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Abstract—In this paper, we provide a geometric
construction of a transversal homoclinic orbit for a
nonlinear model neuron with time delays. The ex-
istence of chaos for time-delay systems in a high-
dimensional space is theoretically confirmed with sev-
eral conditions. These units may be used as basic
elements for networks with higher-order information
processing capabilities.
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1 Introduction

Recently, there has been an increasing interest in the de-
layed equations: both differential and difference. Typ-
ically, for non-delayed discrete dynamical systems, it
is assumed that all causes have an instantaneous ef-
fect. So far, the hypothesis is provided for a great num-
ber of systems which may be described by the differen-
tial/difference equations. However, it should be possible
that a meaningful time-scale characteristic of a system is
smaller than a time delay so that a simply model can-
not characterize all information or changes. Hence, a
model with time delay not only possesses more reason-
able and extensible meaning for a living system but also
offers new modeling possibilities such as optics [1], and
biological systems [2], etc. It means that time delays can
be viewed as intrinsic properties of the nervous system.
Consequentially, the study of neural systems with time
delays is very meaningful.

In 1998, Rabinovich and Abarbanel [3] argued that chaos
itself is not in charge of the function of neural assem-
blies, but the resting state is at the edge of instability
or beyond it. They thought that neural systems were
transfered /forced to different working states by chaotic
oscillations. That is, a behavior (a stable state) always
starts from a resting state (a chaotic state). For exam-
ple, the self-organizing phenomenon [4] can be observed
on a sensorimotor coordination task. Several years ago, a
Nagumo-Sato-based neural network with chaotic behav-
iors was initiated by Aihara et. al. [5] in order to charac-
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terize a number of sophisticated dynamics observed in a
biological neural system. Their behaviors include stable
fixed points, periodic oscillations, and chaos which are
different from behaviors of static neural network models.
In 1995, Chen and Aihara [6] proposed that transiently
chaotic neural network (TCNN) with the increase of self-
coupling from a sufficiently large negative to zero can
mimic adaptable behaviors and successfully applied to
optimization problems. The features of TCNN simulta-
neously contain two parts: stability and chaos [7, 8,9, 10].
Therefore, TCNN can be exploited to support the view of
Rabinovich and Abarbanel. Recently, Wu and Zhang [11]
initiated a system of two difference equations coupled
through an excitatory feedback with an integer delay and
confirmed the system possesses larger capacity for asso-
ciative memory than one with no delay item. It mainly
deals with the coexistence of multiple stable patterns such
as multiple equilibria and periodic orbits, lying at the ba-
sis of the mechanism for associative content-addressable
memory storage and retrieval in neural networks, pop-
ulation models, and ecological models, etc. It has been
shown that time delay provides an effective mechanism
for a network to store and retrieve periodic patterns, and
biologically these delays arise due to axonal conduction
time, distances of interneurons and the finite switching
speeds of amplifiers. For the time delay system, a chaotic
behavior near the origin was confirmed by Huang and
Zou [12]. By these two results, it is possible to prove
that neural networks with time delays exist both stabil-
ity and chaos.

Here, we review some developments and modifications
about discrete-type chaos. Initially, a chaotic phe-
nomenon was numerically found in the Lorenz’s re-
search [13] on weather prediction in 1963. Until 1975,
the mathematical definition of chaos was initiated by Li
and Yorke [14] for one-dimensional continuous maps, and
the criterion of existence of chaos is “period three imply
chaos” as follows. Let f : I — I be a continuous map
of the compact interval I of the real line R into itself. If
f has a periodic point of period three, then f exhibits
chaotic behavior. After three years, the above result is
generalized by Marotto [15]. He proposed the definition
of the “snap-back repeller” and proved that “snap-back
repellers imply chaos” in a multi-dimensional space. The
type is specially called “Marotto’s chaos” or chaos in the
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sense of Marotto. Later on, Marotto [16] gave some com-
ments about changes, corrections and updates from many
researchers. As an extension of the Li and York theorem
on the one-dimensional maps, Marotto [15] established a
significant theorem in confirming the chaotic dynamics
for multi-dimensional systems. With presence of the so-
called “snap-back repeller”, the phase space possesses a
topological structure which includes infinitely many pe-
riodic points and a scrambled set. Very erratic behaviors
of the system then occur, including the lack of global
stability for solutions, and the existence of an uncount-
able collection of orbits which do not eventually approach
any periodic points. Up to now, the theorem is the best
one for analyzing chaos in multi-dimensional maps. The
detailed description of Marotto’s chaos is presented in
Appendix.

