)r(s)
4k1τ

′(s)
Q2

1(s, t)ds (2.6)

Letting t → a+ in (2.6) and dividing it by H(c, a), we
obtain

1
H(c, a)

∫ c

a

H(s, a)ρ(s)q(s)ds

≤ −ω(c) +
1

H(c, a)

∫ c

a

ρ(s)r(s)
4k1τ

′(s)
Q2

1(s, a)ds (2.7)

Adding (2.5) and (2.7), we have the following inequality

1

H(c, a)

∫ c

a

H(s, a)ρ(s)q(s)ds +
1

H(b, c)

∫ b

c

H(b, s)ρ(s)q(s)ds

≤ 1

4H(c, a)

∫ c

a

ρ(s)r(s)

k1τ
′(s)

Q2
1(s, a)ds+

1

4H(b, c)

∫ b

c

ρ(s)r(s)

k1τ
′(s)

Q2
2(b, s)ds.

which contradict to the condition (2.1), therefore, every
solution of Eq.(1.1) is oscillatory. The proof is complete.

Remark 1: In some previous papers, the function q(t)
should be positive, but in Theorem 2.1, we can see when
q(t) is negative, the conclusion is valid as well.

With the standard yet choice of the H(t, s),
H(t, s) = (t − s)λ, t ≥ s ≥ t0, where λ > 1 is a
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constant, we obtain the following corollary:

Corollary 2.1 Suppose that the main assumption
(c1) − (c3) are satisfied, then every solution of Eq.(1.1)
is oscillatory provided that there exists a function
ρ ∈ C1([t0,∞), R) such that for each l ≥ t0 and for
λ > 1, the following two inequalities hold:

lim sup
t→∞

1
tλ−1

{
∫ t

l

(s− l)λq(s)ρ(s)ds

−
∫ t

l

ρ(s)r(s)
4k1τ

′(s)
(s− l)λ−2

[
λ+

ρ′(s)
ρ(s)

(s− l)
]2

ds} > 0

and

lim sup
t→∞

1
tλ−1

{
∫ t

l

(t− s)λq(s)ρ(s)ds

−
∫ t

l

ρ(s)r(s)
4k1τ

′(s)
(t− s)λ−2

[
λ+

ρ′(s)
ρ(s)

(t− s)
]2

ds} > 0

Theorem2.2 Suppose (c1) − (c3) be fulfilled and
q(t) > 0 for any T ≥ t0, there exists a function
ρ ∈ C1([t0,∞), (0,∞)) such that for any u ∈ C[a, b]
satisfying u′(t) ∈ L2[a, b] and u(a) = u(b) = 0, we have

∫ b

a

{
u2(s)ρ(s)q(s)−

[
ρ(s)r(s)

k1τ
′(s)

u′(s) +
1

2
u(s)

ρ′(s)
ρ(s)

]2
}

ds > 0

(2.8)

then Eq.(1.1) is oscillatory.

Proof :Suppose to the contrary. Suppose that x(t)
be a non-oscillatory solution of Eq.(1.1), say x(t) �= 0
on [t0,∞) for some sufficient large T0 ≥ t0. Similar to
the proof of Theorem 2.1, we multiply (2.3) by u2(t),
integrate it with respect to s from a to b and use
u(a) = u(b) = 0, then we get

∫ b

a
u2(s)ρ(s)q(s)ds

≤ −
∫ b

a

u2(s)ω′(s)ds+

∫ b

a

u2(s)

[
ρ′(s)
ρ(s)

ω(s)− k1
τ ′(s)ω2(s)

ρ(s)r(s)

]
ds

= 2

∫ b

a

ω(s)u(s)u′(s)ds+

∫ b

a

u2(s)

[
ρ′(s)
ρ(s)

ω(s)− k1
τ ′(s)ω2(s)

ρ(s)r(s)

]
ds

= − ∫ b

a
[
√

k1τ
′(s)

ρ(s)r(s)u(s)ω(s)−

√
ρ(s)r(s)
k1τ

′(s)
(u′(s) + 1

2u(s)
ρ′(s)
ρ(s) )]2ds

+
∫ b

a

[
ρ(s)r(s)
k1τ

′(s)
u′(s) + 1

2u(s)
ρ′(s)
ρ(s)

]2

ds

so∫ b

a

{
u2(s)ρ(s)q(s)−

[
ρ(s)r(s)

k1τ
′(s)

u′(s) +
1

2
u(s)

ρ′(s)
ρ(s)

]2
}

ds ≤ 0

which contradicts to the condition (2.8), so every
solution of Eq.(1.1) is oscillatory. The proof is complete.

