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by casting. During this process the fibres do nadargo
Abstract—The paper presents a method to analyse the phase change because their melting temperatureuch m

thermal processes occurring in the cast compositelgification.
The domain of cast is formed by parallel fibres bunk randomly
immersed in a host metal matrix. The heat is transfeed from
the metal matrix and absorbed by fibres. The objectie of this
paper is to evaluate the volumetric fraction of filves for which
the solidification of metal matrix occurs. Our mettod is to
compute Voronoi diagrams with Voronoi regions reprasenting
the geometry location of the fibres in the metal ntaix and to use
these regions as control volume within a variant ofControl
Volume Method.

Index Terms—cast composition solidification, heat transfer,
Voronoi diagrams.

I. INTRODUCTION

Heat conduction is a relevant topic in many indaktr
processes. Knowledge of the thermal conduction ginema
and its effective description are essential for dhalysis of
the heat transport processes occurring in hetesmgen
media. An example of industrial importance
solidification process of metal matrix composite MK2)
[1]-[7]- The formation of microstructures can beegstd
during the solidification process as is the casefilofe
reinforced aluminium composite with the extendedsenf
the fibres cooled by a heat sink. MMC solidificatioas been
investigated in various fibre arrangement scenaridsiding
fixed inline or staggered fibre in a variety of spa
distributions. The presence of fibres has a reaifior effect
on mechanical properties of MMCs compared to madimicli
metals. Superior mechanical, electrical and thepraberties
of MMCs depend on the appropriate choice of theimand
fibre materials, their shape and fabrication method

The problem we consider is the solidification of thetal
(the matrix) in the presence of fibres. The aim cofr
investigation is to determine the volumetric fraotof fibres
for which the solidification of metal matrix proaks in
‘a natural way’ due to the heat exchange betweenthtrix
and fibres.

II. MATHEMATICAL MODEL
We consider a hypothetic process of the synthéd#iC
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is the

higher than that of the matrix. The solidifying mpatand
fibres are contained within a cavity with adiabatialls and
the only possible energy exchange process is thetitemsfer
form the matrix to the fibres so the fibres sersadeat sink.
The dominant mechanism of energy transport in ghetyeis
diffusion.

The governing equations for the conservation of@nfs],
including the presence of the fibres bundle are:

oT..(x y,t
) <, (1), fuyea,, m=12 @
wherec.(T) is the specific heat per unit of volumg,(T) is
thermal conductivity,T, X, y, t denote the temperature,
geometrical co-ordinates and time. Index 1 identifies the
matrix sub-domain aneh= 2 identifies the fibres sub-domain.

The ternqy is the source function and this term can be writte
in the form

La fs(x, y,t)
4 = ot
0,

, form=1
)

form=2

wherelL is the latent heat per unit of volunfg,s the solid

state fraction at the neighbourhood of the considigyoint

(x,y). Pure metals (e.g. aluminium) solidify in a camst

temperatureT*. The functionfs changes from 0 (molten

metal: forTy(x, y, t) >T*) to 1 (solid body: foiT(x, y, t) < T*).
The value oh(T) is determined by relation

AL form=1andT >T"
(1- f A, + fsAg form=1andT =T
form=1andT <T’
form=2

®3)

whereA, As are thermal conductivities of the liquid and solid
state of the metal matrix aig, is the thermal conductivity of
the fibres bundle. In a similar way one can detaeqj(T).

On the contact surface between the matrix and fiéore
continuity of temperature and a continuity of h#lax are
assumed

) aTl(x,y,t):_)\ 6T2(x,y,t)
Y on > 9n
Ty t)=T,(xv.t)

(4)
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where d/dn denotes a normal derivative. On the externdDT(X). This triangulation is the dual structure of ¥haronoi

surface of the domain the boundary condition inftien

aTm(x, y,t)
on

=0 (%)

is given. For time = 0 the initial condition is also known

t= 0 Tl(X’ y’o) =T10’ TZ(X’ y’O) =T20 (6)

In a numerical modelling of the solidification pess
considered the metal-matrix and fibre sub-domains
divided into small cells (control volumes), knows the
Voronoi polygons (also called the Thiessen or Digt cells
in two dimensions) [9]-[13]. The Voronoi polygonsane
of the most fundamental and useful constructs ddfibhy
irregular lattices. For a set = {X;, X, ..., X} Of N distinct
points inR?, the Voronoi tessellation is the partitionRffinto
N polygons. The polygon that contains poinfcentral point)
is denoted byAV,. Each region\V; is defined as the set of
points inR? which are closer tg than to any points iX:

VORONOITESSELLATION AND MESHGENERATION

AV, :{XDRZ ;d(x,>g)<d(x,xj), Oj #i, j =l...,N} (7)

where d(LI) is the Euclidean distance function. All of the

Voronoi regions are convex polygons. In Fig. 2 ¢éxample
of Voronoi polygons is shown. A single polygon &fided by
the lines that bisect the lines between the ceptiit and its
surrounding points. The bisecting lines and thenegtion
lines are perpendicular to each other. When wethisaule

for every pointin the area, the area will be costgdly covered
by adjacent polygons. Some of them are infinitepéio’)

because they have no neighbouring points in thiattion.