In the paper, we propose a simple, modified model as
the following coupled system with two neurons and time
delays 11, To:

z(n) =mz(n — 1) + pex(n — 1) + wirge(z(n — 71))
+ wi2ge(y(n — 72)) +v1, (1)

y(n) =py(n — 1) + pay(n — 72) + wazge (y(n — 72))
+ w21ge((n — 1)) + v2, (2)

where n (€ N) is the iteration time; 7; (€ Z) are time-
delayed parameters larger than one; p; between 0 and
1 are the damping factors of the nerve membrane ; w;;
is the self-feedback connection weight; w;; is the connec-
tion weight from neuron i to neuron j; € (¢ > 0) is the
steepness parameter of the neuronal activation function;
v; is an input bias of neuron i; p (—1 < p < 0) is a neg-
ative parameter. Herein, i = 1, 2. A saturated output
function g. : R — R satisfies the following conditions:

@[ o

A traditional neural network is extended to one with de-
lay times. In case of 71 = 79 = 1, the system (1)-(2) with
Eq. (3) can be viewed as a cellular neural network [17].
We aim to provide the parameter conditions for the exis-
tence of chaos in the time delay system.

The remainder of the paper is organized as follows. A
discrete neural network with one neuron and a time de-
lay is investigated in Section 2. Herein, some compli-
cated conditions for the existence of chaos in the sense of
Marotto are presented. In Section 3, we proof the exis-
tence of chaos for a delayed discrete neural network with
two neurons. The generic conditions for the existence
of high-dimensional chaotic phenomena will be described
without constrain of parameters as the system (1)-(2).
Finally, we will draw conclusions in Section 4.
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2 A delayed discrete neural network with
one neuron
Let us consider the following simple model of a delayed

discrete neural network (DDNN) with one neuron and a
time delay 7:

z(n) =prz(n — 1) + pox(n — 7) + w [gs(x(n —7))+ p] +v, (4)

where |v| < h, —1 < p < 0, and a saturated output
function g, is defined as Eq. (3) whose graph is shown in
Figure 1.

£ €

Figure 1: A saturated output function g. for € > 0.

For a fixed € > 0, the real line R can be represented as the
union of three disjointed regions Q; = {z € R|z < —¢},
Om ={z € Rl|z] < e} and Q, = {z € R|z > £} based
on the piecewise feature of the saturation function g..
Notably, the neural network (4) is smooth on the three
disjointed intervals. To provide sufficient conditions of
fixed points for DDNN (4), the following conditions are
given.

(H1a) 1u17u25>0 ‘
h l—pi—p
el —p <1, =E=E2(—¢ )
(Hlb) 1=ti=2. < o,
1—11 — e
%(,E),|g|

|>‘1 ul le lul B2 4

\Z\*p>0
1—pr—p hy _

1=t2e 4 B p < 1,
—p>0.

Condition (Hla) confirms the existence of 3 fixed points
for the family of one-dimensional DDNNs (4). Condition
(H1b) assures that there exists at least one fixed point
for the family of one-dimensional DTDNNs (4). The rea-
sons to give these conditions are shown in the following
lemmas.

Lemma 2.1 Suppose that (Hla) holds. Then, for each
lv| < h, there exist three points ¢*f € Qp, ¢O™ € Qy, and
¢%F € QO such that (1—py —p2) "> = w [gs(gbo**)—i—p} +v,

where * = 07, “m”, or “r”.

)

proof: Assume that there is a fixed point T for a neural
network (4). The equation

f:ulf+uzf+w[gs(f)+p} +v (5)

is hold. Therefore, we can reformulate Eq. (5) as a couple
of equations

y=[(1—p1 —p2)r —v]/w—np, (6)

Y = ge().
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Figure 2: Diagram of finding a solution of a couple of
equations. Let L,(z) = [(1 — p1 — po)x — v]/w — p with
the positive slope 1_”;7_“2 A solution exists if the inter-

section between the dotted line and g. is nonempty.

