
 
 

 

  
Abstract—This paper presents the conceptual neighborhood 

graphs with the transitions between the topological spatial 
relations that can exist between a circular spatially extended 
point and a line. The final objective of this work is the use of the 
transitions in the prediction of a mobile user position in a road 
network. The conceptual neighborhood graphs were identified 
using the snapshot model and the smooth-transition model. In 
the snapshot model, the identification of neighborhood relations 
is achieved looking at the topological distance existing between 
pairs of spatial relations. In the smooth-transition model, 
conceptual neighbors are identified analyzing the topological 
deformations that may change a topological spatial relation. 
The obtained graphs and the corresponding topological 
distances between spatial relations can be used as an 
alternative, or as a complement, to map-matching techniques 
usually used to predict the positions of mobile users. 
 

Index Terms—Conceptual neighborhood graph, Qualitative 
reasoning, Spatially Extended Point, Spatial Reasoning, 
Topological spatial relations.  

I. INTRODUCTION 
  The relevance of the identification of the topological 

spatial relations is associated with the need to conceptualize 
the spatial relations that can exist among several objects in 
the geographical space. The work described in this paper is 
associated with the topological spatial relations existing 
between a Circular Spatially Extended Point and a Line [1, 2] 
and their use in the prediction of mobile users’ future 
positions in a context-aware mobile environment. With the 
topological spatial relations it is possible to identify the 
conceptual neighborhood graphs that state the possible 
transitions between spatial relations and, therefore, the 
possible movements that a mobile user can do in a road 
network. The selection of a Circular Spatially Extended Point 
is associated with the need to associate a certain degree of 
uncertainty to the position of a mobile user. A similar 
approach was followed by Wuersch and Caduff [3, 4] for 
pedestrian navigation using the topological spatial relations 
existing between two Circular Spatially Extended Points, one 
representing the user’s location and the other representing a 
waypoint that is used to define paths for pedestrians in a 
pedestrian guiding system. 

In emerging applications areas, like context-aware mobile 
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environments, location-based services, ubiquitous 
computing, among others, the position of a mobile user 
constitutes the key for providing specific context-aware 
services. However, this position usually integrates a certain 
degree of uncertainty associated to the sensing technology. 
Although technologies like the Global Positioning System 
(GPS) provides quite accurate estimates, the positioning 
provided by other means like cellular networks positioning 
systems is typically much less precise. Having this limitation 
and the need to properly deal with it, the use of a Circular 
Spatially Extended Point allows the representation of such 
uncertainty and also the definition, in a specific application, 
of the maximum uncertainty value through the specification 
of the radius of the Circular Spatially Extended Point. 

The identification of the topological spatial relations [1, 2] 
was motivated by a specific application domain –  
context-aware mobile environments – this paper presenting 
an example of how the topological spatial relations existing 
between a mobile user and a road network can be used to 
assign the user to a specific road segment. However, this 
research is of general use since the adopted principles were 
not adapted or strictly designed to a specific application. 

This paper is organized as follows: Section 2 presents the 
identification of the conceptual neighborhood graph 
following the snapshot model and, section 3, using the 
smooth-transition model. In section 4 the two graphs are 
compared and the main differences between them are 
described and discussed. Section 5 presents an example of 
the use of the spatial relations and the conceptual 
neighborhood graphs to predict the position of mobile users, 
and section 6 concludes summarizing the work undertaken. 

II. CONCEPTUAL NEIGHBORHOOD GRAPH WITH THE 
SNAPSHOT MODEL 

Geographic objects and phenomena may gradually change 
their location, orientation, shape, and size over time. A 
qualitative change occurs when an object deformation affects 
its topological relation with respect to other object. Models 
for changes of topological relations are relevant to 
spatio-temporal reasoning in geographic space as they derive 
the most likely configurations and allow for predictions 
(based on inference) about significant changes [5]. The 
objects analyzed in this work are a Circular Spatially 
Extended Point (CSEP) and a Line (L). A CSEP P includes a 
pivot (P•), an interior (P°), a boundary (∂P) and an exterior 
(P-), while L integrates an interior (L°), a boundary (∂L) and 
an exterior (L-) (Fig. 1). 

In a conceptual neighborhood graph, nodes represent 
spatial relations and edges are created to link similar 
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relations. Different definitions of similarity lead to different 
graphs involving the same set of relations. Usually, 
conceptual neighborhood graphs are built considering 
situations of continuous change, representing the possible 
transitions from one relation to other relations. Those graphs 
are useful for reducing the search space when looking for the 
next possible situations that might occur [6]. 
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Fig. 1 - Parts of a CSEP and a line 

 
One of the approaches to identify a conceptual 

neighborhood graph is using the snapshot model. This model 
compares two different topological relations with no 
knowledge of the potential transformations that may have 
caused the change [7]. The comparison is made by 
considering the topological distance between two topological 
relations [5]. This distance determines the number of 
corresponding elements, empty (∅) and non-empty (¬∅), 
with different values in the corresponding intersection 
matrices. The intersection matrix is presented in Equation 1. 
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The definition of topological distance (τ) between two 
spatial relations (RA and RB) given by Egenhofer and Al-Taha 
[5] is the sum of the absolute values of the differences 
between corresponding entries of the intersections verified in 
the corresponding matrices (MA and MB). The adoption of this 
definition and its adaptation to the context of this work, 
12-intersection matrices [1, 2], lead to the topological 
distance calculation as described by Equation 2. 
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As an example, consider the topological spatial relations 
illustrated in Table I. Using relation 1 (R1) and relation 2 (R2) 
[1, 2], and their corresponding matrices M1 and M2, the 
calculated topological distance between these two 
topological spatial relations takes the value 2. 

