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Abstract—We employ a hybrid fixed point theorem

involving the multiplication of two operators for prov-

ing an existence result of locally attractive solutions

of a nonlinear quadratic Volterra integral equation of

fractional (arbitrary) order. Our investigations will

be carried out in the Banach space of real functions

which are defined, continuous and bounded on the

real half axis R+. Keywords: Integral equations of

fractional (arbitrary) order, locally attractive solutions,

Fixed point theorem.

1 Introduction

The theory of differential and integral equations of frac-
tional order has recently received a lot of attention and
now constitutes a significant branch of nonlinear analy-
sis. Numerous research papers and monographs devoted
to differential and integral equations of fractional order
have appeared (cf. [1,4-7,11], for example). These papers
contain various types of existence results for equations of
fractional order.
In this paper, we study the existence of locally attractive
solutions of the following nonlinear quadratic Volterra in-
tegral equation of fractional order:

x(t) = [f(t, x(t))]

(
q(t) +

1

Γ(α)

∫ t

0

g(t, s, x(s))

(t − s)1−α
ds

)
,

(1)
for all t ∈ R+ and α ∈ (0, 1), in the space of real func-
tions defined, continuous and bounded on an unbounded
interval.
It is worthwhile mentioning that up to now integral equa-
tions of fractional order have only been studied in the
space of real functions defined on a bounded interval.
The result obtained in this paper generalizes several ones
obtained earlier by many authors.
In fact, our result in this paper is motivated by the ex-
tension of the work of Hu and Yan [12].
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2 Notations, definitions and auxiliary

facts

Denote by L1(a, b) the space of Lebesgue integrable func-
tions on the interval (a, b), which is equipped with the
standard norm. Let x ∈ L1(a, b) and let α > 0 be a
fixed number. The Riemann-Liouville fractional integral
of order α of the function x(t) is defined by the formula:

Iαx(t) =
1

Γ(α)

∫ t

0

x(s)

(t − s)1−α
ds, t ∈ (a, b)

where Γ(α) denotes the gamma function.
It may be shown that the fractional integral operator Iα

transforms the space L1(a, b) into itself and has some
other properties (see [8,9,10]).
Let X = BC(R+) be the space of continuous and
bounded real-valued functions on R+ and let Ω be a sub-
set of X. Let P : X → X be an operator and consider
the following operator equation in X, namely,

x(t) = (Px)(t) (2)

for all t ∈ R+. Below we give different characterizations
of the solutions for the operator equation (2) on R+. We
need the following defnitions in the sequel.

Definition 2.1 We say that solutions of the Eq. (2) are
locally attractive if there exists an x0 ∈ BC(R+) and an
r > 0 such that for all solutions x = x(t) and y = y(t) of
Eq. (2) belonging to Br(x0) ∩ Ω we have that:

lim
t→∞

(x(t) − y(t)) = 0. (3)

Definition 2.2 An operator P : X → X is called Lips-
chitz if there exists a constant k such that ||Px− Py|| ≤
k||x− y|| for all x, y ∈ X. The constant k is called the
Lipschitz constant of P on X.

Definition 2.3 (Dugundji and Granas [3]) An operator
P on a Banach space X into itself is called compact if for
any bounded subset S of X, P (S) is a relatively compact
subset of X. If P is continuous and compact, then it is
called completely continuous on X.
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We seek the solutions of Eq. (1) in the space BC(R+)
of continuous and bounded real-valued functions defined
on R+. Define a standard supremum norm ||.|| and a
multiplication ”.” in BC(R+) by

||x||= sup{|x(t)| : t ∈ R+} and (xy)(t) = x(t)y(t), t ∈
R+.

Clearly,BC(R+) becomes a Banach space with respect to
the above norm and the multiplication in it. By L1(R+)
we denote the space of Lebesgue integrable functions on
R+ with the norm ||.||L1 defined by

||x||L1 =

∫ ∞

0

|x(t)|dt.

We employ a hybrid fixed point theorem of Dhage [2] for
proving the existence result.

Theorem 2.1 (Dhage [2]) Let S be a closed convex and
bounded subset of the Banach space X and let F, G : S →
S be two operators satisfying:
(a) F is Lipschitz with the Lipschitz constant k,
(b) G is completely continuous,
(c) FxGx ∈ S for all x ∈ S, and
(d) Mk < 1 where M =‖ G (S) ‖= sup{‖ Gx ‖: x ∈ S}.
Then the operator equation

FxGx = x

has a solution and the set of all solutions is compact in
S.

