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Abstract—A new nonlinear iterative method for
nonlinear parabolic equation is developed and ap-
plied to a multimaterial nonequilibrium radiation dif-
fusion problem on distorted meshes. The new itera-
tive method is named by Picard-Newton method (P-
N for short). Solution process of the method is as
follows. First, by linearizing the time-discretized non-
linear partial differential equation(PDE), we can get
an iterative sequence of linear PDE. Then, we de-
sign the spatial discretization of the linear PDE, and
educe a system of linear algebraic equations. Finally,
solve the linear problem by Krylov-subspace meth-
ods. The main part of the method is consistent with
Picard iterative method, and we can get P-N schemes
by adding Newton correction terms to Picard scheme.
The efficiencies of Picard method and Picard-Newton
method are compared and the good performance of
P-N method is demonstrated.

Keywords: nonequilibrium radiation diffusion, Picard,

Picard-Newton, nonlinear iterative method

1 Introduction

Many authors [1, 2, 3, 4, 5, 6] have studied the nu-
merical solution of the nonequilibrium radiation diffusion
equation coupled to a material energy equation. These
equations are highly nonlinear and tightly coupled. It is
pointed out that converging the nonlinearities within a
time step may allow significantly larger time step sizes
and improve accuracy as well [2, 3, 4]. Most researchers
have used nonlinear Newton or Newton-Krylov solution
techniques for these equations. A potential problem with
Newton-type solution methods is that they can fail if the
initial guess is not close enough to the converged solu-
tion. Simple iteration schemes (Picard-type method) can

∗Laboratory of Computational Physics, Institute of Ap-
plied Physics and Computational Mathematics, Beijing 100088,
P.R.China.The project is supported by the National Basic Re-
search Program(2005CB321703), the National Natural Science
Foundation of China (10501004), the Science Foundation of CAEP
(2008B0202021, 2007B09008), the Foundation of National Key Lab-
oratory of Computational Physics (9140C6902010805) and the Ba-
sic Research Project of National Defense (A1520070074).Email:
yue jingyan@iapcm.ac.cn

be more robust, but they are useful only if they converge
fast enough.

This paper takes a different approach [8] to accelerate
Picard iterative scheme that is easier to code into a
computer program.The new method which is named by
Picard-Newton method can be obtained from fully im-
plicit Picard method by adding some Newton correction
terms. It has some advantages of Picard method, e.g.,
its implementation is easy, and it gives a linear algebraic
system with an explicit coefficient matrix. Furthermore,
it can elicit certain iterative acceleration methods, which
are faster than known methods such as the simpler Picard
iteration.

The following section will present the equations as they
are solved here. Section 3 introduces Picard-Newton it-
erative method. The test results are given in Section 4.

2 Description of the physical problem

The mathematical model employed in this manuscript is
useful for applications in astrophysics and inertial con-
finement fusion. The equations for non-equilibrium dif-
fusion coupled to material conduction are

∂E

∂t
−∇ · (cD∇E) = cσa(aT 4 − E), (1)

ρCv
∂T

∂t
−∇ · (κ∇T ) = cσa(E − aT 4), (2)

where E is the radiation energy density, t is the time, c is
the speed of light, D is the radiation diffusion coefficient,
σa is the photon absorption cross section, a is the Stefan-
Boltzmann constant, T is the material temperature, ρ is
the material density, CV is the heat capacity, and κ is
the material conduction coefficient.

To be consistent with previous works [6], these equations
are nondimensionalized such that ρ = Cv = c = a = 1.
With this nondimensionalization, the coupled radiation
diffusion and material conduction equations are given by

∂E

∂t
−∇ · (D∇E) = σa(T 4 − E), (3)
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∂T

∂t
−∇ · (κ∇T ) = σa(E − T 4). (4)

The energy exchange is controlled by the photon absorp-
tion cross section σa, which is modeled by

σa(T ) =
z3

T 3
.

In this model, z is a function of the material and varies
as a function of space (x, y). High values of z and low
values of T lead to higher energy exchange and therefore
tighter coupling between equations (3) and (4).

The radiation diffusion coefficient without flux limiter is
as follows:

D =
1

3σa
. (5)

The material conduction coefficient (electron thermal
conductivity of a fully ionized gas) κ has the following
form

κ = c0T
5/2, (6)

where c0 = 1.0× 10−2.

3 Picard-Newton iteration

In this section, we provide a detailed description of the
proposed nonlinear iterative method. The solution pro-
cess of Picard-Newton iterative method is as follows:

step 1 Linearize the time discretized nonlinear PDEs,
and get a linear iteration sequence.

step 2 Design the spatial discretization of the resulting
linear PDEs, and educe a system of linear algebraic
equations.

step 3 Solve the linear problems by Krylov-subspace
methods.

