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Robust Regression Methods for the Analysis of
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Abstract—The existing methods for analyzing un-
replicated factorials that do not contemplate the pos-
sibility of outliers in experimental data have a poor
performance for detecting the active effects when that
possibility becomes a reality. We propose an itera-
tive procedure based on robust regression which has
a good performance in the presence or absence of con-

taminated data.
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1 Introduction

In this paper we propose a new method that considers
the possibility of outliers, which is based on robust re-
gression techniques, particularly on MM-estimation [14].
According to a simulation study the new method has a
better performance compared with existing methods.

The paper is organized as follows: in Section 2 we de-
scribe briefly the two existing methods that consider the
possibility of faulty observations in factorial experiments
namely [6] and [1]. In Section 3 we introduce some ro-
bust regression techniques and terminology in order to
explain MM-estimation. In Section 4 we describe the new
method. In Section 5 we illustrate the proposed method
using an example where the outlier is not evident, the
example is also analyzed with the two existing methods
that consider outliers and two methods that do not con-
sider that possibility. Except for the robust method, the
other approaches fail to detect any of the significant ef-
fects. In Section 6 we use Monte Carlo simulation to
compare the new method with the methods mentioned
in Sections 2 and 5. The comparison is made under a
common ground since all of the methods are calibrated
to have an experiment-wise error rate (EER) of 5%. Fi-
nally, the conclusions are given in Section 6
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2 The Existing Methods

In this section we describe briefly the two existing meth-
ods that consider the possibility of atypical observations
in experimental data.

2.1 Ranks Method

This method was introduced in [1] and then further stud-
ied in [2]. Let y be the vector of observations and con-
sider its rank transformation R(y). If there are ties then
assign to each observation the average of the ranks that
would correspond to them when there are no ties. Let
X the n X n matrix containing the n — 1 contrasts and
a first column of ones. The effects based on ranks T}
(i=1,2,...,n) are given by

T3t
T /2
g — (X'X) ' X'R(y).
Ty, /2
Let T(}f') (¢t = 1,2,..,n — 1) be the ordered effects. A

Shapiro Wilks type test for normality is applied to the
effects T;, where the test statistic, see [2] is given by .

2
(ZLimzh)

W= 2
SimEy, (T8 -T)

where: m; = ®~1(p;), @' is the inverse cumulative nor-
mal distribution, and p; are probabilities spread in the
zero-one interval, see details in [3]. The same reference
gives the formula for p-value of the test. The test is re-
jected if the computed p-value is lower than a = 0.034,
where this critical value was obtained by simulation (see
Section 6) in order to have an experimentwise error rate
equal to 5%.

The rejection of the normality test implies that there is
at least one active effect in the experiment. Significant
effects are identified with the so called fourth-spread test
that declares as active the effects falling outside the inter-
val [—2dp, +2dF], where dF is the estimated interquartile
range of the effects, see [2].
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2.2 Bayesian Method

This method is reported in [6] which is an extension of [5].
Basically the method calculates for each effect the pos-
terior probability of being an active effect and for each
observation the posterior probability of being an outlier.
Large posterior probabilities, say greater than p. (where
its value will be determined later in section 6) correspond
to active effects or outlier observations. In the 16 runs
factorial experiment there are 2'® x 2'6 possible com-
binations of active effects and outlying observations, a
enormous amount of work is required for the direct cal-
culation of the posterior probabilities. For this reason [6]
proposed an iterative procedure for approximating these
probabilities.

Let a(, r,) be the event that one particular combina-
tion of r; active effects and ro outlier observations oc-
curs. The posterior probability of this event is denoted
by p (a(rlm) \y) , the formula is given [6]. The posterior
probability p; that a particular effect i is active is then

pi = Z(rl,rg): i active P (a'(TleZ) ‘y>

and the posterior probability g; that the observation j is
faulty is

a5 = Z(Tlmg): j outlier P (a(r17r2) |y) ’

The iterative procedure is as follows: initially compute
the posterior probabilities that each effect is active as-
suming that there are no atypical data, and then in the
second step, taking into account the significant effects
detected in the first step, compute the posterior proba-
bilities that each data point is atypical. In the third step,
assuming the atypical data found in the second step, com-
pute the posterior probabilities for each effect of being
active, and so on . See [8] for an algorithm programming
this method. This procedure generally converges in three
to six steps.