Table I – Topological distance: an example 
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The calculation of the topological distances, Equation 2, 
showed that for the majority of the topological relations the 
minimum distance to their neighborhoods is 1. The minimum 
topological distance (Table II) between one relation and its 

neighborhoods is 2 only in the case of relation 21 (R21). 

Table II – Topological distance (snapshot model) 
R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R 10 R 11 R 12 R 13 R 14 R 15 R 16 R 17 R 18 R 19 R 20 R 21 R 22 R 23 R 24 R 25 R 26 R 27 R 28 R 29 R 30 R 31 R 32 R 33 R 34 R 35 R 36 R 37 R 38

R 1 0 2 1 1 4 3 2 4 2 5 4 3 4 5 5 4 3 6 5 6 4 7 6 6 7 6 6 4 7 6 5 6 7 7 6 5 8 7
R 2 2 0 1 3 2 1 2 2 4 3 2 3 4 3 5 4 5 4 3 4 6 5 4 6 7 6 4 6 5 4 5 6 5 7 6 7 6 5
R 3 1 1 0 2 3 2 1 3 3 4 3 2 5 4 6 5 4 5 4 5 5 6 5 7 8 7 5 5 6 5 4 7 6 8 7 6 7 6
R 4 1 3 2 0 3 2 1 5 1 4 3 2 5 6 4 3 2 5 4 7 3 6 5 7 6 5 7 3 6 5 4 7 8 6 5 4 7 6
R 5 4 2 3 3 0 1 2 2 4 1 2 3 4 3 3 4 5 2 3 4 6 3 4 6 5 6 4 6 3 4 5 6 5 5 6 7 4 5
R 6 3 1 2 2 1 0 1 3 3 2 1 2 5 4 4 3 4 3 2 5 5 4 3 7 6 5 5 5 4 3 4 7 6 6 5 6 5 4
R 7 2 2 1 1 2 1 0 4 2 3 2 1 6 5 5 4 3 4 3 6 4 5 4 8 7 6 6 4 5 4 3 8 7 7 6 5 6 5
R 8 4 2 3 5 2 3 4 0 4 1 2 3 2 1 3 4 5 2 3 2 6 3 4 4 5 6 2 6 3 4 5 4 3 5 6 7 4 5
R 9 2 4 3 1 4 3 2 4 0 3 2 1 4 5 3 2 1 4 3 6 2 5 4 6 5 4 6 2 5 4 3 6 7 5 4 3 6 5
R 10 5 3 4 4 1 2 3 1 3 0 1 2 3 2 2 3 4 1 2 3 5 2 3 5 4 5 3 5 2 3 4 5 4 4 5 6 3 4
R 11 4 2 3 3 2 1 2 2 2 1 0 1 4 3 3 2 3 2 1 4 4 3 2 6 5 4 4 4 3 2 3 6 5 5 4 5 4 3
R 12 3 3 2 2 3 2 1 3 1 2 1 0 5 4 4 3 2 3 2 5 3 4 3 7 6 5 5 3 4 3 2 7 6 6 5 4 5 4
R 13 4 4 5 5 4 5 6 2 4 3 4 5 0 1 1 2 3 2 3 4 6 5 6 2 3 4 4 6 5 6 7 2 3 3 4 5 4 5
R 14 5 3 4 6 3 4 5 1 5 2 3 4 1 0 2 3 4 1 2 3 7 4 5 3 4 5 3 7 4 5 6 3 2 4 5 6 3 4
R 15 5 5 6 4 3 4 5 3 3 2 3 4 1 2 0 1 2 1 2 5 5 4 5 3 2 3 5 5 4 5 6 3 4 2 3 4 3 4
R 16 4 4 5 3 4 3 4 4 2 3 2 3 2 3 1 0 1 2 1 6 4 5 4 4 3 2 6 4 5 4 5 4 5 3 2 3 4 3
R 17 3 5 4 2 5 4 3 5 1 4 3 2 3 4 2 1 0 3 2 7 3 6 5 5 4 3 7 3 6 5 4 5 6 4 3 2 5 4
R 18 6 4 5 5 2 3 4 2 4 1 2 3 2 1 1 2 3 0 1 4 6 3 4 4 3 4 4 6 3 4 5 4 3 3 4 5 2 3
R 19 5 3 4 4 3 2 3 3 3 2 1 2 3 2 2 1 2 1 0 5 5 4 3 5 4 3 5 5 4 3 4 5 4 4 3 4 3 2
R 20 6 4 5 7 4 5 6 2 6 3 4 5 4 3 5 6 7 4 5 0 4 1 2 2 3 4 2 6 3 4 5 4 3 5 6 7 4 5
R 21 4 6 5 3 6 5 4 6 2 5 4 3 6 7 5 4 3 6 5 4 0 3 2 4 3 2 6 2 5 4 3 6 7 5 4 3 6 5
R 22 7 5 6 6 3 4 5 3 5 2 3 4 5 4 4 5 6 3 4 1 3 0 1 3 2 3 3 5 2 3 4 5 4 4 5 6 3 4
R 23 6 4 5 5 4 3 4 4 4 3 2 3 6 5 5 4 5 4 3 2 2 1 0 4 3 2 4 4 3 2 3 6 5 5 4 5 4 3
R 24 6 6 7 7 6 7 8 4 6 5 6 7 2 3 3 4 5 4 5 2 4 3 4 0 1 2 4 6 5 6 7 2 3 3 4 5 4 5
R 25 7 7 8 6 5 6 7 5 5 4 5 6 3 4 2 3 4 3 4 3 3 2 3 1 0 1 5 5 4 5 6 3 4 2 3 4 3 4
R 26 6 6 7 5 6 5 6 6 4 5 4 5 4 5 3 2 3 4 3 4 2 3 2 2 1 0 6 4 5 4 5 4 5 3 2 3 4 3
R 27 6 4 5 7 4 5 6 2 6 3 4 5 4 3 5 6 7 4 5 2 6 3 4 4 5 6 0 4 1 2 3 2 1 3 4 5 2 3
R 28 4 6 5 3 6 5 4 6 2 5 4 3 6 7 5 4 3 6 5 6 2 5 4 6 5 4 4 0 3 2 1 4 5 3 2 1 4 3
R 29 7 5 6 6 3 4 5 3 5 2 3 4 5 4 4 5 6 3 4 3 5 2 3 5 4 5 1 3 0 1 2 3 2 2 3 4 1 2
R 30 6 4 5 5 4 3 4 4 4 3 2 3 6 5 5 4 5 4 3 4 4 3 2 6 5 4 2 2 1 0 1 4 3 3 2 3 2 1
R 31 5 5 4 4 5 4 3 5 3 4 3 2 7 6 6 5 4 5 4 5 3 4 3 7 6 5 3 1 2 1 0 5 4 4 3 2 3 2
R 32 6 6 7 7 6 7 8 4 6 5 6 7 2 3 3 4 5 4 5 4 6 5 6 2 3 4 2 4 3 4 5 0 1 1 2 3 2 3
R 33 7 5 6 8 5 6 7 3 7 4 5 6 3 2 4 5 6 3 4 3 7 4 5 3 4 5 1 5 2 3 4 1 0 2 3 4 1 2
R 34 7 7 8 6 5 6 7 5 5 4 5 6 3 4 2 3 4 3 4 5 5 4 5 3 2 3 3 3 2 3 4 1 2 0 1 2 1 2
R 35 6 6 7 5 6 5 6 6 4 5 4 5 4 5 3 2 3 4 3 6 4 5 4 4 3 2 4 2 3 2 3 2 3 1 0 1 2 1
R 36 5 7 6 4 7 6 5 7 3 6 5 4 5 6 4 3 2 5 4 7 3 6 5 5 4 3 5 1 4 3 2 3 4 2 1 0 3 2
R 37 8 6 7 7 4 5 6 4 6 3 4 5 4 3 3 4 5 2 3 4 6 3 4 4 3 4 2 4 1 2 3 2 1 1 2 3 0 1
R 38 7 5 6 6 5 4 5 5 5 4 3 4 5 4 4 3 4 3 2 5 5 4 3 5 4 3 3 3 2 1 2 3 2 2 1 2 1 0  