3.1 Newton linearization for the time dis-
cretized equations

Let

f1 = σa(T 4 − E), f2 = σa(E − T 4).

Consider the first-order time discretizations of the equa-
tions (3) and (4)

F1(En+1, Tn+1,∇En+1)

=
En+1 − En

∆t
−∇ · (Dn+1∇En+1)− fn+1

1

= 0, (7)

F2(En+1, Tn+1,∇En+1)

=
Tn+1 − Tn

∆t
−∇ · (κn+1∇Tn+1)− fn+1

2

= 0. (8)

Denote the grade by

∇E = (∇E1,∇E2)T ,∇T = (∇T1,∇T2)T .

If equations (7) and (8) are linearized by one order Taylor
expansion, and denote

A =




∂
(s)
F 1

∂E
∂

(s)
F 1

∂T
∂

(s)
F 1

∂∇E1

∂
(s)
F 1

∂∇E2

∂
(s)
F 1

∂∇T1

∂
(s)
F 1

∂∇T2

∂
(s)
F 2

∂E
∂

(s)
F 2

∂T
∂

(s)
F 2

∂∇E1

∂
(s)
F 2

∂∇E2

∂
(s)
F 2

∂∇T1

∂
(s)
F 2

∂∇T2


 ,

U =




(s+1)

E −
(s)

E
(s+1)

T −
(s)

T

∇
(s+1)

E1 −∇
(s)

E1

∇
(s+1)

E2 −∇
(s)

E2

∇
(s+1)

T1 −∇
(s)

T1

∇
(s+1)

T2 −∇
(s)

T2




,

we can get the following linear iteration sequence



(s)

F 1
(s)

F 2


−AU = 0, s = 1, 2, · · · , (9)

where s is the nonlinear iteration index, and

(s)

F 1 =
En+1,s − En

∆t
−∇ · (Dn+1,s∇En+1,s)

−fn+1,s
1 , s = 1, 2, · · · ,

(s)

F 2 =
Tn+1,s − Tn

∆t
−∇ · (κn+1,s∇Tn+1,s)

−fn+1,s
2 , s = 1, 2, · · · .

Note that the time level index, n + 1, has been dropped.
This is because the iteration is performed at the fixed
time level n + 1. Thus, we get a coupled linear PDE
system

(s+1)

E −En

∆t
−∇ · (D(

(s)

T )∇
(s+1)

E )− f1(
(s)

E ,
(s)

T )

−∇ · (D′
T (

(s)

T )(
(s+1)

T −
(s)

T )∇
(s)

E )

−∂f1(
(s)

E ,
(s)

T )
∂E

(
(s+1)

E −
(s)

E )

−∂f1(
(s)

E ,
(s)

T )
∂T

(
(s+1)

T −
(s)

T ) = 0, s = 1, 2, · · · , (10)
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(s+1)

T −Tn

∆t
−∇ · (κ(

(s)

T )∇
(s+1)

T )− f2(
(s)

E ,
(s)

T )

−∇ · (κ′T (
(s)

T )(
(s+1)

T −
(s)

T )∇
(s)

T )

−∂f2(
(s)

E ,
(s)

T )
∂E

(
(s+1)

E −
(s)

E )

−∂f2(
(s)

E ,
(s)

T )
∂T

(
(s+1)

T −
(s)

T ) = 0, s = 1, 2, · · · . (11)

The resulting linear equations can preserve the parabolic
property of original partial differential equations. For one
dimensional nonlinear parabolic problem with Dirichlet
boundary conditions, we can prove that as s →∝, the so-

lution of the iterative sequence
(s)

T can converge to the so-
lution of the time discretization equation, Tn+1, quadrat-
ically.

After designing spatial discrete scheme for the convection
diffusion equations (10) and (11), we can get a Picard-
Newton iterative scheme. Different spatial discrete
scheme may correspond to different iterative scheme.

3.2 Spatial discretization of the linear iter-
ation sequence on distorted meshes

Now, we introduce the spatial discretization scheme of
the coupled linear PDE system. The first lines of equa-
tions (10) and (11) are consistent with Picard method,
we need to consider the discretization of the Newton cor-
rection terms in addition. In this paper, we use a nine
point scheme to discretize diffusion operator on distorted
quadrilateral meshes [7]. Figure 1 shows the mesh stencil
and some notations.
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Figure 1: The mesh stencil and notation.