This method requires the prior determination of the fol-
lowing parameters: «y the probability of active effect, s
the probability of an outlier observation, v an expansion
factor of the error standard deviation due to an active
effect, and k the expansion factor for outliers. The prior
values suggested by [6] are a1 = 0.2, ag = 0.05, v = 2.5,
k = 5, but of course one can try different values. In this
paper we calibrated the Bayesian method using the rec-
ommended values. The paper [6] also suggests to declare
an effect as active if the posterior probability is greater
than 0.5, but in the simulation study (see Section 6) we
found that this critical probability must be p. = 0.91 for
an experimentwise error rate equal to 5%.
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3 Robust Regression Techniques

The proposal is based on robust regression known as MM-
estimation that was introduced in [14]. We prefer MM-
estimation over other robust techniques because we want
to obtain estimators with high breakdown point and high
efficiency at the same time, see [12]. The former property
protects against contaminated data and the later guaran-
tees an estimator variance comparable to the variance of
the least squares estimator under normal error data.

Let r;(0) = y; —:(0), i = 1,2, ..., n, minimizing the func-
tion p(r) = |r| gives the Ly regression estimator, which
is robust against response outliers, see [11], page 10, but
still it has a breakdown equal 1/n because it is affected
by leverage points. Since in experimental design we deal
mainly with response outliers, L; regression estimator
will be useful in the first step of our proposed method for
detecting active effects.

The function p that we use satisfies the conditions: C1. It
is symmetric and continuously differentiable and p(0) =
0; C2. There exists ¢ > 0 such that p is strictly increas-
ing on [0, ¢] and constant on [0, cc]. In order to obtain ro-
bust estimates p increases more slowly than the quadratic
function.

S-estimates were introduced in [14]. They are defined
similar to M-estimates, but they minimize in an implicit
way the residuals dispersion S(6),which is a solution to
the equation (1/n) Y p(r;/S) = K, where the p function
satisfies the same conditions for M-estimates and K =
Egs[p], where @ is the standard normal distribution. [11]
show that for C3: K/p(c) = 0.5 the breakdown point for
S-estimates is 50% but its efficiency is hardly 28.7% (see
Table 19 on page 142 of [14]).

Following this line, [14] proposed the MM-estimates that
combine high breakdown point with high efficiency (see
also [15]). He defines MM-estimates in three stages:

1. Take an initial estimator 50 with high breakdown
point, possibly 0.5.

2. Compute the residuals r; = yi—aloxi (i=1,2,...,n)
and compute the S-estimate which is the solution of
(1/n) > po(ri/S) = K using a function p, satisfying
the assumptions C1-C3.

3. Let p; be another function satisfying as-
sumptions C1-C3 such that p;(u) < pyu);
supp; (u) =suppy(u) = p(c). Then the MM-estimate
6, is defined as any solution that minimizes (1/n)x
>~ pq(ri/S) which verifies S(81) < S(8y).

We can choose the functions p, and p; as follows: take a
function p satisfying conditions C1-C3 and let 0 < ¢y <
c1. Define po(r) = p(r/co) and p;(r) = p(r/c1). Choose
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¢p so that K/p(cp) = 0.5 which determines a breakpoint
of 50% and ¢; determines the asymptotic efficiency, [14].

For example, in our method we consider the Tukey s
bisquare function

wc(U)—{ %[(%)2—1} if |ul<c

0 if Jul >c,

where ¢ is the tuning constant for high breakdown point
and efficiency. The corresponding p function is obtained
by integrating ¢, and dividing by ¢/6, which is

L ®=3®) 3% if u<e
pC(U){() ()1 (&) if ul > e

Taking cop = 1.548 the resulting estimate has a breakdown
value of 50% and choosing ¢; = 4.687 has an efficiency
of 95% with the normal distribution. For an efficiency of
99.3% the tuning constant value is ¢; = 7.7.

4 The Proposed Robust Method

In unreplicated factorial experiments with 16 runs the
saturated model has 15 effects, that is, including the
constant term the number of parameters is equal to the
number of observations. In order to achieve robustness,
typically robust methods assume that the number obser-
vations is at least two times the number of parameters,
and this is far from being the case in unreplicated ex-
periments. Therefore we propose an iterative method for
estimating the 15 effects in the 16 runs factorial using
MM estimation. The proposed method consists of the
following three steps:

1. Base Model. From 15 effects 1365 models with 4
terms can be constructed. The base model is selected
from this subset according to hierarchy principle: ignor-
ing the quadruple interaction, we consider the models
where the presence of double or triple interactions implies
the inclusion of some simple effects that compound these
interactions; additionally the models include at most one
triple interaction. Thus, for a 16 runs factorial experi-
ment and 4 independent terms there are 165 models in
the subset of interest. L; regression is applied to each
model and the sum of absolute residuals is computed.
The base model minimizes this sum. We suggest L; re-
gression because this regression is robust against outliers
on the response, see [11], page 10.

2. MM estimation. The base model is iteratively aug-
mented with a fifth term and it is fitted by using MM
estimation, where the fifth term represents each time one
of the 11 effects not present in the base model. Thus
after 11 iterations we complete the set of 15 robust es-
timated coefficients (effects). Because it is an iterative
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application of MM-estimation a high efficiency of 99.3%
is recommended for good performance in the normal er-
ror case. This efficiency correspond to ¢; = 7.7 in the
last stage of MM-estimation procedure.