Fig. 1. The Voronoi polygons for a set of arbithari
distributed points

Many algorithms to construct the Voronoi polygoas te
found in literature. One popular method is basedtun
Delaunay triangulation [9]-[12]. This triangulatiaran be
formulated in a circle criterion. The Delaunay tigalation

DT of a setX of points in the plane is such a triangulatior|[:

DT(X) that consists of non-overlapping triangles anut@ios
no points ofX inside the circumcircle of any triangle in

ISBN:978-988-18210-1-0

tessellation. The polygons are defined by lines bigect the
connection lines between neighbouring points apcténters

of circumcircles are the vertices of the Voronolygons. In
the case of unbounded polygons whose center gnts the
convex hull of seX, they are bound by the boundaries of the
domainQP - see Fig. 1.

Positions of points in the set are usually determined
randomly and hence the mesh of control volumes is
unstructured. We additionally impose the requireintieat the
minimal distance between two points must be gretiian
the pre-assigned value. It makes the polygons moiferm
and the central point lies nearer the middle ofpthkygon.

In Fig. 2 an example of the structure of cast caositpe

awith 40% fibres is shown. The domain has been diiohto

2351 control volumes. Gray control volumes deteartime
fibre sub-domain. If we assume the fibres bundlpasallel
then on the section considered one obtains theedésset of
circles. The position of the fibre centgr= (xy, yo), wherg is
an index of the fibre considered, is determinea irandom
way. Also the fibre radiusr;is randomly determined
rj O [Fmin T'mad- The number of CV should assure a good
approximation of fibre circular cross-sections. Husitions
of central points in CV close to the contact betwere and
metal-matrix are analytically determined in ordeathieve a
better approximation of the fibres shape. The geooad
parameters of a system matrix-fibres are choseth@mbasis
of the optical micrographs presented in [14]. It d& seen
that the fibres diameters are different, and afsir tmutual
positions are rather incidental. The only unquestide
information concerning the geometry of the syst&suits
from the volumetric fraction of the fibres in therdain
analyzed. So, the numerical procedure realizing nitesh
generation, fibres localization, values of fibradir bases on
the application of random numbers generation. @nsthge
of mesh generation, the type of sub-domaim=1, 2) for
every CV is assigned.
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Fig. 2. Example of mesh
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IV. NUMERICAL MODELLING

The control
constitutes the effective tool for numerical congtians of
the heat transfer processes. The domain analyzeidided

volume method (CVM) [8], [15]-[17]

assumeR, =o (in numerical realization e.gR}, =10'°)

if the surface limiting the domainV, in the directione is
a part of the boundary - it assures to zero hest ifi the
directione.

into N volumes. The CVM algorithm allows to find the 1pe change of enthalpy of the control volurii, during

transient temperature field at the set of nodesesponding
to the central points of the control volumes. Thed
temperatures can be found on the basis of enetgpdes for
the successive volumes. In order to assure thecoess and
exactness of the algorithm proposed we generateahiol
volumes in the shape of the Voronoi polygons (5&g:3).

Fig. 3. Control voluméV,

Let us consider the control volune/, with the central

the timeAt equals [8], [15]

AHy = (T, =T, ) jav,) (11)

wherec, is the volumetric specific hedt,f+1 denotes two
successive time levels.
Let us write the balance equation in the explicitesne

flrt f Tf-T7
el (T =T, v, = ZeTj"AAeAt AV, At (12)

e

or

g, At

nodex,. It is assumed here that the thermal capacitiels an

capacities of the internal heat sources are coratedtin the
nodes representing elements, while thermal resistaare
concentrated in the sectors joining the nodes.

The energy balance for the control volum¥, can be
written in the form

AH, = ZQe +‘AV0‘q\/ At (8)

whereAH, is a change of control volume enthalpy during th

time intervalAt, Q. — the heat conducted at the tilvefrom

the adjoining nodes to the noglg qy — a mean capacity of

internal heat sources in the control volum,.
If one assumes that the heat fluxes flowing toeleenent
AV, are proportional to the temperature differenceshat

— Af
momentt = t', then we shall obtain a solving system of thefHo =6

type 'explicit scheme'. So

Tf _Tf
=97f°AA9At

Q.
Roe

9)

whereRofeis the thermal resistance between poigtaind X,

[8], AA. surface limiting the domainV, in the directiore. If
we denote by, the distance between the noagsx. then

RC= e, N

—_® 4 e 10
VA (10)

TOf "= zWeTef + f (13)
e=0 CO
where
At
w= S8 ey n (14)
Co RoclAV|
n
W, =1->"W, (15)

e=1

In order to assure the stability of the above expdicheme the
coefficientW, must be positive.

Next, the problem of metal solidification in thentml
yolume AV, in a constant temperatufé will be discussed.