3 Oscillation criteria for non-monotoic f

(c4) f(x) satisfies f(x)
x ≥ k2 for some k2 > 0 and for all

x �= 0

Theorem3.1 Suppose (c1) − (c2) and (c4) be fulfilled
and for any T ≥ t0. If there exists (a, b) ⊂ [t0,∞), c ∈
(a, b) and a positive function ρ ∈ C1([t0,∞), R) such that

1
H(c, a)

∫ c

a

H(s, a)k2ρ(s)q(s)ds

+
1

H(b, c)

∫ b

c

H(b, s)k2ρ(s)q(s)ds

>
1

4H(c, a)

∫ c

a

mρ(s)r(s)
τ ′(s)

Q2
1(s, a)ds

+
1

4H(b, c)

∫ b

c

mρ(s)r(s)
τ ′(s)

Q2
2(b, s)ds. (3.1)

where Q1(s, t) = h1(s, t) + ρ′(s)
ρ(s)

√
H(s, t),

Q2(t, s) = h2(t, s)− ρ′(s)
ρ(s)

√
H(t, s)

Then every solution of Eq.(1.1) is oscillatory.

Proof : As above, Suppose that x(t) be a non-
oscillatory solution of Eq.(1.1), say x(t) �= 0 on [t0,∞)
for some sufficient large T0 ≥ t0. Let

ω(t) = ρ(t)
r(t)ψ(x(t))x′(τ(t))

x(τ(t))
, t ≥ t0 (3.2)

Then differentiating (3.2), we obtain

ω′(t) =
ρ′(t)
ρ(t)

ω(t)−f(x(τ(t)))ρ(t)q(t)
x(τ(t))

− τ ′(t)
ρ(t)r(t)ψ(x(t))

ω2(t)

≤ ρ′(t)
ρ(t)

ω(t)− k2ρ(t)q(t)− τ ′(t)
mρ(t)r(t)

ω2(t) (3.3)

Multiplying (3.3) by H(t, s) and integrating it (with t
replaced by s) over [c, t) for t ∈ [c, b), we have for s ∈ [c, t)

∫ t

c

H(t, s)k2ρ(s)q(s)ds ≤ −
∫ t

c

H(t, s)ω′(s)ds

+
∫ t

c

H(t, s)
[
ρ′(s)
ρ(s)

ω(s)− τ ′(s)ω2(s)
mρ(s)r(s)

]
ds

≤ H(t, c)ω(c) +
∫ t

c

mρ(s)r(s)
4τ ′(s)

Q2
2(t, s)ds (3.4)

Proceedings of the World Congress on Engineering 2009 Vol II
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN:978-988-18210-1-0 WCE 2009



Letting t → b− in (3.4) and dividing it by H(b, c), we
obtain

1
H(b, c)

∫ b

c

H(b, s)k2ρ(s)q(s)ds

≤ ω(c) +
1

H(b, c)

∫ b

c

mρ(s)r(s)
4τ ′(s)

Q2
2(b, s)ds (3.5)

On the other hand, if we multiply H(s, t) through (3.3)
and integrate it (with t replaced by s) over (t, c) for
t ∈ [a, c), we yield for s ∈ (t, c]∫ c

t

H(s, t)k2ρ(s)q(s)ds

≤ −H(c, t)ω(c) +
∫ c

t

mρ(s)r(s)
4τ ′(s)

Q2
1(s, t)ds

Letting t → a+ in (2.6) and dividing it by H(c, a), we
obtain

1
H(c, a)

∫ c

a

H(s, a)k2ρ(s)q(s)ds

≤ −ω(c) +
1

H(c, a)

∫ c

a

mρ(s)r(s)
4τ ′(s)

Q2
1(s, a)ds (3.6)

Adding (3.5) and (3.6), we get the following inequality

1
H(c, a)

∫ c

a

H(s, a)k2ρ(s)q(s)ds

+
1

H(b, c)

∫ b

c

H(b, s)k2ρ(s)q(s)ds

≤ 1
4H(c, a)

∫ c

a

mρ(s)r(s)
τ ′(s)

Q2
1(s, a)ds

+
1

4H(b, c)

∫ b

c

mρ(s)r(s)
τ ′(s)

Q2
2(b, s)ds

which contradict to the condition (3.1), Therefore, every
solution of Eq.(1.1) is oscillatory. The proof is complete.
Remark 2:The Remark 1 is also valid in this section.

The following result is analogous to Corollary 2.1 with
the assumption (c3) replaced by (c4):

Corollary 3.1 Suppose that the main assumption (c1)−
(c2) and (c4) are satisfied, then every solution of Eq.(1.1)
is oscillatory provided that there exists a function ρ ∈
C1([t0,∞), R) such that for each l ≥ t0 and for λ > 1,
the following two inequalities hold:

lim sup
t→∞

1
tλ−1

{
∫ t

l

(s− l)λk2q(s)ρ(s)ds

−
∫ t

l

mρ(s)r(s)
4τ ′(s)

(s− l)λ−2

[
λ+

ρ′(s)
ρ(s)

(s− l)
]2

ds} > 0

and

lim sup
t→∞

1
tλ−1

{
∫ t

l

(t− s)λk2q(s)ρ(s)ds

−
∫ t

l

mρ(s)r(s)
4τ ′(s)