Obviously, Eq. (6) is a linear function of x. These two
equations can be illustrated in the same x-y plane as Fig-
ure 2.

Let € > 0. Consider w > 0. If h > |v|, [(1 — p1 — pe2)e +
h]/w—p < 1and [—(1—p1—pe)e—h]/w—p > 0, then [(1—
1 —p2)e—v]/w—p < land [—(1—p1 —p2)e—v]/w—p > 0.
Hence, there exist three fixed points. Consider w < 0. If
B> v, [(1— i — ) — hlfw — p < 1 and [~(1 -z —
u2)e +hl]/w—p >0, then [(1 — g —p2)e —v]/w—p<1
and [—(1 — u1 — p2)e — v]/w — p > 0. Hence, there exist
three fixed points. The argument can be supported by
Figure 2 (a). Consequently, all conditions in (Hla) imply
the existence of three fixed points.

Lemma 2.1 shows that, for each different parameter v
with |v| < h, these three fixed points ¢%¢(v), ¢*™(v) and
#%*(v) in the interior areas of the corresponding regions
Qp, O and Q, can be thought as the functions of v if
six parameters p1, g2, w, p, € and h are compatible with
Condition (H1la). With the property, we can extend the
existence of fixed points for 1-d neural networks to one
for neural networks in high dimensional space in the next
section. Note that the first [resp. second] superscript
in the symbol ¢** represents a fixed point [resp. the
position of a fixed point at €, Oy, or Q.

Lemma 2.2 Suppose that Condition (H1b) holds. Then,
for each |v| < h, there exists at least one point 3™ € O,

such that (1 — py — p2)¢®™ = w [gg(¢07m) + p} +v.

Proof: The proof resembles one in Lemma 2.1.

More illustrations for Lemma 2.2 are as follows. Assume
po+ 5 < —land puy = 0. If 0 < po < 1, there exists only
one fixed point ¢%™ € Q. If uy > 1, there exists three
fixed points ¢*¢ € Qp, ¢O™ € Q and ¢*F € Q,. The
reason of these two conditions is very clear by Figure 3.

Next, to construct a trajectory for a pre-image of one-
dimensional DDNN (4), the following conditions are
given.

ISBN:978-988-18210-1-0

A+Ho/(2e) 1

: ¢ (a,-€)
€ /e

Figure 3: Illustration for Lemma (2.2). Assume that po+
w/(2¢) < —1 and there exist a fixed point in Q,. If
0 < us < 1, there is no interaction in €, and Q,. If
e > 1, there exist a fixed point for every region.

(H2al) e > 0, po+52 > 1, po < —1, poe+w(1+
p) —h>[-e—w(l+p) = hl/ps.

(H2a2) € > 0, pp + 52 > 1, po < =1, pa(—¢) +
wp+h < (e—wp+h)/us.

(H2b1) € > 0, po+ 5= < =1, 2 > 0, (—e —wp—
h)/p2 > pee+w(l+p)+h, pa(—c)+wp—h >e.
(H2b2) £ > 0, po+52 < —1, po > 0, —pioe+wp—
h > [e—w(1+p)+h]/p2, —& > poe+w(1+p)+h.

All of conditions (H2al)-(H2a2) [or briefly (H2a)l,
(H2b1)-(H2b2) [or briefly (H2b)] assure the existence of
the pre-image of some types of points for the neural net-
works (4) for a suitably small value p1, respectively. Fur-
thermore, if there exists a fixed point, then the conditions
can assure the existence of its pre-image point.

For precise explanation for the existence of a snap-back
repeller of 1-d neural network with delayed time 3, we
rewrite the 1-d model as the following equivalent discrete
dynamical system on R3:

O(n+1)=T(®(n)), (7)

where ®(n) = (¢3(n), g2(n), #1(n)), and T : R? — R3 is
given by

é3(n) ¢2(n)
T(@m>: o .
é1(n) p11(n) + 2 (n) +w(g: (93(n)) + p) +v

Note that the subscript i for elements ¢; (i = 1,2,3) of
® can be thought as time delays.

