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A Complex Variable Boundary Element Method
for the Flow around Obstacles

Luminita Grecu, Valentin Grecu, Mihai Demian, Gabriela Demian

Abstract— The paper presents an application of the Complex
Variable Boundary Element Method (CVBEM) to solve a
boundary value problem over two-dimensional multiply
connected regions, in fact for the problem of a potential fluid
flow around objects. The CVBEM is a powerful numerical tool
for solving generally two-dimensional boundary value problems
in which appear complex functions, and it represents a
numerical application of Cauchy Integral Theorem.

For solving the boundary integral the problem is reduced at
there can be used different kinds of boundary elements. In this
paper there are used linear boundary elements, so the
geometries involved are approximated by polygonal lines and
for the approximation of the unknowns there are used linear
basis functions. The CVBEM’s advantage over other
techniques, pointed out by the present paper, is the fact that
when this method is applied the approximation exactly solves
the equation, so using this method good approximations can be
found. A computer code based on this method is developed and
numerical results are obtained for some particular cases.

Index Terms—complex boundary element method, fluid flow,
linear boundary element, multiply connected domain

I. INTRODUCTION

By use of the Cauchy integral equation for complex
variable analytic functions it is obtained an advanced
mathematical approach for solving two-dimensional
potential problems as those that arise when we study a fluid
flow around one or more objects. The theoretical bases of this
method where put around 1983 by Hromadka and its
collaborators [1], [2].

The advantage of this method over the other methods that
can be used to solve the same problems comes from the fact
that the numerical application in this case is analytic and so
the approximation exactly solves the equation, while the

other numerical techniques develop only inexact
approximations for the equation.
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The paper presents an application of the complex variable
boundary element method (CVBEM) for solving a boundary
value problem over two-dimensional triply connected
regions, in fact for the problem of a potential fluid flow
around two objects.

The application of CVBEM for solving problems over
two-dimensional multiply connected regions has a great
practical importance in computational fluid dynamics
because, for example, there can be developed streamlines
within a river with flows past bridge piers, and so it can be
used to design the bridge pier alignment so as to minimize the
disturbance. This method can be also successfully applied in
other kind of problems of continuum mechanics as heat
conduction [3], cracks, etc

Il. THECVBEM NUMERICAL STATEMENT

Let us consider a uniform steady potential bi-dimensional
river flow of an inviscid fluid past some arbitrary obstacles,
first we consider only two, of boundary I, T, . We want to

determine the perturbation induced by the presence of the
obstacles and the action exerted by the fluid on them applying
the CVBEM. Using dimensionless variables, we have:

Ap(x,y)=0 on Q, (1)
where (/)(X, y)is the perturbation potential, Q is he fluid
domain, a multiply connected domain enclosed by
boundaries I, 13, I, (F=T" UT; UTy),
and the boundary conditions: grade-n =0 across the flow

boundaries on T and on Ty UT,, where ﬁ(nx , ny) is the

outward unit normal at the corresponded boundary, and by
defining an arbitrarily chosen potential drop between the
upstream and downstream boundaries, noted ¢; and ¢; .
Using the complex variable z = x + iy, the perturbation
potential f(z)=¢(z)+iw(z), where y(z) is the stream
function, ¢ and y being related by the Cauchy-Riemann

equationsz—(o _ov d¢__oy
X

d oy X

are harmonic functions for z : Ap=0,Aw =0, we get a

holomorphic function f
We consider an approximation of the problem boundary

, real-valued functions that

N
I' as a polygonal line T = Urk , where T is a straight line
k=1
segment with nodal points at the end-points, noted z,, 4,
situated on the real boundary.
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We choose m nodal points zj, j=1,m+1, on the outer

* - -
curve T' | Zy,1 =127, numbered in a counterclockwise
direction, n nodes Zj, j=m+2m+n+2, on the inner

curve I, Zyins2 = Zms2, located in a clockwise direction

and p nodes zj, j=m+n+3m+n+p+3, on the other
inner curve Iy, Zmini3 = Zm4nsp+3. lOCated in a clockwise

direction too.

m+n+1 m+n+p+2
Sowe have: T = UFk, = UJn = K
k=1 k=m+2 k=m+n+3

The next step in using the CVBEM is to develop a
continuous approximation of the unknown f(z) on ' by
m+n+p+2

ZNk
k¢m+l
k#=m+n+2
where N (z) is a continuous function representing the

the global trial function F(z)= Fe, zel

influence of over elements that have z) as nodal point, so
over T4 and T.