Based on the calculated topological distances, a 
conceptual neighborhood graph was identified. Fig. 2 
presents the obtained graph, where the closest relations of 
each topological relation are connected. 
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Fig. 2 – Conceptual neighborhood graph: snapshot model 
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The graph is virtually divided in three parts. In the upper 
part, the 19 topological relations do not verify any 
intersection between the pivot of the CSEP and the line. If the 
pivot of the spatially extended point is ignored, making a 
CSEP equal to a region, these 19 topological spatial relations 
correspond to the 19 topological spatial relations identified in 
[7] for line-region relations. The middle of the graph contains 
the relations in which one of the boundaries of the line 
intersects the pivot of the CSEP. The lower part of the graph 
contains the topological relations in which the pivot of the 
CSEP is intersected by the interior of the line. These three 
parts are linked by relation 21 (R21) that presents edges to 
relations 9, 23, 26 and 28 (R9, R23, R26 and R28) with the 
minimum topological distance of 2. All the other edges, and 
as previously mentioned, link spatial relations with 
topological distance equal to 1. 

III. CONCEPTUAL NEIGHBORHOOD GRAPH WITH THE 
SMOOTH-TRANSITION MODEL 

The smooth-transition model states that two relations are 
conceptual neighbors if there is a smooth-transition from one 
relation to the other. Egenhofer and Mark [7] define a 
smooth- -transition as an infinitesimally small deformation 
that changes the topological relation. Attending to the 
adopted 12-intersection matrix, the existence of a smooth- 
-transition means that an intersection or its adjacent 
intersection changes from empty to non-empty or reverse. 
The concept of adjacency between the several parts (interior, 
boundary and exterior) of a region (R) is formalized as [7]: 

Adjacent (R°) = ∂R 
Adjacent (∂R) = R° and R- 
Adjacent (R-) = ∂R 

In the context of this work, the notion of adjacency needs 
to be adapted to the several parts of a CSEP. For a CSEP (P) 
we have: 

Adjacent (P•) = P° 
Adjacent (P°) = P• and ∂P 
Adjacent (∂P) = P° and P- 
Adjacent (P-) = ∂P 

Following the work of Egenhofer and Mark [7], the 
changes that can occur in the smooth-transition model 
between a line and a region are associated with moving the 
boundary of the line to an adjacent part of the region or 
pushing the interior of the line to an adjacent part of the 
region. In this work this principles are adopted and adapted in 
order to change the parts of a region to the parts of a CSEP. 