For the simplification of notation, we define a map h from
NU {0} to {m, r} as follows:

r if z € {4,5,6},
h =
(2) { m otherwise. ®

The map is exploited to describe the chosen location of
the pre-image of the neural network (4). The domain of
h means the pre-image number and its range describes
its corresponding and specified position. Notably, the
number of the preimage for the neural network (4) may
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be larger than one. Therefore, a notation ¢™"(") means
that the point is the nth preimage of ¢*(©) under the
action of the neural network (4) and belongs to the set of
interior points in 2.

To provide the expanding feature, we give the following
conditions.

(HSa) Mo + ;*E >1+ |/l1|.
(H3b) p2 + 52 < —(1+ |pa]).

Absolute values of eigenvalues of linear part for the 3-d
dynamical system (7) are larger than one if either Con-
dition (H3a) or Condition (H3b) holds.

Lemma 2.3 Suppose either (Hla)-(H3a) or (Hlb)-
(H3b) hold. There exists a sequence {¢™"™ € Rln €
N U {0}} which approaches to a fired point ¢*M0) as
n — oco. Hence, for neural network (7), the constructed
orbit is a transversal homoclinic orbit and the fized point
¢ s a snap-back repeller.

proof: Let us consider the neural network (7). Since
(Hla) holds, it follows from Lemma (2.1) that there
exists a fixed point ®0 = (%P0 g0 O) $0.hO0)) for
Eq. (7), where ¢*"9) ¢ Qg(o) Therefore, there ex-
ists 7ij > 0 such that %O — ;%R0 ¢ Q?L(O) for

all 4y € U; where Uy = [—fi},fid]. By (H2a), there
exists a point ¢ € Q?L 1) which satisfies ¢%"(©) —

¢0 ,h(0) ¢1 ,h(1) + w[ (¢1,h(1)) T p] + v. Let
¢2 h(2) — ¢ ’ _ ((bl,h(l)’ ¢O,h(0)’ qbO,h(O)) and
= (p>h2 ¢1 h<1 qSOh 0)). Note that T(®~1) = ®°

and T(®~2) = &~ L. For an integer n > 2, we define
O = (¢n,h(n)7¢n—1,h(n—l)’¢n—2,h(n—2)) (9)

whose components satisfy the following equation:

¢n73,h(n73)_M1¢n72,h(n72) _ u2¢n,h(n)+w[95(¢n,h(n))+p}+yl

For k = 1,---,n — 1, assume a positive value p¥
and ¢F"k) ¢ Q%(k) exists with p; € NZ 1Uk where
Up = [—p¥, %], By induction, there exists a suitable
f? > 0 such that ¢™Mm) ¢ Q%(n) exists if p; € ﬁﬁzlﬁk
where U, = [—ji¥,i¥]. The linear part DT of T at
P = (¢1,¢2, ¢3) is

0 1 0
0 0 1
p2 +wg (d3) 0
Note that ¢®"*) ¢ Q0 as k > 6. Hence, up +

wg (P = 1y + 5. By (H3a) and Lemma (4.1), ab-
solute values of eigenvalues of DT are larger than one as
¢3 € Q. By Chen [18], there exists a norm |-| in R? such
that |[DT(®)w| > s|w| for all w € R® and ¢35 € Qy, for
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some s = 14p > 1. Hence, there exists a sufficiently small
radius d > 0 such that if ® belongs to a d-ball neighbor-
hood of ®°, then |[T~1(®°)~T~(®")| < 1|®°—&'|. That
is, the fixed point ®° is stable and attractive for the map
T—!. That is, if a point ¢*V"*(N) locates in the basin of
0 for the map T~!, then ¢ approaches ¢%"0 for
n > N. Actually, the sequence {¢™"") ¢ R|n € NU{0}}
is a transversal homoclinic orbit of ¢%(®) for the neural
networks, Eq. (4).

3 A delayed discrete neural network with
two neurons

Let us start with a DDNN with two neurons as follows:

z1(n) = pmzi(n—1)+ pez1(n — 1) + wiige (@1 (n — 1)) — a1]
twiz2ge(z2(n — 12)) + v1, (10)
z2(n) = pize(n — 1)+ poxa(n — 73) + weelge (z2(n — 73)) — as]

(11)

where, for simplification, we let 71 = 70 = 73 = 74 =
T€e€N a = a3 = —p, w1 = wype =w, n €N, and
. : R — R is a saturated output function as Eq. (3).
Besides, the neural network (10)-(11) can be transformed
as the following equivalent discrete map on R2":

+wa1ge(z1(n — 71)) + v,

B(n+ 1) = T(B(n)), (12)
where ® = (@1,@2) with (I)l = ( o ,(bl) =
(@2, ,¢?), and T : R?>™ — R?7 is given by

*r o1
o} o}
| P | 2| mdlt et Felge(br) + o]+ wizge(67) T
¢T ¢T—1
% o
@2 p1¢3 + p2d? + wige (¢2) + p] + w21ge (1) + 2
where T = (T}, -+, TL,T2,--- | T?).