The approximation we construct is f j

zeQ, the integral been taken in the counterclockW|se
direction.

Because F(z) is continuouson T, f(z) is analytic in O
as an extension of the following theorem given in [1] to
multiply connected regions, and so its real and imaginary
parts satisfy Lapalce equation over Q.

Theorem 1.

Let T be a simple closed contour with finite length L and
simply connected interior Q . Let h(g) be a continuous

function on I'. Then W(z) is analytic in Q, where W(z) is

defined by the contour integral W J'—dg

I1l. LINEAR BASIS FUNCTION
We get the following discretized form:

Loy He

m+n+p+2
UT
k=1
k=m+1
k=m+n+2

In this paper we consider on each boundary element a
linear approximation for F(z). After some calculus we get

for the nodal point j the following linear basis function:

-7,
I ,Zel“j_l
Z,-7;,
Z.,-1
N,(z)=4—"—,zeT,
Z.,,-1.
j+1 ]
0,z¢l, UT,
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We further get:
rki Zq
Zj+lF Z Fj+1J' dé, n I:f+1 J’ é"dé'
Zj+1_zj rké/_zo Zj+1

The two integrals from the right side of the above relation
can be analytically evaluated:

d i,
.[é—gzo =Inle-z)," -
IﬂJ
_ Zj+1_ZO _ |Zj+1_ZO| s S\
=1In — _In‘ —— +i60(j+1j)=1n,(z,)
d d
J‘;I_éz/o :(Zj+1_zj)+ Zojé,_é/zo =
T r;
=(Zj+1 )+Z|n(§ Zo):+l_(zj+1_zj)+'
rz I (41 )
i~ %o

where 6(j +1, j) is the central angle between straight line
segment joining points z; and zj,; to central point
peQ.

So we deduce:

F($) 2725 | ()
f[g_zodg Fra=Fy+Fa——21(z)

Zin =1
Finally we get:
m+n+p+2
27if (z Z(F )
J==m+l
j=m+n+2
m+n+ p+2[ )_ _ ]
+ Z Fj+l( j Fj(ZO ZHl)!-(ZO)
J
j= Zj+l - Zj
J#Em+1
J=m+n+2

Because the first term cancels we deduce:

) m+nip+2[F,+1(Zo 2;)- Fj(ZO—Zj+1)]!j(ZO)

27if (z9)=
j=1 Zj+1—2j
J#m+1
J#m+n+2

and further
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m+n+p+2

27Zif(20)=- zAj(ZO)Fj!
}jnﬂ
jEM+n+2
. (Zo—Zj—l) (Zo—zj+1)
with  A;lzg)=—"1;_ - li(zg)
J(O) 2j-2j4 jl( ) Zj1-1 j( )
when j=lm+2m+n+3.
For j =1,
Zo—Z I —Z
Alao) - B0~ Iny 1) Bo= 22y )
for j=m+2,
Z,—Z
An+2(zo):mlm+n+l(zo)_
Lo~ Lyins
(Zo_zm+3)
-0 ma] (2
Zm+3_zm+2 m+2( O)
for j=m+n+3,
Z,—Z
An+n+3(20): (O m+n+p+2) Im+n+p+2(20)_
Zinines ~ Lmans p+2
2, -1 '
(0 m+l’1+p+2) Im+n+3(20)
Ziine p+2 Zinines

From the above relation we can write the complex function
f(z9) in terms of nodal values of F , in fact in terms of F; ,

SO:

(2,) {zo,d)l,...,(Dm,d)m+2,...,(1)m+n+1,...,
o)=

f =¢ +
D qll""*lpmYlpm+2""’\Pm+n+1""’qlm+n+p+2

m+n+p+2?
.~ ZO'q)l""’cDm'(Dm+2""’q)m+n+1’“"
+ly
P qjl""’le’leJrZ""' \Pm+n+1""' \Pm+n+p+2

m+n+p+2 7
*)
where zgisin Q.