For the definition of the conditions that allow the 
identification of the conceptual neighbors the notion of extent 
was introduced [7]. It represents the number of non-empty 
intersections existing between the line and the four parts of 
the CSEP. If the interior of the line is completely located in 
the exterior of the CSEP then the extent of this relation is 1 
(Extent(P, L°)=1). This is the case of R1. If the interior of the 
line intersects the four parts of the CSEP then the extent of 
the relation is 4 (Extent(P, L°)=4) and this is verified in 
relations like R28 or R30. 

Using the Adjacent and Extent concepts, the smooth- 
-transitions that can occur between a CSEP (P) and a line (L) 
can be formalized as follows. 

Condition I.  If the two boundaries of L intersect the same 
part of P then the intersection must be extended to the 
adjacent parts of P (Equation 3). 
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Condition II.  If the two boundaries of L intersect 
different parts of P then the intersection must be extended to 
the adjacent parts of P (Equation 4). 
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Condition III.  The intersection of L’s interior must be 
moved to an adjacent part of P (Equation 5). 
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Condition IV.  The intersection of L’s interior with the 
parts of P must be reduced (Equations 6, 7 and 8). 
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The established conditions to the smooth-transitions may 
generate impossible patterns (in terms of the topological 
spatial relations that can actually exist). This impossible 
patterns need to be identified and eliminated from the set of 
valid ones (possible conceptual neighbors). One simple 
validation can be done by checking if the identified 
conceptual neighbor does match with one of the intersections 
matrices that are the possible topological spatial relations [1, 
2]. If not, certainly that represents an impossible pattern. 
Although this simple validation, Egenhofer and Mark [7] 
defined two consistency constraints that are here adopted and 
extended in order to consider the specific case of the 
topological spatial relations that can exist between a CSEP 
(P) and a line (L). These constraints limit the possible 
transitions that can occur following conditions I to IV in 
order to guarantee that the identified patterns are valid. In that 
sense, these constraints are equivalent to some of the 
conditions used in the identification of the topological spatial 
relations that can exist between a CSEP and line [1, 2]. 

Constraint I.  If L’s interior intersects with P’s interior 
and exterior, then it must also intersect P’s boundary 
(Equation 9). 
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Constraint II.  If L’s boundary intersects with P’s interior 
(exterior), then L’s interior must intersect P’s interior 
(exterior) (Equations 10 and 11). 
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Constraint III.  P’s pivot can only intersect with a single 
part of L (Equations 12, 13 and 14). 
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In order to exemplify the use of these conditions to identify 
the conceptual neighborhood graph using the 
smooth-transition model, let us consider Condition I and the 
corresponding Equation 3. Taking R1 and its corresponding 
M1, Table III shows the neighbors identification process. For 
the initial relation R1 and after the application of Equation 3 a 
matrix is identified with a valid pattern that corresponds to R3 
meaning that an edge linking these two relations in the 
conceptual neighborhood graph is needed. Another example, 
using the same Equation 3, is also presented in Table III. For 
the initial relation R13, and as P’s interior has two the adjacent 
parts, P’s pivot and P’s boundary, two matrices are identified, 
each one of them corresponding to a valid pattern R14 and R24. 
In this case, two of the neighbors of R13 are R14 and R24. 

Table III – Smooth-transition model: an example 
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Applying Condition I to Condition IV, Constraint I to 

Constraint III, and their respective equations (3 to 14), the 

several links between relations in the conceptual 
neighborhood graph were identified. The corresponding 
graph has 83 edges linking 38 topological spatial relations, 
and is showed in Fig. 3. The complexity of the graph results 
from the fact that 11 relations have 5 conceptual neighbors, 
and 6 relations have 6 conceptual neighbors. By comparison, 
in the graph obtained through the snapshot model each 
relation has a maximum of 4 neighbors, resulting in a total of 
51 edges. 

 
Fig. 3 – Conceptual neighborhood graph: smooth-transition 

IV. COMPARISON OF THE TWO CONCEPTUAL 
NEIGHBORHOOD GRAPHS 

The analysis of the two conceptual neighborhood graphs 
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highlighted the main differences between them. It also 
allowed the validation of the two graphs, as the transitions 
between spatial relations were analyzed to see whether they 
are possible or not. These verifications ensure that the graphs 
accomplish the principles that guided their identification. 
One of the main differences between the two graphs, as 
shown in Table IV, is the list of the possible transitions 
between the 38 topological spatial relations. The notation 
used in this table is as follows:  
• n, for common transitions among relations in the two 

graphs; 
• n-, for transitions allowed in the graph obtained by the 

snapshot model and not possible in the graph obtained 
by the smooth-transition model; 

• n= and n≡, for transitions allowed in the graph obtained 
by the smooth-transition model and not possible in the 
graph obtained by the snapshot model.  