Theorem 3.1 If the parameters satisfy (Hla) [resp.
(H1b)], then there exists one fized point in §;,...5, [resp.
Qu...m] for the neural network (10)-(11).

Proof Consider a fixed region 2, ...;, for certain j; = “¢”
or “m” or “t” (i = 1,---,n). Let (&,---,&) be any
point in R™. Then, by Lemma 2.1, there exist & € €y,
&0 € Qm, & € Q, such that

n
& = & + bl +wlg=(E) +pl+ Y wijge(§) +ui,
j=1,j#i
(13)
where “ x , “r” for each i. Restated, each
& is a fixed point of the one-dimensional map &; +—

& + pro&i + wlge (&) + Pl + D051 2 wi;9e (&) + i Let
H le"'jn = le"'jn be defined by H(fl,“' afn) =

Cg gy
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( oo+, &), We want to show that there exists a fixed
pomt for H. Define G : R™ x R” — R" by

Gi(X,x) = xj — p17; — paw; —wlge () +p] — Z wijge (T4) — V4,
J=1,j#1i
where G = (Gy,-- (Ty,-+ ,Tp), © =

7Gn)a X =
1,---,n. Notably, G(X, H(X)) = 0 for every X € Q;,...;,.,
by Eq. (13). Now,

aa% = diag[Xb e 7X71]7

Where Xi =1—p1—pa —wgg(acz) i =1,---,n. Note that
95 = 0 in regions 2, and €y, g‘E = 5-in the 1nter10r region
Q. For x = (1:1,~-- ZTn) € le 4ns We have x;(z;) =
1—p1 —po — 2 or 1 — pg — peo for each ¢ whose values are
nonzero due to “the condition 0 < (I—py—p2)/w < 1/(2¢).
Hence, the Jacobian of G with respect to x is nonzero.
It follows from the implicit function theorem that H is
a C! function on the region Q;,...;, . Furthermore, there
exists one fixed point X of H in €;,...;., which is also a
fixed point of T. In fact, there exists only one fixed point
in each Q;,...;,. Consequently, there are 3" fixed points
of T in R™.

Theorem 3.2 If the parameters satisfy either (Hla-
H3a) or (H1b-H3b), then there exists a snap-back repeller
in the interior Q... for the neural network (10)-(11).

Proof: For simplification, 7 = 3 is given. Neural net-

works (10)-(11) becomes
z1(n) = mzr(n — 1) + pew1(n — 3) + wlge (1 (n — 3)) + o]
+ wiage(z2(n — 3)) + 11, (14)
w2(n) = paza(n — 1) + powa(n — 3) + wlge (v2(n — 3)) + p|
+ w21ge(z1(n — 3)) + va. (15)

By Theorem 3.1, we know that there exists a fixed point
(7™, 69™) € Quum for the full couple of neural net-
works (14) and (15). Let (£,&,) be any point in Q. If
these parameters (u1, o, w, &, p,v), @ = 1,2, satisfy Con-
dition (H2a), there exists a point (§1,&2) € Qy, such that

(&1) — ao] + wi2g(&) + a1 = (1 — p1)™,
<(&2) — ao2) + w219 (&) + a2 = (1 — p1)p3™.
Let H : Qj;, — €, be defined by H(&,8) =
(&]',€72). We want to show that there exists a fixed

point for H. Define a map G : R? x R? — R? with
G = (G17G2) by

poé1 + wlge
paa + wlg

’
(1= p)PP™ — pamy — wlge (1) — ao1] — wi2ge (w,) — a1,

(1 — p1)g™

Gi(x ,x) =

! ’
Ga(x ,x) = — poxe — wlge (x2) — ao2] — w219-(x,) — az,

where x = (1, z5) and X = (2}, z,). Then

(0G/9x)(x ,x) = ( ~Hawf2e s ! w/2e ) -
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The Jacobian of G with respect to x is nonzero, pro-
vided that Condition (H3a) holds. It follows from the

implicit function theorem that H is a C' function on the
region €2, ;,. Furthermore, there exists one fixed point
x of H in Q;,;, by Brouwer’s fixed point theorem. By
the implicit function theorem, there exists a point X =
((b}’h(l) ;’h(l)) € Q,; such that G(x,x) = 0. Denoting
e = (271,01 with &7t = (6", g™, 61" ?)