We apply MM-estimation using the procedure rim in the
R system loading the MASS package. Lj regression is
part of the procedure rg in the quantreg package (quan-
tile regression). In MM-estimation the initial and final
scale are selected by an S-estimator with Tukey’s bi-
weight function with tuning constant ¢y = 1.548. For the
initial estimate the sample size was psamp = 7 (see de-
tails in rlm documentation). The final estimator is an M-
estimator with Tukey s biweight function and constant
c1 = 7.7 for an efficiency of 99.3% in each iteration.

3. Identifying Active Effects. The non sequential
variant of [3] method is applied to the estimated robust
effects from step 2. As was explained in Section 2 this
variant consists in a normality test followed by an outlier
test, as was proposed by [3], but both tests are applied
at the same time to all effects. The former permits to
control the global error rate (EER) and the second test
identifies the active effects. By simulation (Section 6) we
found that the critical value for the normality test must
be a = 0.036 for an EER = 5%.

5 Aluminum Casting Example

This is a challenging case study on an aluminum casting
process, it appeared in [9], there were five factors stud-
ied with 16 runs hence a 2°~! fraction was used. The
response was the fraction defective, the experimental re-
sults are given in Table 1. Notice that the responses
go from 6% all the way to 100%, hence it is expected
that some factors are significant. [9] analyzed the arc-
sine square root transformation of the response, here we
analyze the response directly, the results are completely
similar.

The data, the estimated effects computed with the origi-
nal data, the effects computed from the rank transforma-
tion, the robust estimates of the effects, and the posterior
probabilities from [6] are given in Table 1.

The Daniel plot, [7], of the original data (top-left Figure
1) shows no indication of significant effects. The same
conclusion applies to the Daniel plot of the rank transfor-
mation (top-rigt Figure 1). A completely different picture
emerges when the effects are estimated robustly accord-
ing to the proposed procedure (bottom center Figure 1).
Effects B, D and DB are clearly significant.

Figure 2 shows the barplots for the effects in Lenth’s [10]
method and the posterior probabilities of the Bayesian [6]
method that takes into account the possibility of outliers.
Both methods fail in detecting any active effects. The
Bayesian method fails because it could not detect the
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presence of the outlier in the data.

Table 2 shows the results of conducting a significant test
on the five methods considered. We apply the methods
with their critical points obtained by simulation in Sec-
tion 6. Again only the robust procedure shows a signifi-
cant result.

This case study is difficult because there is an outliying
observation in the data that is not evident. In fact from
a residual analysis [9] concluded that first observation
(0.14) is an outlier. After removing this run and reana-
lyzing the data [9] finds that effects B, D and DB are
clearly significant, the same result that robust method
but having to detect the outlier first!

Name | Data ](Eoﬁlr('f;itr?al ](Ergfl(iit)s ?r%icutsst) Post
Prob
) 0.14 0.457
A 0.98 0.045 -0.250 | -0.028 | 0.025
B 0.36 -0.195 | -0.750 | - 0.063
0.149
C 0.42 0.050 0.125 -0.020 | 0.026
D 1.00 -0.285 | -3.750 | - 0.177
0.195
E 0.90 -0.005 | 2.375 0.048 0.024
AB 0.28 -0.090 | -1.000 | 0.004 0.029
AC 0.14 -0.125 | -1.875 | -0.027 | 0.035
AD 0.22 -0.120 | -2.250 | -0.016 | 0.034
AE 0.26 0.170 3.625 0.051 0.050
BC 0.38 -0.115 | -2.125 | -0.020 | 0.033
BD 0.12 0.260 2.750 0.182 | 0.132
BE 0.30 0.160 3.375 0.045 0.046
CD 0.06 -0.055 | 0.125 0.017 0.026
CE 0.22 0.115 1.750 0.021 0.033
DE 0.38 0.180 3.875 0.039 0.054

Table 1. Data, estimated effects and posterior probabilities

Method W | P- Calibrated! 1 9dF | Active
value Effects
Lenth — — to = | — None
4.24
Benski | 0.98 | 0.9148 | « = | £0.51 | None
0.065
Bayesian| — — Pe = | — None
0.91
Ranks 0.96 | 0.5473 | « = | £8.00 | None
0.034
Robust | 0.85 | 0.0199| « = | £0.10 | B,D,BD
0.036

Table 2. Significance tests, aluminum casting example
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Figure 1. Daniels’s plot. Original data, rank and
robust methods, aluminum casting example
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Figure 2. Barplots. Lenth and Bayesian methods,
aluminum casting example
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From this example we see the importance of methods
that consider the possibility of outliers in data. In next
section we report the results of a simulation study for a
more general comparison of the methods.