Table IV – Possible transitions among relations 
Snapshot Model Smooth-transition Model 

1 → 3, 4 1 → 3, 4 

2 → 3, 6 2 → 3, 6 

3 → 1, 2, 7 3 → 1, 2, 7 

4 → 1, 7, 9 4 → 1, 7, 9 

5 → 6, 10 5 → 6, 10 

6 → 2, 5, 7, 11 6 → 2, 5, 7, 11 

7 → 3, 4, 6, 12 7 → 3, 4, 6, 12 

8 → 10, 14 8 → 10, 14, 27= 

9 → 4, 12, 17_, 21_ 9 → 4, 12, 28= 

10 → 5, 8, 11, 18  10 → 5, 8, 11, 18, 29= 

11 → 6, 10, 12, 19 11 → 6, 10, 12, 19, 30= 

12 → 7, 9, 11 12 → 7, 9, 11, 17=, 31= 

13 → 14, 15 13 → 14, 15, 24=, 32= 

14 → 8, 13, 18 14 → 8, 13, 18, 20≡, 33= 

15 → 13, 16, 18 15 → 13, 16, 18, 25=, 34= 

16 → 15, 17_, 19 16 → 15, 19, 26=, 35= 

17 → 9_, 16_ 17 → 12=, 19=, 21≡, 36= 

18 → 10, 14, 15, 19 18 → 10, 14, 15, 19, 22≡, 37= 

19 → 11, 16, 18 19 → 11, 16, 17=, 18, 23≡, 38=  

20 → 22 20 → 14≡, 22, 24=, 27=, 33≡ 

21 → 9_, 23, 26_, 28 21 → 17≡, 23, 28, 36≡ 

22 → 20, 23 22 → 18≡, 20, 23, 25=, 29=, 37≡ 

23 → 21, 22 23 → 19≡, 21, 22, 26=, 30=, 38≡ 

24 → 25 24 → 13=, 20=, 25, 32= 

25 → 24, 26 25 → 15=, 22=, 24, 26, 34= 

26 → 21_, 25 26 → 16=, 23=, 25, 35= 

27 → 29, 33 27 → 8=, 20=, 29, 33 

28 → 21, 31, 36_ 28 → 9=, 21, 31 

29 → 27, 30, 37 29 → 10=, 22=, 27, 30, 37 

30 → 29, 31, 38 30 → 11=, 23=, 29, 31, 38 

31 → 28, 30 31 → 12=, 28, 30, 36= 

32 → 33, 34 32 → 13=, 24=, 33, 34 

33 → 27, 32, 37 33 → 14=, 20≡, 27, 32, 37 

34 → 32, 35, 37 34 → 15=, 25=, 32, 35, 37 

35 → 34, 36_, 38 35 → 16=, 26=, 34, 38 

36 → 28_, 35_ 36 → 17=, 21≡, 31=, 38= 

37 → 29, 33, 34, 38 37 → 18=, 22≡, 29, 33, 34, 38 

38 → 30, 35, 37 38 → 19=, 23≡, 30, 35, 36=, 37 

 

From the analysis of Table IV one can see that the graph 
obtained following the smooth-transition model integrates 
almost all the edges (transitions) identified by the snapshot 
model. Two exceptions are verified: one is associated with 
relation 17 (R17) and the other with relation 36 (R36). In all 
other cases the graph obtained by the smooth-transition 
model allows more transitions since it looks for small 
deformations that change the topological relations. In what 
concerns R17 and R36, the snapshot model includes transitions 
from those relations to other relations with topological 
distance 1. Although this is the minimum value for the 
topological distance it does not correspond to the smallest 
amount of changes that can affect the objects. Looking at R17, 
this relation has transitions to relation 9 (R9) and relation 16 
(R16). In the smooth-transition model these transitions are not 
possible since R17 has one of the line’s boundaries 
intersecting the interior of the CSEP and the other boundary 
intersecting the exterior of the CSEP. Any small deformation 
in R17 includes the movement of one of the line’s boundaries 
to an Adjacent part of the intersected component of the 
CSEP. Following this, the intersection between one line’s 
boundary and the CSEP’s interior is moved to the Adjacent 
parts of CSEP’s interior (its pivot and its boundary), allowing 
the transitions to relation 12 (R12) and relation 21 (R21), or the 
intersection between the other line’s boundary and the 
CSEP’s exterior is moved to the Adjacent part of CSEP’s 
exterior (its boundary), allowing the transition to relation 19 
(R19). The other possible transition for R17 allowed in the 
smooth-transition model is obtained moving the line’s 
interior to an Adjacent part of CSEP’s interior (its pivot in 
this specific case since the boundary already has an 
intersection in this relation) leading to relation 36 (R36).  

Looking at the possible transitions for R36 in the snapshot 
model, which are different from the allowed ones in the 
smooth–transition model, one can see that the differences are 
due to the movement of the line’s boundaries, as explained 
above for R17.  

