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Abstract—In this paper, we establish a simple

asymptotic formula for the finite-time ruin probabil-

ity of the renewal model with risky investment in the

case that the claimsize is subexponentially distributed

and the initial capital is large. The result is consis-

tent with known results for the ultimate and finite-

time ruin probability and, particularly, is inconsistent

with the corresponding Poisson risk model when the

time-arrivals are exponentially distributed.
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1 Renewal model with risky investment

Consider a Sparre Andersen risk model as following:

(a) the individual claim size, Xn, n ≥ 1, form a se-
quence of independent identically distributed (i.i.d.) non-
negative random variables (r.v.s) with a common distri-
bution (d.f.) F (x) = 1−F (x) = P (X ≤ x) for x ∈ [0,∞)
and a finite mean µ = EX1.

(b) The inter-occurrence times θ1 = σ1, θ2 = σ2 − σ1,
θ3 = σ3 − σ2, ... are i.i.d. nonnegative random variables
with mean Eθ1 = 1/λ.

(c) {B0(t), t ≥ 0} is a standard Brownian motion and σ >
0 is the diffusion volatility parameter of diffusion term
σB0(t).

In the special case, where θn has an exponential distribu-
tion, the Sparre Andersen model is called the compound
Poisson model.

The random variables σk =
∑k

i=1 θi, k = 1, 2, ... consti-
tute a renewal counting process

N(t) = sup {n ≥ 1 : σn ≤ t} (1.1)

with mean λ(t) = EN(t). If an insurer invests insurance
capital in risky asset, then its capital value should be
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specified by a geometric Brownian motion

dVt = Vt(rdt + σdB(t)), (1.2)

where {B(t), t ≥ 0} is a standard Brownian motion and
r ≥ 0, σ ≥ 0 are respectively called expected rate of re-
turn and volatility coefficient. By famous Black-Scholes
formula, we know that stochastic equation (1.2) has the
solution

Vt = V (0)e(r−
1
2
σ2)t+σB(t).

Hence, the total surplus up to time t, denoted by Uinv(t),
satisfies that

Uinv(t)

= e∆(t)(u+ c

∫ t

0

e−∆(s)ds−
N(t)
∑

i=1

Xie
−∆(σi))(1.3)

where, Uinv(0) = u is the initial capital, c > 0 is premium
intensity, ∆(t) represents βt + σB(t) and β = r − σ2/2.
{Xn, n ≥ 1}, {N(t), t ≥ 0} and {B(t), t ≥ 0} are assumed
to be mutually independent.

Usually, we define the time to ruin of this process as

τ(u) = inf {t ≥ 0 : Uinv(t) < 0|Uinv(0) = u} . (1.4)

Therefore, the probability of ruin within a finite time
T > 0 is defined by

ψinv(u;T ) = P (τ(u) ≤ T ). (1.5)

In this paper, under the assumption that the claimsize is
heavy-tailed, we establish an asymptotic formula of ruin
probability ψinv(u, T ).

2 A brief review of related results

All limit relationships in this paper, unless otherwise

stated, are for u → ∞. A ∼ B and A
>∼ B respectively

mean that limu→∞
A
B

= 1 and limu→∞
A
B

≥ 1.

Heavy-tailed risk has played an important role in insur-
ance and finance because it can describe large claims; see
Embrechts et al. (1997) and Goldie & Klüppelberg (1998)
for a nice review. We give here several important classes
of heavy-tailed distributions for further references:
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We say a d.f. F ∈ R−α for some α > 0, if F (x) =
x−αL(x), where x > 0 and L(x) is a slowly varying func-
tion as x → ∞. It is well known that (see Embrechts et
al. (1997)), if F ∈ R−α, then F satisfies

lim
x→∞

F (x+ t)

F (x)
= 1

for any t (or, equivalently, for t = 1). The relation
above characterizes the class of long-tailed distributions,
L. Class D mans that, F satisfying

lim sup
x→∞

F (xy)

F (x)
<∞

for any fixed 0 < y < 1 (or, equivalently, for y = 1/2).
Another important class of heavy-tailed distributions is
the subexponential class S. Let F be a d.f. concentrated
on [0,∞). We say F ∈ S if

lim
x→∞

F ∗n(x)