The discrete scheme of Eq. (10) on the cell K is

m(K)
En+1,s+1

K − En
K

∆t

−
∑

σ∈∂K

τn+1,s
σ (En+1,s+1

L − En+1,s+1
K

−Dσ(En+1,s+1
A − En+1,s+1

B ))

−
∑

σ∈∂K

µn+1,s
σ (Tn+1,s+1

σ − Tn+1,s
σ )

(En+1,s
L − En+1,s

K −Dσ(En+1,s
A − En+1,s

B ))

−((f1)
n+1,s
K +

∂f1

∂E
|n+1,s
K (En+1,s+1

σ − En+1,s
σ )

+
∂f1

∂T
|n+1,s
K (Tn+1,s+1

σ − Tn+1,s
σ ))m(K) = 0, (12)

The discrete scheme of Eq. (11) on the cell K is analogous

m(K)
Tn+1,s+1

K − Tn
K

∆t

−
∑

σ∈∂K

∼
τ

n+1,s

σ (Tn+1,s+1
L − Tn+1,s+1

K

−Dσ(Tn+1,s+1
A − Tn+1,s+1

B ))

−
∑

σ∈∂K

∼
µ

n+1,s

σ (Tn+1,s+1
σ − Tn+1,s

σ )

(Tn+1,s
L − Tn+1,s

K −Dσ(Tn+1,s
A − Tn+1,s

B ))

−((f2)
n+1,s
K +

∂f2

∂E
|n+1,s
K (En+1,s+1

σ − En+1,s
σ )

+
∂f2

∂T
|n+1,s
K (Tn+1,s+1

σ − Tn+1,s
σ ))m(K) = 0, (13)

where

τn+1,s
σ =

τn+1,s
K,σ τn+1,s

L,σ

τn+1,s
K,σ + τn+1,s

L,σ

, τn+1,s
K,σ =

|AB|Dn+1,s
K,σ

dK,σ
,

µn+1,s
σ =

µn+1,s
K,σ µn+1,s

L,σ

µn+1,s
K,σ + µn+1,s

L,σ

, µn+1,s
K,σ =

|AB|∂Dn+1,s
K,σ

∂T

dK,σ
,

∼
τ

n+1,s

σ =
∼
τ

n+1,s

K,σ

∼
τ

n+1,s

L,σ

∼
τ

n+1,s

K,σ +
∼
τ

n+1,s

L,σ

,
∼
τ

n+1,s

K,σ =
|AB|κn+1,s

K,σ

dK,σ
,

∼
µ

n+1,s

σ =

∼
µ

n+1,s

K,σ

∼
µ

n+1,s

L,σ

∼
µ

n+1,s

K,σ +
∼
µ

n+1,s

L,σ

,
∼
µ

n+1,s

K,σ =
|AB|∂κn+1,s

K,σ

∂T

dK,σ
,

Dσ =
(L−K, A−B)

|AB|2 ,

DK,σ =
T 3

σ

3z3
K

, κK,σ = c0T
5/2
σ ,

∂DK,σ

∂T
=

T 2
σ

z3
K

,
∂κK,σ

∂T
=

5
2
c0T

3/2
σ ,

Eσ = (EA + EB)/2, Tσ = (TA + TB)/2.
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It’s obvious that there are cell vertex unknowns in addi-
tion to cell-centered unknowns in the expression of dis-
crete flux. We approximate the cell vertex unknowns by
the cell-centered unknowns.

We have proposed some methods to eliminate the cell
vertex unknowns in [7]. The expression of cell vertex
unknowns is as follows:

up =
4∑

j=1

ωjuqj ,

where qj is the center of cell around the cell vertex p, and
ωj is some combination coefficient.

P-N method can be obtained from fully implicit Picard
method by adding Newton correction terms. It has some
advantages of Picard method, e.g., its implementation
is easy, and it gives a linear algebraic system with an
explicit coefficient matrix. Furthermore, it can elicit cer-
tain iterative acceleration methods, which are faster than
known methods such as the simpler Picard iteration.

4 Test problem

The test problem [6] is solved on the domain Ω = (0, 1)×
(0, 1). The value for z is 1 everywhere, except in the two
obstacles defined by

3
16

< x <
7
16

,
9
16

< y <
13
16

and
9
16

< x <
13
16

,
3
16

< y <
7
16

,

where the value for z is 10. All four walls are insulated
with respect to radiation diffusion and material conduc-
tion:

∂E

∂x

∣∣∣∣
x=0

=
∂E

∂x

∣∣∣∣
x=1

=
∂E

∂y

∣∣∣∣
y=0

=
∂E

∂y

∣∣∣∣
y=1

= 0,

and

∂T

∂x

∣∣∣∣
x=0

=
∂T

∂x

∣∣∣∣
x=1

=
∂T

∂y

∣∣∣∣
y=0

=
∂T

∂y

∣∣∣∣
y=1

= 0.