This analysis shows that topological distance equal to 1 is 
not synonym of a small change. Table V presents the possible 
transitions identified for the smooth-transition model and the 
respective topological distances. In this table one can see that 
many of the identified transitions are associated with 
topological distances of 2 (represented with the symbol = and 
in Table IV) and some topological distances of 3 (represented 
with the symbol ≡ in Table IV). The topological distance of 3 
is associated with relations that present the pivot of the CSEP 
intersected either by the line’s interior or by the line’s 
boundary, being these relations a start or an end relation in 
the conceptual neighborhood graph. As a CSEP’s pivot can 
only intersect with a single part of the line, moving the line’s 
boundary or the line’s interior to intersect the pivot implies 
that any other intersection with the pivot must be removed. 
This increases the topological distance between the relations. 
This is also the situation verified with many of the 
transactions with topological distance 2 existing in the graph 
obtained by the smooth-transition model. 
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Table V – Topological distance (smooth-transition model) 
R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R 10 R 11 R 12 R 13 R 14 R 15 R 16 R 17 R 18 R 19 R 20 R 21 R 22 R 23 R 24 R 25 R 26 R 27 R 28 R 29 R 30 R 31 R 32 R 33 R 34 R 35 R 36 R 37 R 38

R 1 0 2 1 1 4 3 2 4 2 5 4 3 4 5 5 4 3 6 5 6 4 7 6 6 7 6 6 4 7 6 5 6 7 7 6 5 8 7
R 2 2 0 1 3 2 1 2 2 4 3 2 3 4 3 5 4 5 4 3 4 6 5 4 6 7 6 4 6 5 4 5 6 5 7 6 7 6 5
R 3 1 1 0 2 3 2 1 3 3 4 3 2 5 4 6 5 4 5 4 5 5 6 5 7 8 7 5 5 6 5 4 7 6 8 7 6 7 6
R 4 1 3 2 0 3 2 1 5 1 4 3 2 5 6 4 3 2 5 4 7 3 6 5 7 6 5 7 3 6 5 4 7 8 6 5 4 7 6
R 5 4 2 3 3 0 1 2 2 4 1 2 3 4 3 3 4 5 2 3 4 6 3 4 6 5 6 4 6 3 4 5 6 5 5 6 7 4 5
R 6 3 1 2 2 1 0 1 3 3 2 1 2 5 4 4 3 4 3 2 5 5 4 3 7 6 5 5 5 4 3 4 7 6 6 5 6 5 4
R 7 2 2 1 1 2 1 0 4 2 3 2 1 6 5 5 4 3 4 3 6 4 5 4 8 7 6 6 4 5 4 3 8 7 7 6 5 6 5
R 8 4 2 3 5 2 3 4 0 4 1 2 3 2 1 3 4 5 2 3 2 6 3 4 4 5 6 2 6 3 4 5 4 3 5 6 7 4 5
R 9 2 4 3 1 4 3 2 4 0 3 2 1 4 5 3 2 1 4 3 6 2 5 4 6 5 4 6 2 5 4 3 6 7 5 4 3 6 5
R 10 5 3 4 4 1 2 3 1 3 0 1 2 3 2 2 3 4 1 2 3 5 2 3 5 4 5 3 5 2 3 4 5 4 4 5 6 3 4
R 11 4 2 3 3 2 1 2 2 2 1 0 1 4 3 3 2 3 2 1 4 4 3 2 6 5 4 4 4 3 2 3 6 5 5 4 5 4 3
R 12 3 3 2 2 3 2 1 3 1 2 1 0 5 4 4 3 2 3 2 5 3 4 3 7 6 5 5 3 4 3 2 7 6 6 5 4 5 4
R 13 4 4 5 5 4 5 6 2 4 3 4 5 0 1 1 2 3 2 3 4 6 5 6 2 3 4 4 6 5 6 7 2 3 3 4 5 4 5
R 14 5 3 4 6 3 4 5 1 5 2 3 4 1 0 2 3 4 1 2 3 7 4 5 3 4 5 3 7 4 5 6 3 2 4 5 6 3 4
R 15 5 5 6 4 3 4 5 3 3 2 3 4 1 2 0 1 2 1 2 5 5 4 5 3 2 3 5 5 4 5 6 3 4 2 3 4 3 4
R 16 4 4 5 3 4 3 4 4 2 3 2 3 2 3 1 0 1 2 1 6 4 5 4 4 3 2 6 4 5 4 5 4 5 3 2 3 4 3
R 17 3 5 4 2 5 4 3 5 1 4 3 2 3 4 2 1 0 3 2 7 3 6 5 5 4 3 7 3 6 5 4 5 6 4 3 2 5 4
R 18 6 4 5 5 2 3 4 2 4 1 2 3 2 1 1 2 3 0 1 4 6 3 4 4 3 4 4 6 3 4 5 4 3 3 4 5 2 3
R 19 5 3 4 4 3 2 3 3 3 2 1 2 3 2 2 1 2 1 0 5 5 4 3 5 4 3 5 5 4 3 4 5 4 4 3 4 3 2
R 20 6 4 5 7 4 5 6 2 6 3 4 5 4 3 5 6 7 4 5 0 4 1 2 2 3 4 2 6 3 4 5 4 3 5 6 7 4 5
R 21 4 6 5 3 6 5 4 6 2 5 4 3 6 7 5 4 3 6 5 4 0 3 2 4 3 2 6 2 5 4 3 6 7 5 4 3 6 5
R 22 7 5 6 6 3 4 5 3 5 2 3 4 5 4 4 5 6 3 4 1 3 0 1 3 2 3 3 5 2 3 4 5 4 4 5 6 3 4
R 23 6 4 5 5 4 3 4 4 4 3 2 3 6 5 5 4 5 4 3 2 2 1 0 4 3 2 4 4 3 2 3 6 5 5 4 5 4 3
R 24 6 6 7 7 6 7 8 4 6 5 6 7 2 3 3 4 5 4 5 2 4 3 4 0 1 2 4 6 5 6 7 2 3 3 4 5 4 5
R 25 7 7 8 6 5 6 7 5 5 4 5 6 3 4 2 3 4 3 4 3 3 2 3 1 0 1 5 5 4 5 6 3 4 2 3 4 3 4
R 26 6 6 7 5 6 5 6 6 4 5 4 5 4 5 3 2 3 4 3 4 2 3 2 2 1 0 6 4 5 4 5 4 5 3 2 3 4 3
R 27 6 4 5 7 4 5 6 2 6 3 4 5 4 3 5 6 7 4 5 2 6 3 4 4 5 6 0 4 1 2 3 2 1 3 4 5 2 3
R 28 4 6 5 3 6 5 4 6 2 5 4 3 6 7 5 4 3 6 5 6 2 5 4 6 5 4 4 0 3 2 1 4 5 3 2 1 4 3
R 29 7 5 6 6 3 4 5 3 5 2 3 4 5 4 4 5 6 3 4 3 5 2 3 5 4 5 1 3 0 1 2 3 2 2 3 4 1 2
R 30 6 4 5 5 4 3 4 4 4 3 2 3 6 5 5 4 5 4 3 4 4 3 2 6 5 4 2 2 1 0 1 4 3 3 2 3 2 1
R 31 5 5 4 4 5 4 3 5 3 4 3 2 7 6 6 5 4 5 4 5 3 4 3 7 6 5 3 1 2 1 0 5 4 4 3 2 3 2
R 32 6 6 7 7 6 7 8 4 6 5 6 7 2 3 3 4 5 4 5 4 6 5 6 2 3 4 2 4 3 4 5 0 1 1 2 3 2 3
R 33 7 5 6 8 5 6 7 3 7 4 5 6 3 2 4 5 6 3 4 3 7 4 5 3 4 5 1 5 2 3 4 1 0 2 3 4 1 2
R 34 7 7 8 6 5 6 7 5 5 4 5 6 3 4 2 3 4 3 4 5 5 4 5 3 2 3 3 3 2 3 4 1 2 0 1 2 1 2
R 35 6 6 7 5 6 5 6 6 4 5 4 5 4 5 3 2 3 4 3 6 4 5 4 4 3 2 4 2 3 2 3 2 3 1 0 1 2 1
R 36 5 7 6 4 7 6 5 7 3 6 5 4 5 6 4 3 2 5 4 7 3 6 5 5 4 3 5 1 4 3 2 3 4 2 1 0 3 2
R 37 8 6 7 7 4 5 6 4 6 3 4 5 4 3 3 4 5 2 3 4 6 3 4 4 3 4 2 4 1 2 3 2 1 1 2 3 0 1
R 38 7 5 6 6 5 4 5 5 5 4 3 4 5 4 4 3 4 3 2 5 5 4 3 5 4 3 3 3 2 1 2 3 2 2 1 2 1 0  