F (x)
= n

for any n (or, equivalently, for n = 2), where F ∗n de-
notes the n-fold convolution of F , with convention that
F ∗0 is a d.f. degenerate at 0. These heavy-tailed classes
have the properties below (see Embrechts et al. (1997)):
These heavy-tailed classes have the properties below (see
Embrechts et al. (1997)):

R−α ⊂ L ∩ D ⊂ S ⊂ L. (2.1)

The asymptotic behavior of the ultimate ruin probability
ψr(u) is an important topics in the area of risk theory. A
very famous asymptotic relation was established by Ver-
averbeke (1979) and Embrechts and Veraverbeke (1982).
Briefly speaking, they showed that, if the so-called safety
loading condition holds and, the integrated tail distribu-
tion of the r.v. X is sub-exponentially distributed , then
the ultimate ruin probability, ψ(u), satisfies that

ψ(u) ∼ 1

µ

∫ ∞

u

F (y)dy as u→ ∞. (2.2)

In the recent literatures ruin probability under the con-
stant interest force in a continuous time risk model
has been extensively investigated. One of the inter-
esting results was obtained by Klüppelberg and Stadt-
muller (1998), who used a very complicated Lp trans-
form method, proved that, in the Cramér-Lundberg risk
model, if the claimsize is of regularly varying with index
−α, then

ψ(u) ∼ λ

αr
F (u), (2.3)

where r is constant interest force. Asmussen (1998) and
Asmussen et al. (2002) obtained a more general result:

ψ(u) ∼ λ

r

∫ ∞

u

F (y)

y
dy, (2.4)

where the claimsize is assumed to be in S∗, an impor-
tant subclass of subexponential family S. In the case
of compound Poisson model with constant interest force
and without diffusion term, Tang (2005a) obtained the
asymptotic formula of finite time ruin probability for sub-
exponential claims. Tang (2005b) proved that, in the re-
newal risk model with constant interest force, if the d.f.
of claimsize belongs to regularly varying class with index
−α, then ultimate ruin probability satisfies that

ψ(u) ∼ Ee−rαθ1

1 − Ee−rαθ1
F (u), (2.5)

which extends (2.4) essentially. The following theorem is
the main result of this paper:

Theorem 2.1 In the renewal risk model introduced in
Section 1, if F ∈ L ∩ D, then

ψ(u;T ) ∼
∫ T

0

P (X1e
−∆(s) ≥ u)dm(s), (2.6)

where m(s) is the renewal function of the process, i.e.,
m(t) = EN(t).

Remark.When F ∈ R−α and the perturbed term dis-
appears, the results of Tang (2005b) is consistent with
this Theorem. In particular case that the process is Pois-
son one and when σ = 0, the result turns to the case of
Klüppelberg and Stadtmuller (1998). Particularly, this
result is also in consistence with that of Veraverbeke
(1993), who pointed out that the diffusion term B0(t) does
not influence the asymptotic behavior of the ruin proba-
bility. We should point out that the diffusion term B(t)
that influence the interest force plays an essential role.

To complete Theorem 2.1, some lemmas in the following
are needed.

Lemma 2.1 If F is subexponential, the tail of its n-
fold convolution is bounded by F ’s tail in the following
way: for any ε > 0, there exists an A(ε) > 0 such that,
uniformly for all n ≥ 1 and all x ≥ 0,

Fn∗(x) ≤ A(ε)(1 + ε)nF (x), (2.7)

see Embrechts et al. (1997) (p.41-42). The following
result can be found in Klebaner (1998).

Lemma 2.2 For maximum M(t) = max0≤s≤tB(s) of
Brownian motion at [0,t]. For any x > 0, it holds that

P (M(t) ≥ x) = 2(1 − Φ(x/
√
t)),

here, Φ(x) stands for standard normal distribution func-
tion.

Lemma 2.3 If F1 ∈ S and F2(x) = o
(

F1(x)
)

, then

F1 ∗ F 2(x) ∼ F1(x).
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Proof. See Proposition 1 in Embrechts et al. (1979) or
Lemma 4.5 of Tang (2004).