As we can see the global function is continuous on T', and
we also have: F(zj)z Fj =®; +i¥;, the nodal values for

the approximation function. We also have the nodal value of
the solution function for the complex
potential, f; = ¢; +iy;, where f; = f(zj), and ¢j, y jare

the values of the state and the stream functions.

For given values of F; =®; +i¥; at each z; the above
relation gives f an analytic function in Q, and Re(f~) and
Im(f~) both satisfy the Laplace equation in Q . If
f(z)=f(z) on ', then f(z)=f(z) in Q, and so f(z) is
the solution to the original boundary value problem.

We need to evaluate, using a limit process the value of

F(Zo) for iy € I.

IV. THE LIMIT PROCESS AND THE EXPRESSIONS OF THE
COEFFICIENTS

Concerning the calculation of the coefficients, it is
performed by imposing effectively zg — z; €' in the

ISBN:978-988-18210-1-0

previous expressions of Aj . Except the elements I'; ; and
I'; which become singular, this implies a simple replacement

of zy with z;. With regard to the coefficients coming from

the singular integral, we do as in [4], we shall use the
evaluation of a principal value (in the Cauchy sense) of a

f(£)
(&-2)

lim (z - zp)ln(z - zp)z 0 (see [5]).

singular integral of the type J' d& and the equality
r

Z—)Zp
So we get:
Ajl—Aj(Zl):(Zi_Zj_l)lj—lZ _(Zi_—Zjﬂ)l'(Zi)
Zj_zj—l Zj+1_zj
Zi1—7 Zi -7
Ini(z)=In32" 1n. o (z)=In—1—
nj(zl) n 7, -1, nj—l(zl) nzj—l_zi

for j#lm+2,m+n+3,and i# j-L1i=j,i#j+1

Zig—Zj
lim Aj(z)=In—22—1
01 Zj—l_zj

Ajj =

Z. _Z- Z. _Z.
T R R j+H1 7 4j-1
Ajjoi= lim  Aj(zg)=- In

0—>Zj1 Zj+1—Zj Zj—Zj_]_
Z. _Z._ Z._Z.
Aig= lim Aigg)=—tt "ty 2l i+
= g ) Zi -7 Zi1-17;
I0™Zj41 i j-1 j-174j+1

Similarly we get the other coefficients:

p = Ay(z)=Tm Iy ) E=2) )

1 — Iy Ip—7p
forizm,izli=2

Ap= lim Azg)=In2"4
0> Im— 74
A&m=—(zm_22)|n Z3 —Iny ,

-0 1= Iy

-1 -2
A.I.2:(2 m)|n 1 2
1 -1 Im — 22

(Zi — Zm+n+l) |
Lo — 1L

m+

m+n+1(zi )_

A‘n+2,i = An+2(zi ) =

m+n+1
- (Zi — Zm+3) Im+2(zi)

Zm+3_zm+2
forizm+n+lLi=m+2,izm+3

Im+3 ~ Zm+2
Ansame2=1n
Zmn+l — Zm+2
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(Zm+n+1 - Zm+3) In Zm+3 ~ Zm+n+l