(t− s)λ−2

[
λ+

ρ′(s)
ρ(s)

(t− s)
]2

ds} > 0

Theorem3.2 Suppose (c1)− (c2) and (c4) are satisfied
and q(t) > 0 for any T ≥ t0, there exists a function
ρ ∈ C1([t0,∞), (0,∞)) such that for any u ∈ C[a, b]
satisfying u′(t) ∈ L2[a, b] and u(a) = u(b) = 0, we have

∫ b

a

{
u2(s)k2ρ(s)q(s)−

[
mρ(s)r(s)

τ ′(s)
u′(s) +

1

2
u(s)

ρ′(s)
ρ(s)

]2
}

ds

> 0
then Eq.(1.1) is oscillatory.

Proof: Suppose to the contrary. Similar to the proof
of Theorem 2.2, we multiply (3.2) by u2(t), integrate it
with respect to s from a to b and use u(a) = u(b) = 0,
then we get

∫ b

a
u2(s)k2ρ(s)q(s)ds

≤ −
∫ b

a

u2(s)ω′(s)ds+

∫ b

a

u2(s)

[
ρ′(s)
ρ(s)

ω(s)− τ ′(s)ω2(s)

mρ(s)r(s)

]
ds

= − ∫ b

a
[
√

τ ′(s)
mρ(s)r(s)u(s)ω(s)−

√
mρ(s)r(s)
τ ′(s)

(u′(s) + 1
2u(s)

ρ′(s)
ρ(s) )]2ds

+
∫ b

a

[
mρ(s)r(s)
τ ′(s)

u′(s) + 1
2u(s)

ρ′(s)
ρ(s)

]2

ds

so∫ b

a

{u2(s)k2ρ(s)q(s)−[
mρ(s)r(s)
τ ′(s)

u′(s)+
1
2
u(s)

ρ′(s)
ρ(s)

]2}ds ≤ 0

which contradicts to the condition, the proof is com-
pleted.

4 Examples

In this section we will show the applications of our os-
cillation criteria by two examples. We will see that the
equation in the example is oscillatory based on the results
in Section 2 and Section 3.

Example 1 Consider the nonlinear differential equa-
tion

[ete−[x(t)]2−ln8x′(
1
2
t)]′ + etx(

1
2
t)[1 + x2(

1
2
t)] = 0, t ≥ 1

Clearly, f(x) = x + x3, f ′(x) = 1 + 3x2 ≥ 1 = μ, 0 <
ψ(x) = e−[x(t)]2−ln8 ≤ 1/8, r(t) = q(t) = et, τ(t) = 1

2 t.
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Let u(t) = cost, ρ(t) = e−t, choose k sufficiently large,
set a = 2kπ + π

2 , b = 2kπ + 3π
2 , it is easy to verify that

∫ 2kπ+ 3π
2

2kπ+ π
2

u2(t)ρ(t)q(t)dt =
∫ 2kπ+ 3π

2

2kπ+ π
2

cos2(t)dt =
π

2

But ∫ 2kπ+ 3π
2

2kπ+ π
2

[
ρ(t)r(t)
k1τ

′(t)
u′(t) +

1
2
u(t)

ρ′(t)
ρ(t)

]2

dt

=
∫ 2kπ+ 3π

2

2kπ+ π
2

[
1
4
(−sint) +

1
2
cost · (−1

2
)
]2

dt =
π

16
<
π

2

Then equation is oscillatory by Theorem 2.2.

Example 2 Consider the nonlinear differential equa-
tion

[e−
1
2 t · 1

2 · x′(2t)]′+

e−
1
2 t[1+x4(2t)][x(2t)+x2(2t)sgnx(2t)|sinx(2t)|] = 0, t ≥ 1

Clearly, f(x) = (1+x4)(x+x2sgnx · |sinx|), it is hard to
verify that f ′(x) ≥ μ which μ is a non-negative constant,
but we can see that f(x)/x ≥ 1 = k2, so we consider the
Theorems in Section 3.

ψ(x(t)) = 1 = m, r(t) = q(t) = e−
1
2 t, τ(t) = 2t > t

Let u(t) = cost, ρ(t) = e
1
2 t, choose k sufficiently large,

set a = 2kπ + π
2 , b = 2kπ + 3π

2 , we obtain

∫ 2kπ+ 3π
2

2kπ+ π
2

u2(t)k2(t)ρ(t)q(t)dt =
∫ 2kπ+ 3π

2

2kπ+ π
2

cos2(t)dt =
π

2

But ∫ 2kπ+ 3π
2

2kπ+ π
2

[
mρ(t)r(t)
τ ′(t)

u′(t) +
1
2
u(t)

ρ′(t)
ρ(t)

]2

dt

=
∫ 2kπ+ 3π

2

2kπ+ π
2

(−1
2
sint+

1
4
cost)2dt =

5π
32

<
π

2

Then equation is oscillatory by Theorem 3.2.
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