3 Proof of Theorem 2.1

Now we begin to prove Theorem 2.1. It is easy to see
that

ψ(u;T )

= P (e−∆(t)Uinv(t) < 0 for some

T ≥ t > 0|Uinv(0) = u). (3.1)

For each t ∈ (0, T ], we have

u−
N(t)
∑

i=1

Xie
−∆(σi)

≤ e−∆(t)Uinv(t)

≤ u+ c

∫ T

0

e−∆(s)ds−
N(t)
∑

i=1

Xie
−∆(σi). (3.2)

Therefore ruin probability ψ(u;T ) satisfies that

ψ(u;T )

≥ P (

N(t)
∑

i=1

Xie
−∆(σi) ≥ u+ cT emax0≤s≤T (−∆(s))

for some T ≥ t > 0)

= P (

N(T )
∑

i=1

Xie
−∆(σi) ≥ u+

cT emax0≤s≤T (−∆(s))) (3.3)

and

ψ(u;T ) ≤ P (

N(T )
∑

i=1

Xie
−∆(σi) ≥ u) (3.4)

respectively. First we deal with P (
∑N(T )

i=1 Xie
−∆(σi) ≥

u). Notice

P (

N(T )
∑

i=1

Xie
−∆(σi) ≥ u)

=

∞
∑

k=1

P (

k
∑

i=1

Xie
−∆(σi) ≥ u,N(T ) = k). (3.5)

From lemma 2.1, and denote by H the distribution of
maxt≤s≤T (−∆(s)). For any fixed ε > 0

P (
k

∑

i=1

Xie
−∆(σi) ≥ u,N(T ) = k)

≤
∫ T

0

P (

k
∑

i=1

Xie
−∆(t) ≥ ue−maxt≤s≤T (−∆(s)),

k
∑

i=2

θi ≤ T − t,
k+1
∑

i=2

θi ≥ T − t)dFθ1
(t)

≤
∫ T

0

∫ ∞

0

P (
k

∑

i=1

Xie
−∆(t) ≥ ue−v) ·

P (N(T − t) = k − 1)dH(v)dFθ1
(t)

≤ A(ε)

∫ T

0

∫ ∞

0

P (X1e
−∆(t) ≥ ue−v)(1 + ε)

k ·

P (N(T − t) = k − 1)dH(v)dFθ1
(t)

≤ CA(ε)

∫ T

0

P (X1e
−∆(t) ≥ u)(1 + ε)

k ·

P (N(T − t) = k − 1)dFθ1
(t), (3.6)

where in the last step, we have used the property of D
class.

For some N0 to be chosen, we have

∞
∑

k=N0

P (

k
∑

i=1

Xie
−∆(σi) ≥ u,N(T ) = k)

≤ CA(ε)(1 + ε)

∫ T

0

P (X1e
−∆(t) ≥ u) ·

∞
∑

k=N0

(1 + ε)kP (N(T − t) = k)dFθ1
(t)

≤ CA(ε)(1 + ε)E[(1 + ε)N(T )I(N(T ) ≥ N0)] ·
∫ T

0

P (X1e
−∆(t) ≥ u)dFθ1

(t). (3.7)

Especially, we choose ε > 0 and N0 > 0 such that

CA(ε)(1+ε)E[(1 + ε)
N(T )

I(N(T ) ≥ N0)] is smaller than
any arbitrarily given number, say, η0 > 0. In fact, we
have

E[(1 + ε)
N(T )

I(N(T ) ≥ N0)]

≤
∞
∑

k=N0

(1 + ε)kP (N(T ) ≥ k)

≤
∞
∑

k=N0

(1 + ε)kP (σk ≤ T )

≤
∞
∑

k=N0

((1 + ε)Ee−θ1)
k
eT , (3.8)

obviously, we first choose ε small enough such that

((1 + ε)Ee−θ1)
k
< 1, and then choose N0 large enough

so that CA(ε)(1 + ε)E[(1 + ε)
N(T )

I(N(T ) ≥ N0)] < η0,
an arbitrarily given number.