Am+2,m+n+1 ==

Im+3 ~Zm+2 Zm+2 —Zm+n+l

Aniom 3_(Zm+3_zm+n+l)|n Im+2 —Zm+3
+2,m+3 =

Im+2 —Zm+3 Zmin+l — Zm+3

(Z' —Z 2)
An+n+3,i = Aﬂ+n+3(zi): I T Im+n+p+2(zi)_
Zinines ~ Lmins p+2
(2= 2 pe2)
I melpe? Im+n+3(zi)
Zoine p+2 ~ “m+n+3

forizm+n+p+2,izm+n+3izm+n+4,

Zm+n+4 — Zm+n+3

Aninizmansz =1In
m+n+p+2 ~ Zm+n+3

An+n+3,m+n+ p+2 =

_ (Zm+n+ p+2 Zm+n+4)|n Ziines ~ Linens p+2
Zoinea ~ Lininss Znine3 ~ Lmans p+2
An+n+3,m+n+4 =
— (Zm+n+4 ~ Zonins P+2)|n Znine3 ~ Lminea
Zinines ~ Lminsa Zinins p+2 Ziinea

All the coefficients are so evaluated and they depend only
on the nodal points. We consider in the above relations
Zp=zj, i=1lm+n+p+2,izm+li=m+n+2.

As i takes all these values we obtain a system of m+n+p
relations, in terms of complex numbers of the following
form:

- m+n+p+2 m+n+p+2
ZMf(Zi)Z ZA](ZI)FJ = ZA]IFJ'
j=1 j=1
j£EmM+1 Jzm+1
J#m+n+2 j=m+n+2

Using the complex expression of Fj and Fj = F(zj):
Fj=®; +i¥;j and f~j =@j+iy |, we deduce:
o m-+n+p+2 )

2721(@ -I-Il//i): ZAJI(CDJ_H\PJ) (**)
j=1
}¢m+1
jEM+n+2

If (p(x,y) and y/(x, y) are known continuously onI",

and FJ- =CDJ-+i‘I’J- =goj+i1//j for all the nodes than

f(z)= F(z) on QUT . Generally ¢(x,y) and w(x,y)
are known only on portions of I". If there are N nodes let
suppose that there are N; nodes where we know
(p(x, y) and N, nodes where we know y/(x,y) ,
N =N;+Njy. The next step is to impose in the above
relations the boundary conditions: ¢; = ¢; for all the nodes
where the potential is known and y; =y; for the nodes

where the stream function is known. Doing so we generate
implicit expressions of the unknown nodal values as
functions of all the unknown variables, so m equations of m
unknowns which can be solved using the computer. The
computer is also used for getting the coefficients of the

ISBN:978-988-18210-1-0

matrix involved. The evaluated nodal values enclosed to the
original set of known nodal values completely define f~(z)
on QuUT.

Taking that

(aji = Re(Aji),bji =1Im(Aj;)) and isolating the real and

the imaginary parts in system (**) we obtain the following
linear system of equations, in terms of real unknowns and
coefficients:

=27y =ajipj —bjiy |
270y =bjigj +ajiy |

into  account Aji = aji +ibjj

Lj=lm+n+lizm+l j#m+1
Imposing that: ¢ =¢; for the Nj nodes where the

potential is known and y; =v; for the nodes where the

stream function is known, and after solving the system we
obtained the other unknown values for both functions.
So all the nodal values are then known. By replacing them

in relation (*) we get the analytic function in Q, f , which
satisfies relation f(z)= f(z) on T and therefore the relation
f(z)=f(z) in Q. So f(z) is the solution to the original
boundary value problem.

V. NUMERICAL RESULTS

The problem of the evaluation of the system coefficients,
and also that of finding its solution can be easily solved with
a computer code made in MATHCAD.

Numerical results can be obtained for any shape for the
two obstacles, but in order to make a checking and to validate
the computer code we consider a particular case, the problem
of a potential flow between two plane parallel walls around a
circle, because it is a problem with a known solution. It has a
great importance because it offers us the possibility to make a
comparison between the exact solution and the numerical
one. A computer code in MATHCAD is made in order to find
the numerical solutions for different positions of the obstacle,
and they are represented in the graphics below.
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In the following figure there are represented the numerical
results obtained for different position of two circular
obstacles situated between the walls. Both have the same
radius, and their centers are situated at the same distances
from the walls, but different distances between their centers
have been considered.

o —
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