3 Existence result

We consider the following set of hypotheses in the sequel.
(H1) The function f : R+ × R → R is continuous and
there exists a bounded function l : R+ → R+ with bound
L satisfying

| f(t, x)− f(t, y) |≤ l(t) | x− y |

for all t ∈ R+ and x, y ∈ R.
(H2) The function f1 : R+ → R defined by f1 =| f(t, 0) |
is bounded with

f0 = sup {f1(t) : t ∈ R+} .

(H3) The function q : R+ → R+ is continuous and
limt→∞ q(t) = 0.
(H4) The function g : R+ × R+ × R → R is continuous.
Moreover, there exist a function m : R+ → R+ being
continuous on R+ and a function h : R+ → R+ being
continuous on R+ with h(0) = 0 and such that

| g(t, s, x)− g(t, s, y) |≤m(t)h(| x− y |)

for all t, s ∈ R+ such that s ≤ t and for all x, y ∈ R.

For further purposes let us define the function
g1 : R+ → R+ by putting

g1(t) = max{| g(t, s, 0) |: 0 ≤ s ≤ t} .

Obviously the function g1 is continuous on R+.
In what follows we shall assume additionally that the fol-
lowing conditions are satisfied:
(H5) The functions a, b : R+ → R+ defined by the for-
mulas

a(t) = m(t)tα , b(t) = g1(t)t
α,

are bounded on R+ and vanish at infinity i.e.
limt→∞ a(t) = limt→∞ b(t) = 0.

Remark 3.1 Note that if the hypotheses (H3) and (H5)
hold, then there exist constants K1 > 0 and K2 > 0 such
that K1 = sup {q(t) : t ∈ R+} and

K2 = sup
{

a(t)h(r)+b(t)
Γ(α+1) : t, r ∈ R+

}
.

Theorem 3.1 Assume that the hypotheses (H1)− (H5)
hold. Furthermore, if L(K1+K2) < 1, where K1 and K2

are defined in Remark 3.1, then the Eq. (1) has at least
one solution in the space BC(R+). Moreover, solutions
of the Eq. (1) are locally attractive on R+.

Proof. Set X = BC(R+, R). Consider the closed ball
Br(0) in X centered at origin 0 and of radius r, where

r = f0(K1+K2)
1−L(K1+K2)

> 0.

Let us define two operators F and G on Br(0) by

Fx(t) = f(t, x(t)),

Gx(t) = q(t) +
1

Γ(α)

∫ t

0

g(t, s, x(s))

(t − s)1−α
ds,

for all t ∈ R+.
According to the hypothesis (H1), the operator F is well
defined and the function Fx is continuous and bounded
on R+. Also, since the function q is contionuous on R+,
the function Gx is continuous and bounded in view of
hypothesis (H4). Therefore F and G define the operators
F, G : Br(0) → X. We shall show that F and G satisfy
the requirements of Theorem 2.1 on Br(0).
The operator F is a Lipschitz operator on Br(0).In fact,
let x, y ∈ Br(0) be arbitrary.Then by hypothesis (H1),
we get

| Fx(t)− Fy(t) | = | f(t, x(t)) − f(t, y(t)) |

≤ l(t) | x(t) − y(t) |

≤ L ‖ x− y ‖,

for all t ∈ R+. Taking the supremum over t,

‖ Fx− Fy ‖≤ L ‖ x− y ‖,
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for all x, y ∈ Br(0).
This shows that F is a Lipschitz on Br(0) with the
Lipschitz constant L.
Next,we show that G is a continuous and compact
operator on Br(0). First we show that G is continu-
ous on Br(0). To do this, let us fix arbitrary ε > 0
and take x, y ∈ Br(0) such that ‖ x−y ‖≤ ε. Then we get

| (Gx)(t)− (Gy)(t) |

≤
1

Γ(α)

∫ t

0

| g(t, s, x(s)) − g(t, s, y(s)) |

(t − s)1−α
ds

≤
1

Γ(α)

∫ t

0

m(t)h(|x(s) − y(s)|)

(t− s)1−α
ds

≤
m(t)tα

Γ(α+ 1)
h(r)

≤
a(t)

Γ(α+ 1)
h(r).