So the initial radiation spreads out and flows around the
obstacles. The initial radiation energy is given by

E(r) = 0.001 + Eamp exp
[
−

( r

0.1

)2
]

,

where r is the distance from the origin, which is located
in the lower left corner of the computational domain:

r =
√

x2 + y2.

The initial material temperature is equal to the radiation
temperature

T (x, y) = E(x, y)1/4.

0.364355

0.550881

0.737408

0.923935.11046

1.29699

1.85657

2.0431

2.22962

2.60268

2.97573

’x’

’y
’

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z=10

z=10

Figure 2: Initial conditions.

The initial conditions of this test problem are shown in
figure 2.

In the following numerical experiments, we use two differ-
ent meshes: uniform rectangular meshes, random quadri-
lateral meshes. Figure 3 shows random quadrilateral
meshes, where the number of cells is 32×32. The edges of
these obstacles correspond exactly to cell edges on these
meshes, therefore, there are no mixed material cells.
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Figure 3: Random quadrilateral meshes.

GMRES is used as the linear solver, with the precondi-
tioned ILUTP. The program is FORTRAN, and run on
a windows system. The nonlinear convergence criterion
is that the residual norm is less than 1.d-6 and relative
residual norm is less than 1.d-2.

Table 1 respectively shows a mesh convergence study for
Picard and P-N methods on rectangular meshes. In this
study we cut the time step (dt) in half each time when
the mesh spacing is cut in half. In Table 1 one can see
that for both methods the number of nonlinear iterations
per time step falls throughout the mesh refinement. Si-
multaneously, for P-N method, the number of GMRES
iterations per nonlinear iteration is decreasing. While,
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for Picard method, the number is fluctuant.

Table 1: Comparison of Picard and P-N methods for
nonequilibrium radiation diffusion problem on rectangu-
lar meshes.

t=1.5 Nonl.Its.
dt

Lin.Its.
Nonl.

Lin.Its.
dt

con.error

Picard(64*64) 9.06 4.54 41.08 6.27d-8
dt=1.d-3

P-N(64*64) 1.10 13.12 14.47 2.77d-9
dt=1.d-3

Picard(96*96) 5.03 8.41 21.20 1.23d-7
dt=5.d-4

P-N(96*96) 1.03 12.84 13.27 2.13d-8
dt=5.d-4

Picard(128*128) 3.52 5.81 20.42 2.54d-6
dt=2.5d-4

P-N(128*128) 1.00 11.55 11.57 4.83d-7
dt=5.d-4

Table 2 shows a mesh convergence study on random
quadrilateral meshes. For P-N method, the number of
GMRES iterations per nonlinear iteration is approxi-
mately constant. For Picard method, the number of GM-
RES iterations increases throughout the mesh refinement.
Figures 4 and 5 give the contours of radiation tempera-
ture of Picard and P-N methods on distorted meshes, re-
spectively. We can see that the contours of P-N method
accord with that of Picard method.

Table 2: Comparison of Picard and P-N methods for
nonequilibrium radiation diffusion problem on random
quadrilateral meshes.

t=1.5 Nonl.Its.
dt

Lin.Its.
Nonl.

Lin.Its.
dt

con.error

Picard(64*64) 9.02 5.24 47.31 4.65d-5
dt=1.d-3

P-N(64*64) 1.14 15.32 17.40 4.69d-5
dt=1.d-3

Picard(96*96) 5.03 6.57 33.08 2.37d-5
dt=5.d-4

P-N(96*96) 1.05 15.79 16.65 2.32d-5
dt=5.d-4

Picard(128*128) 3.55 7.45 26.48 1.65d-5
dt=2.5d-4

P-N(128*128) 1.01 15.02 15.21 1.40d-5
dt=2.5d-4

Table 1 and 2 give comparisons for linear iterations and
nonlinear iterations between Picard and P-N methods.
Since this test problem has reflecting boundary condi-
tions, the total energy in the problem should be constant.
Table 1 and 2 also provide conservation errors for Picard
and P-N methods. From Table 1 and 2 the superiority of

P-N method is clear.

X

Y

0.5 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4: Final state radiation temperature on random
quadrilateral meshes of Picard method.
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Figure 5: Final state radiation temperature on random
quadrilateral meshes of P-N method.

5 Conclusions and Future Work

Picard-Newton method has some advantages of Picard
method: its implementation is easy, and it gives a linear
algebraic system with an explicit coefficient matrix. Fur-
thermore, by adding Newton correction terms to Picard
method, it can accelerate the convergence.
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