To conclude this analysis we refer that in what concerns 
relations 1 to 7 (R1 to R7), the transitions allowed in the two 
graphs are exactly the same (Table IV) since these relations 
are associated with lines that do not intersect the CSEP’s 
interior avoiding the Adjacent parts of this interior, which 
would be the pivot and the boundary of the CSEP and would 
increase the number of possible transitions. 

V. TOPOLOGICAL DISTANCE IN PREDICTING MOVEMENT IN 
SPACE 

As already stated in this paper, several models for 
topological relations have been developed. These models 
provide a computational basis for spatial reasoning relating 
the formal ground needed by an information system and the 
human perception of the geographic space [8].  

Spatial relations between geographic objects are 
time-dependent and can change due to various phenomena. 
Models of changes are relevant to spatio-temporal reasoning 
as they allow for predictions related with the objects in 
analysis [5]. The objects involved are expected not to make 
discontinuous changes such as jumps, nor may the 
deformations destroy the topology of a single object, for 
example, tearing it into pieces. 

For Galton [9], the phenomenon of movement arises 
whenever the same object occupies different positions in 
space at different moments. The given definition suggest that 
a theory of movement must include a theory of time, a theory 
of space, a theory of objects and a theory of position. Time 
can be treated as instants or as intervals, and an ordering 
relation need to be established, representing temporal 
sequences.  Space integrates elements as points, lines or 
regions as fundamental entities.  Objects present specific 
characteristics being capable of motion (or different types of 
motion), or not. Position integrates the theory of objects with 
the theory of space, with each object occupying a certain part 
of space at a specific time. 