Since h(r) is continuous on R+, then it bounded on R+

and there exists a nonnegative constant, say h∗, such that
h∗ = sup{h(r) : r > 0}. Hence, in view of hypothesis
(H5), we infer that there exists T > 0 such that

a(t) ≤ Γ(α+1)ε
h∗

for t > T . Thus, for t > T we derive that

| (Gx)(t)− (Gy)(t) |≤ ε.

Furthermore, let us assume that t ∈ [0, T ]. Then, eval-
uating similarly to above we obtain the following estimate

| (Gx)(t)− (Gy)(t) |

≤
1

Γ(α)

∫ t

0

| g(t, s, x(s)) − g(t, s, y(s)) |

(t − s)1−α
ds

≤
Tα

Γ(α+ 1)
ωT

r (g, ε),

where ωT
r (g, ε) = sup{| g(t, s, x) − g(t, s, y) |: t, s ∈

[0, T ], x, y ∈ [−r, r], |x− y| ≤ ε}.
Therefore, from the uniform continuity of the function
g(t, s, x) on the set [0, T ] × [0, T ] × [−r, r] we derive
that ωT

r (g, ε) → 0 as ε → 0. Hence, from the above
established facts we conclude that the operator G maps
the ball Br(0) continuously into itself.
Now, we show that G is compact on Br(0). It is enough
to show that every sequence {Gxn} in G(Br(0)) has a
Cauchy subsequence. In view of hypotheses (H3) and
(H4), we infer that:

| Gxn(t) |≤| q(t) | +
1

Γ(α)

∫ t

0
|g(t,s,xn(s))|
(t−s)1−α

ds

≤ | q(t) | +
1

Γ(α)

∫ t

0

| g(t, s, xn(s)) − g(t, s, 0) |

(t− s)1−α
ds

+
1

Γ(α)

∫ t

0

| g(t, s, 0) |

(t− s)1−α
ds

≤ | q(t) | +
1

Γ(α)

∫ t

0

m(t)h(|xn(s)|)

(t− s)1−α
ds

+
1

Γ(α)

∫ t

0

g1(t)

(t− s)1−α
ds

≤ | q(t) | +
m(t)tα

Γ(α+ 1)
h(r) +

g1(t)t
α

Γ(α+ 1)

≤ | q(t) | +
a(t)h(r) + b(t)

Γ(α+ 1)

≤ K1 +K2,

for all t ∈ R+. Taking the supremum over t, we obtain
‖ Gxn ‖≤ K1 + K2 for all n ∈ N. This shows that
{Gxn} is a uniformly bounded sequence in G(Br(0)). We
show that it is also equicontinuous. Let ε > 0 be given.
Since limt→∞ q(t) = 0, there is constant T > 0 such that
|q(t)| < ε

2 for all t ≥ T .
Let t1, t2 ∈ R+ be arbitrary. If t1, t2 ∈ [0, T ], then we
have
| Gxn(t2)−Gxn(t1) |

≤ | q(t2)− q(t1) |

+
1

Γ(α)

∣∣∣∣
∫ t2

0

g(t2, s, xn(s))

(t2 − s)1−α
ds−

∫ t1

0

g(t1, s, xn(s))

(t1 − s)1−α
ds

∣∣∣∣
≤ | q(t2)− q(t1) |

+
1

Γ(α)

∣∣∣∣
∫ t1

0

g(t2, s, xn(s))

(t2 − s)1−α
ds+

∫ t2

t1

g(t2, s, xn(s))

(t2 − s)1−α
ds

+

∫ t1

0

g(t1, s, xn(s))

(t1 − s)1−α
ds

∣∣∣∣
≤ | q(t2)− q(t1) |

+
1

Γ(α)

(∫ t1

0

∣∣∣∣g(t2, s, xn(s))

(t2 − s)1−α
−

g(t1, s, xn(s))

(t2 − s)1−α

∣∣∣∣ ds

+

∫ t1

0

∣∣∣∣g(t1, s, xn(s))

(t2 − s)1−α
−

g(t1, s, xn(s))

(t1 − s)1−α

∣∣∣∣ ds

+

∫ t2

t1

|g(t2, s, xn(s))|

(t2 − s)1−α
ds

)

≤ | q(t2)− q(t1) |

+
1

Γ(α)

(∫ t1

0

|g(t2, s, xn(s)) − g(t1, s, xn(s))|

(t2 − s)1−α
ds

+

∫ t1

0

|g(t1, s, xn(s))|

[
1

(t2 − s)1−α
−

1

(t1 − s)1−α

]
ds

+

∫ t2

t1

|g(t2, s, xn(s))|

(t2 − s)1−α
ds

)