On the other hand

P (
k

∑

i=1

Xie
−∆(σi) ≥ u,N(T ) = k)

=

∫

(0≤v1≤v2≤...≤vk≤T,vk+1>T )

P (

k
∑

i=1

Xie
−∆(vi) ≥ u) ·
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dF (v1, ..., vk+1)

=

∫

(N(T )=k)

E[E[P (
k

∑

i=1

Xie
−∆(vi) ≥ u|

B(v1), ..., B(vk))]]dF (v1, ..., vk+1)

∼
∫

(N(T )=k)

k
∑

i=1

P (Xie
−∆(vi) ≥ u)dF (v1, ..., vk+1)

=
k

∑

i=1

P (Xie
−∆(σi) ≥ u,N(T ) = k), (3.9)

therefore, for the same η0 > 0, when N0 large enough and
for u large enough, it holds that

N0
∑

k=1

P (

k
∑

i=1

Xie
−∆(σi) ≥ u,N(T ) = k)

≤ (1 + η0)

∞
∑

k=1

k
∑

i=1

P (Xie
−∆(σi) ≥ u,N(T ) = k)

= (1 + η0)

∞
∑

i=1

P (Xie
−∆(σi) ≥ u,N(T ) ≥ i)

= (1 + η0)

∞
∑

i=1

P (Xie
−∆(σi) ≥ u, σi ≤ T )

= (1 + η0)

∫ T

0

P (X1e
−∆(s) ≥ u)d

∞
∑

i=0

Fσi
(s)

= (1 + η0)

∫ T

0

P (X1e
−∆(s) ≥ u)dm(s). (3.10)

Thus, combining (3.7) and (3.10) together, we get

P (

N(T )
∑

i=1

Xie
−∆(σi) ≥ u)

≤ (1 + 2η0)

∫ T

0

P (X1e
−∆(s) ≥ u)dm(s). (3.11)

On the other hand

P (

N(T )
∑

i=1

Xie
−∆(σi) ≥ u)

=

∞
∑

k=1

P (

k
∑

i=1

Xie
−∆(σi) ≥ u,N(T ) = k)

≥
N0
∑

k=1

(1 − η0)

k
∑

i=1

P (Xie
−∆(σi) ≥ u,N(T ) = k)

≥ (1 − η0)
2

∞
∑

k=1

k
∑

i=1

P (Xie
−∆(σi) ≥ u,N(T ) = k)

≥ (1 − 2η0)

∫ T

0

P (X1e
−∆(σi) ≥ u)dm(s). (3.12)

By the arbitrariness of η0, we have

P (

N(T )
∑

i=1

Xie
−∆(σi) ≥ u)

∼
∫ T

0

P (X1e
−∆(s) ≥ u)dm(s). (3.13)

Next, we aim to prove that

P (

N(T )
∑

i=1

Xie
−∆(σi) ≥ u+ cT emax0≤s≤T (−∆(s)))

∼ P (

N(T )
∑

i=1

Xie
−∆(σi) ≥ u). (3.14)

Obviously,

P (

N(T )
∑

i=1

Xie
−∆(σi) ≥ u+ cT emax0≤s≤T (−∆(s)))

≥ P (

N(T )
∑

i=1

Xie
−∆(σi) ≥ u+ c0 (β, T ) emax0≤s≤T (−B(s)))

≥ P (

N(T )
∑

i=1

Xie
−∆(σi) ≥ (1 + ε)u) − P (∆ ≥ εu)

≥ P (

N(T )
∑

i=1

Xie
−∆(σi) ≥ (1 + ε)u) − E∆τ

(εu)τ (3.15)

where, c0 (β, T ) emax0≤s≤T (−∆(s)) is denoted by ∆. Here
we have used Markov inequality. From Fima (1998), we
know that E∆τ exists for any τ > 0. We choose τ large
enough such that

E∆τ

(εu)
τ = o(P (

N(T )
∑

i=1

Xie
−∆(σi)). (3.16)

Still consider the arbitrariness of ε, this ends the proof of
Theorem 2.1.
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