Looking at position, this work takes into account the 
topological constraints present in the space in which the user 
is moving, whilst trying to predict his/her future positions. 
The first step of this prediction process is concerned with the 
assignment of the user to a specific road segment in the road 
network. For this task, the topological distance can be used 
instead of the geometrical distance. The second step is 

associated with the movement of the user along the road 
network, after his/her assignment to a road segment. 

A user that moves from one point to another in a road 
network generates a trajectory. A user’s trajectory can be 
defined as a sequence of connected road segments or as a 
sequence of connected vertices between two locations [10]. 
Knowing a start point, the initial position, and an end point, 
the target destination, trajectories can be generated for the 
user. 

If the destination of the user is unknown, the anticipation 
of his/her next position can be achieved following the 
transitions allowed in one of the conceptual neighborhood 
graphs identified in the previous sections. As an example, let 
us consider the road network represented in Fig. 4. In this 
example, the position of the user (in gray), obtained through a 
GPS receiver, does not overlap a specific road segment.  

 
Fig. 4 – A user and a part of a road network 

 
Analyzing the example, and being the user in an imprecise 

point in terms of the road network, how can the user be 
assigned to a specific road segment? The answer can be using 
the minimum topological distance that allows the intersection 
of the CSEP’s pivot and the road segments. Using the area of 
uncertainty associated with the user’s position, Fig. 5 
presents the actual scenario, now with each road segment 
identified by a specific label. 

1s
2s

3s
4s

5s
 

Fig. 5 – A user represented by a CSEP  
 

Analyzing the topological spatial relations that exist 
between the CSEP and the neighbors’ road segments – s2, s3 
and s4 – it is possible to verify that the spatial relations are R9, 
R12 and R3, respectively. Following the conceptual 
neighborhood graphs obtained through the snapshot model 
and the smooth-transition model, the closest spatial relations 
in which an intersection with the CSEP’s pivot is possible is 
R21 (for s2, s3 and s4), in the case of the snapshot model, and 
R28 (for s2) and R31 (for s3 and s4), in the case of the 
smooth-transition model. Tables II and V give us the 
topological distances among those relations: 
• Snapshot model: i) topological distance of 2 between R9 

and R21; ii) topological distance of 3 between R12 and 
R21; iii) topological distance of 5 between R3 and R21. 

• Smooth-transition model: i) topological distance of 2 
between R9 and R28; ii) topological distance of 2 between 
R12 and R31; iii) topological distance of 4 between R3 and 
R31. 
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Following the snapshot model, the user would be assigned 
to s2 since this road segment presents the minimum 
topological distance. Looking at the smooth-transition 
model, as it allows small deformations that change the 
topological relation, the user could be assigned to s2 or to s3 
since both alternatives present the same topological distance. 

The question that can now be posted is: ignoring the 
topological spatial relations that can exist between the objects 
in analysis and the conceptual neighborhood graphs with the 
possible transitions, is it possible to predict the user’s 
position? 

Map matching methods are used to locate a mobile user on 
a road network map. A simple way of performing map 
matching is to assign the position of the mobile user to the 
nearest road segment [11]. Although this method is simple to 
implement it can ignore alternative paths as only the nearest 
distance is considered and it can be difficult to implement in 
dense urban road networks. In order to improve the location 
capabilities, other methods have been proposed and 
developed. They usually consider historical information 
about the user’s motion (his/her past locations).  

The prediction system that is envisaged in this work does 
not consider any previous knowledge about the user’s 
motion, for privacy reasons, and opens new possibilities in 
the exploration of the paths that can be followed by a mobile 
user, as several road segments can be associated to the user 
through the use of a CSEP.  

If the geometrical representation of the user is done 
recurring to a single point that locates the user in a particular 
location, the prediction of the user’s next position depends 
upon the map matching location strategy used. Following the 
example presented in Fig. 4, Fig. 6 shows the assignment of 
the user to the nearest road segment present in the road 
network in analysis. As the user is not geometrically 
represented by a CSEP that topologically relates he/she to the 
other line segments, the user is located on segment s2, without 
considering the s3 and s4 ways. 
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Fig. 6 – Assignment of the user to the nearest road segment 
 

The first step of the prediction process can consider the 
topological distance as an alternative or as a complement of 
the geometric distance (since a combination of both metrics 
can be considered). In the second step, the transitions 
allowed in the conceptual neighborhood graphs can be used 
to predict user’s future movements. In this case, graph paths 
can be generated considering the several alternatives present 
in the road network and the probability of following such 
alternatives (considering for instance the traffic load 
associated to each road segment). 

VI. CONCLUSION 
This paper presented the conceptual neighborhood graphs 

that represent the transitions that can occur between the 

topological spatial relations that exit between a CSEP and a 
line. Two graphs were obtained. One using the principles 
associated with the snapshot model, which looks for the 
topological distances between relations, and the other using 
the principles associated with the smooth-transition model, 
which verifies any small deformation that changes the 
topological relations. 

The two graphs were analyzed in order to verify if the 
identified transitions were possible or not, and also compared 
in order to identify the main differences between them. The 
graph obtained through the smooth-transition model presents 
a more complex structure integrating more edges. This means 
that more transitions are allowed. 

This work constitutes a basis for dealing with spatial 
objects that can be represented geometrically by a CSEP and 
a line, and is suitable for reasoning about gradual changes in 
topology. These changes can be associated with objects’ 
motion and/or deformations over time [8].  
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