≤ | q(t2)− q(t1) |

+
1

Γ(α)

(∫ t1

0

[|g(t2, s, xn(s)) − g(t1, s, xn(s))|] ×

1

(t2 − s)1−α
ds

+

∫ t1

0

(|g(t1, s, xn(s)) − g(t1, s, 0)|+ |g(t1, s, 0)|)×

[
1

(t2 − s)1−α
−

1

(t1 − s)1−α

]
ds
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+

∫ t2

t1

|g(t2, s, xn(s)) − g(t2, s, 0)|+ |g(t2, s, 0)|

(t2 − s)1−α
ds

)

≤ | q(t2) − q(t1) |

+
1

Γ(α)

(∫ t1

0

[|g(t2, s, xn(s)) − g(t1, s, xn(s))|] ×

1

(t2 − s)1−α
ds

+

∫ t1

0

[m(t1)h(|xn(s)|) + g1(t1)]×

[
1

(t2 − s)1−α
−

1

(t1 − s)1−α

]
ds

+

∫ t2

t1

m(t2)h(|xn(s)|) + g1(t2)

(t2 − s)1−α
ds

)

≤ | q(t2) − q(t1) |

+
1

Γ(α)

∫ t1

0

[|g(t2, s, xn(s)) − g(t1, s, xn(s))|]×

1

(t2 − s)1−α
ds

+
m(t1)h(r) + g1(t1)

Γ(α+ 1)
[tα1 − tα2 + (t2 − t1)

α]

+
m(t2)h(r) + g1(t2)

Γ(α+ 1)
(t2 − t1)

α.

From the uniform continuity of the function q(t) on [0, T ]
and the function g in [0, T ] × [0, T ] × [−r, r], we get |
Gxn(t2)−Gxn(t1)| → 0 as t1 → t2.
If t1, t2 ≥ T , then we have
| Gxn(t2)−Gxn(t1) |

≤ | q(t2) − q(t1) |

+
1

Γ(α)

∣∣∣∣
∫ t2

0

g(t2, s, xn(s))

(t2 − s)1−α
ds−

∫ t1

0

g(t1, s, xn(s))

(t1 − s)1−α
ds

∣∣∣∣
≤ |q(t1)|+ |q(t2)|

+
1

Γ(α)

∣∣∣∣
∫ t2

0

g(t2, s, xn(s))

(t2 − s)1−α
ds−

∫ t1

0

g(t1, s, xn(s))

(t1 − s)1−α
ds

∣∣∣∣
< ε,

as t1 → t2.

Similarly, if t1, t2 ∈ R+ with t1 < T < t2, then we have
| Gxn(t2)−Gxn(t1) |

≤| Gxn(t2) −Gxn(T )) | + | Gxn(T )−Gxn(t1) | .

Note that if t1 → t2, then T → t2 and t1 → T . Therefore
from the above obtained estimates, it follows that:
| Gxn(t2) −Gxn(T ) |→ 0 and | Gxn(T ) − Gxn(t1) |→ 0
as t1 → t2.

As a result, | Gxn(t2) −Gxn(T ) |→ 0 as t1 → t2. Hence
{Gxn} is an equicontinuous sequence of functions in X.
Now an application of the Arz’ela-Ascoli theorem yields
that {Gxn} has a uniformly convergent subsequence on
the compact subset [0, T ] of R. Without loss of generality,
call the subsequence of the sequence itself.
We show that {Gxn} is Cauchy sequence in X.

Now | Gxn(t) − Gx(t) |→ 0 as n → ∞ for all t ∈ [0, T ].
Then for given ε > 0 there exists an n0 ∈ N such that for
m, n ≥ n0,
then we have
| Gxm(t)−Gxn(t) |

=
1

Γ(α)

∣∣∣∣
∫ t

0

g(t, s, xm(s)) − g(t, s, xn(t))

(t− s)1−α
ds

∣∣∣∣
≤

1

Γ(α)

∫ t

0

|g(t, s, xm(s)) − g(t, s, xn(t))|

(t − s)1−α
ds

≤
1

Γ(α)

∫ t

0

m(t)h(|xm(s) − xn(s)|)

(t− s)1−α
ds

≤
m(t)tαh(r)

Γ(α+ 1)

≤
a(t)h∗

Γ(α+ 1)
< ε.