6 Simulation Study

In this section we compare the performance of the robust
method with existing methods that consider and do not
consider the possibility of outliers in data. These meth-
ods are the ranks method [2] and the Bayesian method
[6]. For reference, the study also includes the [10] and
the non sequential variant of [3], as methods that do not
contemplate the possibility of faulty observations.

The simulation study is divided in two parts: calibration
of the methods and power study.
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6.1 Calibration of the Methods

In order to achieve a fair comparison of methods all of
them were calibrated to have an experimentwise error
rate equal to 5% (EER = 5%) when there are no active
effects.

Table 3 shows the critical points that achieve the desired
EER. The column MC stands for the number of Monte
Carlo replications used to obtain the corresponding crit-
ical point.

Method Outliers | Param MC
1. Lenth | NO c=4.24 50000
(1989) (ref)

2. Benski | NO a = 0.065 50000
(vef)

3. Bayesian YES pe = 0.91 3600
4. Ranks YES a=0.034 50000
5. Robust YES a = 0.036 10000

Table 3. Calibration of the Methods

The calibrated value ¢ = 4.24 for the [10] method is the
same value reported by [13]. The calibrated values in
the Table 7 are for 16 runs experiments (2%, 25-1, 26=2,
etc.). For other experimental sizes (say 8 or 32 runs)
new calibrated values must be obtained.

6.2 Power Study

Once that methods have been calibrated we proceed to
the power study. For that purpose we generated exper-
imental data assuming a model with three active effects
of different sizes, and three scenarios with different con-
tamination levels, the same active effects and scenarios
proposed by [2]. To allow for outliers present in data,
each replication of 16 observations was generated with
the model

Y, =a1A+asAB+a3C+¢; ; i=1,2,...,16, (1)

where A, B and C are the active effects and the error
distribution is the normal mixture

gi~ (1—=B)N(0,1) + BN (0, K?).

where the second distribution N (0, K?) occurs with prob-
ability 8 and generates the contaminated data. Three dif-
ferent contamination scenarios are denoted by the vector
(8,K): (0,0), (0.05,5) and (0.10,10). For example, the
vector (0,0) consists of normal data without outliers and
the vector (0.10, 10) is the most contaminated scenario,
ten percent outliers with variance equal to 10. Note that
the number of observation from the second distribution
follows a binomial distribution with parameters (16,3).

ISBN:978-988-18210-1-0

Hence for the scenario (0.10,10) there are typically be-
tween 1 to 3 outliers.

In terms of the model coefficients in equation (1) the cor-
responding sizes for the active effects A, AB and C are
a1 =1, ag = 0.5 and a3 = 2, respectively.

Two measures of performance were computed: power and
a merit statistic proposed by [4]. The power for an active
effect is the percentage of experiments where it was cor-
rectly declared as a significant effect. The merit statistic
is defined as follows: let s be the number of simulated
experiments in one scenario, then in our case 15s is the
total number of estimated effects in the simulation, and
from these there are 3s active effects and 12s inert effects.
Let

nt = Number of active effects declared as such in the
simulation

n~ = Number of inert effects wrongly declared to be
significant

then the merit statistics is given by

The metric QG falls in the interval [0%, 100%] and it is
intended to be a measure of the global performance of the
method taking into account all the active effects, where
large values indicate a better performance.

Figure 3 shows the plots of the power for each effect and
each method given in Table 3. As expected, all of the
methods have a better performance when (8 = 0, K = 0).
Lenth’s method was the worst in all respects. On the con-
trary, the proposed robust MM-estimation method was
always at the top in the absence of contamination. In the
contaminated scenarios the proposed robust method has
the best performance, very far from the methods (Benski
and Lenth) that do not contemplate the atypical data and
far from the two existing method that contemplate this
possibility Box-Meyer and Ranks). Ranks and Bayesian
methods have a similar global performance on contami-
nated scenarios.
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Figure 3. Power and QG of the Methods in Scenarios
(0,0), (0.05,5) and (0.10,10)

Regarding the QG the statistic. The proposed robust
method is systematically above the other methods for all
scenarios. On the other side, Lenth’s method is always
below the other methods, indicating the worst perfor-
mance. Benski’s method has a competitive performance
compared with Bayesian and ranks methods except in the
most contaminated scenario. In conclusion our proposed
robust method has a globally better performance in all
scenarios.

7 Conclusion

We proposed a new method for detecting active effects in
unreplicated factorial experiments, which considers the
possibility of faulty observations. The new method is
based in MM-estimation of the effects, a robust regression
technique proposed by [14]. We illustrate the new method
using a difficult example from the literature. The pro-
posed method was the only method that detected a sig-
nificant effect analyzing the original data. A simulation
study was performed for comparing the new procedure
with existing methods. The proposed robust method gave
the best results in terms of power and global performance
under both contaminated or uncontaminated scenarios.
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