and ®,! = (gb;’h(l), 0h(0)7¢0h ), it follows that
T(®!) = &% By the same certification, it is
easy to construct a series {®'|i = 2,3,4,---} where

ok =
kh(k)  k—1,h(k—=1) k—2h(k—2
k *), o (k=1) ok (k=2)
Recall that h is defined as Eq. (8). Furthermore, the Ja-
cobian matrix of T~1! in the region Q, ... m, is the inverse
of the matrix

(d)lf,h(k)’qsllc—l,h(k—l)’ ’f—th(k_Q)) and ®;% =

) with an integer k£ > 2.

0 1 0 0 0 0
0 0 1 0 0 0
| metwgl(ed) 0 w1 Pagi(¢d) 0 0
bT (CD) - 0 0 0 0 1 0
0 0 0 0 0 1
’ !/
B2go(#3) 0 0 patwg(¢3) 0

The absolute values of all of its eigenvalues are larger
than one by Gerschgorin’s theorem for sufficiently small
(2. Therefore, the series approaches the fixed point in the
region y, ... m under the action of T. In other words, a
homoclinic orbit for the neural network (10)-(11) is con-
structed. This fixed point ® is a snap-back repeller.

4 Conclusion

In the paper, we successfully develop a constructive
method to explore the existence of a transversal homo-
clinic orbit for the system (1)-(2) with Eq. (3). The theo-
rems based on the constructive method are theoretically
supported by applying Marotto’s theorem and have given
sufficient conditions for the existence of both fixed points
and their homoclinic orbits. The simple system with a
delay item can demonstrate very complicated behavior
near the origin. The analysis has indicated that, as mul-
tiple fixed points coexist, their homoclinic orbits position
themselves in a tangle. In addition, the number of fixed
points can grow exponentially in the number of neurons.
This scenario has revealed the complication of the dy-
namics for the system. It is believed that more dynamical
features other than snap-back repellers can be explored
along this line of investigation. It is expected that the
present work has great potential in many applications.

Appendix A: Marotto’s Theorem

Consider a dynamical system: x — F(x), x; € R™ and
F is in C'(R",R") or piecewise C''. Suppose X is a fixed
point of F with all eigenvalues of DF(X) exceeding 1 in
magnitude, and suppose there exists a point xg # X in a
repelling neighborhood of X, such that F™(xp) = X and
det(DF™(xg)) # 0, for some 1 < m € N. Then X is
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called a snap-back repeller [16] of F. If F has a snap-back
repeller, then the system of F is chaotic in the following
sense: (i) There exists a positive integer mg such that
for each integer p > mg, F has p-periodic points. (ii)
There exists a scrambled set, that is, an uncountable set
L containing no periodic points such that the following
pertains: (a) F(L) C L; (b) for every y € L and any
periodic point x of F,

limsup ||[F™(y) — F™(x)|| > 0;

m-—o0

(c) for every x, y € L with x £y,

lim sup [[F"™ (y) — F™(x)[| > 0;

m—o0
(3) There exists an uncountable subset Ly of L such that
for every x, y € Ly,

liminf ||[F™(y) — F"(x)|| = 0.

m—0o0

Appendix B

Let A = (a;5) be a kx k matrix where a; j11 =1, a1 = a
and apr = b; otherwise, a;; = 0. The characteristic
polynomial of A is \¥ — bAF~1 — q.

Lemma 4.1 Consider

Ne— bR g =0, (16)
where a, b are real numbers and k > 2 is an integer. If
(a)a>1,|bl<a—1, or (b)a<—1,|b <—a-—1, then
all of X’s solutions have absolute values larger than 1.
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