This shows that {Gxn} ⊂ G(Br(0)) ⊂ X is Cauchy.
Since X is complete, then {Gxn} converges to a point
in X. As G(Br(0)) is closed, {Gxn} converges to a point
in G(Br(0)). Hence, G(Br(0)) is relatively compact and
consequently G is a continuous and compact operator on
Br(0).
Next, we show that FxGx ∈ Br(0) for all x ∈ Br(0). Let
x ∈ Br(0) be arbitrary, then
| Fx(t)Gx(t) |

≤ | Fx(t) || Gx(t) |

≤ | f(t, x(t)) |

(
| q(t) | +

1

Γ(α)

∫ t

0

| g(t, s, x(s)) |

(t − s)1−α
ds

)

≤ [| f(t, x(t)) − f(t, 0) | + | f(t, o) |]

+ (| q(t) |

+
1

Γ(α)

∫ t

0

| g(t, s, x(s)) − g(t, s, 0) | + | g(t, s, 0) |

(t− s)1−α
ds

)

≤ [l(t) | x(t) | +f1(t)]

+

(
| q(t) | +

1

Γ(α)

∫ t

0

m(t)h(|x(t)|) + g1(t)

(t − s)1−α
ds

)

≤ [L ‖ x ‖ +f0 ] +

(
| q(t) | +

m(t)tαh(r) + g1(t)t
α

Γ(α+ 1)

)

≤ [L ‖ x ‖ +f0 ] +

(
| q(t) | +

a(t)h(r) + b(t)

Γ(α+ 1)

)

≤ [L ‖ x ‖ +f0 ] + (K1 +K2)

≤ L(K1 +K2) ‖ x ‖ +f0(K1 +K2)

=
f0(K1 +K2)

1− L(K1 +K2)
= r,

for all t ∈ R+. Taking the supremum over t, we obtain
‖ FxGx ‖≤ r for all x ∈ Br(0). Hence hypothsis (c) of
Theorem (2.1) holds.
Also we have

M = ‖ G(Br(0)) ‖
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= sup{‖ Gx ‖: x ∈ Br(0)}

= sup

{
sup
t≥0

{| q(t) |

+
1

Γ(α)

∫ t

0

| g(t, s, x(s)) |

(t − s)1−α
ds

}
: x ∈ Br(0)

}

≤ sup
t≥0

| q(t) | +sup
t≥0

[
a(t)h(r) + b(t)

Γ(α+ 1)

]

≤ K1 +K2,

and therefore Mk = L(K1 +K2) < 1.
Now we apply Theorem (2.1) to conclude that Eq. (1)
has a solution on R+.
Finally, we show the locally attractivity of the solutions
for Eq. (1). Let x and y be any two solutions of Eq. (1)
in Br(0) defined on R+, then we get
| x(t)− y(t) |

≤

∣∣∣∣f(t, x(t))
(

q(t) +
1

Γ(α)

∫ t

0

g(t, s, x(s))

(t − s)1−α
ds

)∣∣∣∣
+

∣∣∣∣f(t, y(t))
(

q(t) +
1

Γ(α)

∫ t

0

g(t, s, y(s))

(t− s)1−α
ds

)∣∣∣∣
≤ | f(t, x(t)) |

(
|q(t)|+

1

Γ(α)

∫ t

0

|g(t, s, x(s))|

(t− s)1−α
ds

)

+ | f(t, y(t)) |

(
|q(t)|+

1

Γ(α)

∫ t

0

|g(t, s, y(s))|

(t− s)1−α
ds

)

≤ 2(Lr + f0)

(
|q(t)|+

a(t)h(r) + b(t)

Γ(α+ 1)

)

for all t ∈ R+. Since limt→∞ q(t) = 0, limt→∞ a(t) = 0
and limt→∞ b(t) = 0, for ε > 0, there are real numbers
T

′

> 0, T
′′

> 0 and T
′′′

> 0 such that |q(t)| < ε for
t ≥ T

′

, a(t) < h∗ε
Γ(α+1)

for all t ≥ T
′′

and b(t) < ε
Γ(α+1)

for

all t ≥ T
′′′

. If we choose T ∗ = max{T
′

, T
′′

, T
′′′

}, then
from the above inequality it follows that |x(t)−y(t)| ≤ ε∗

for t ≥ T ∗, where ε∗ = 6(Lr + f0)ε > 0. This completes
the proof.
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