Tet us assume that at the time t " the temperatur@,’ in

nodex, is Ty > T* (the molten metal), and the calculated
temperaturd, *< T*. The change of enthalpy faV, during
the timeAt is as follows

(—I—of -7 +1)

A (16)

The enthalpyAH, can be divided into two components

AHo, = ¢! (T ~T*)AV,, AHg, = AHG —AH, (17)
The change of enthalpyAHy, associated with the
solidification of the control volumaV,is equal to

AHg, = LATGM AV, (18)

f+1
where Afg,

AVO\ is a solidified part of the considered
volume AV,. So, the energy balance fai, in which the

whereA{ and A\l are the thermal conductivities in the controlsolidification process starts, can be written i@ tbrm

volumes AV, and AV, at the moment=t'. The other
definition of thermal resistance should be introgtli¢or the
boundary volumes [8]. For the boundary conditioh \{&

ISBN:978-988-18210-1-0

ol (1 -Ty )avy = ¢! (T, ~T*)av, +Lafs?

AV, (19)
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From the last equation one obtains without external thermal interactions. The algorith
proposed allows to analyze the thermal processasystem
AFIH = C (T* T, +1) 20 matrix-fiores for the different technological cotidns
s T (20) (fraction of fibres, initial temperatures, boundagnditions
etc.).
and simultaneously From the enthalpy balance approach (for adiabgsitem)

one can determined in an analytical way fibrestioacfor
21) which the whole liquid metal passes to the solatestThe

fool =Afg?, T =T* ,
S0 0 0 enthalpy balance can be written as follows

If in the control volume\Vythe first portion of solid metalis T«
present then it is assumed that the temperaturesmonding (1 fr)DHl(TlO)Jr fr DHZ(TZO)_ H( )

to AV, equalsT* and for the successive steps of time the
following difference equation is required wherefr is fibres fraction in the considered domain.andH,

are enthalpies of metal-matrix and fibre sub-domain
respectively andH is enthalpy of the whole domain.

(26)

T f -T f .

D R CAA AL+ L(f o = fsfo)‘AVo‘ =0 (22)  Assuming thafl;, > T* then the enthalpy, is defined by

e e

. . Tio
From the last equation one obtains H ICsdT FL+ IC dt (27)
Tret
T f T f

fo = fo e AA, (23)

% o \AVO\ Z Ro. and the enthalpki, equals to
whereasl, "' = T*. For the one of successive steps of time it T20 4 08
turns out thatf ™ >1, this means that more than the whole 2 20 .[Cf'b T (28)

Tret

AV, has solidified. The enthalpy connected with thistibus
solidification of AV, abovefs = 1 should be recalculated on

Assuming that the whole liquid metal passes tcstilel state
the enthalpy connected with cooling of the solatest g d P

and final established temperature of the whole dorfthe
metal matrix sub-domain and fibres sub-domain)qisaé to

'-(fsfo+l _1)‘AV0‘ = Cof (T * _Tom)AVO‘ (24) T*, then the enthalpyH is defined by
hence _ N N
H( *) = (1— fr) Jcsdt+ fr fcfibdr (29)
L(f*-1) T Tt
TOf T _7sof , fsfo+1 =1 (25)

Substituting (27), (28) and (29) into (26) and asisilg that

. . . CL, Cs, Ciip @re constant, one can calculate the value
In the successive steps of time the energy bal@nee/,is of L Cs Gib

the form (13). L+c, (Tlo T*)

L+C|_(T10 -T* )+Cflb(T Tzo)

(30)

V. EXAMPLE OF COMPUTATIONS

Numerical simulations of a casting process havenbee FOr the above thermophysical parameters we obtan t
executed for the matrix-fibre (pure metal) with Value fr=52,98%. This analytical result confirms the
thermophysical parameterss = 2.94310°, ¢, = 3.072¢°  CcOrrectness of numerical results.

JI(M? K), As = 261,A, = 104 W/(m K),L = 1.05310° J/n,
T* = 660°C, initial temperaturd; o= 700°C and the fibres
(S) with thermophysical parameters;, = 1.6310° J/(n? K),
Mib = 148 W/(m K), initial temperatur@,, = 20 °C. The In the present work, the Voronoi diagrams have been
considered domain (2D problem) has the dimensi@nuhox exploited to generate a family of meshes for thatrod

100 pm. In simulations the fibres fraction has been m&sl volume method algorithm. The properties of Voronoi
as 40%. 50% and 55% diagram permit to find the nodal temperatures irfiective

manner. When the cast solidifies the shapes oflifieli
domains changes in a peculiar manner around théngoo
fibres. Thus, the random Voronoi tessellations vallto

sub-domains considered on solidification time isryve 2chiéve higher correspondence with the temperditate
essential. In the case of the simulation with th&o5of fibres than W'del_y l_Jsed regular tt_—:‘ssellatl_ons. Wh|le thethod is
fraction, the whole liquid metal passes to the dsaitate presently limited to rather simple, circular-filgsbapes, work

VI. CONCLUSION

In Figures 4, 5 and 6 the kinetics of the solidifion
process for different fibres fraction are presentdthe
influence of fibres fraction, initial temperaturesf
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Fig. 6. The kinetics of solidification — 55% fibré&action
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