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Abstract—This paper investigates the finite time

ruin probability in non-homogeneous Poisson risk

model, conditional Poisson risk models and renewal

risk model with stochastic returns. Under the as-

sumption that the claimsize is subexponentially dis-

tributed, a simple asymptotic relation is established

when the initial capital tends to infinity. The results

obtained extend the corresponding results of constant

interest force. Key Words:
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1 The model

We consider a Sparre Anderson model perturbed by a dif-
fusion. In this model the claim sizes,Xn, n = 1, 2, ..., con-
stitute a sequence of independent, identically distributed
(i.i.d.) and non-negative random variables (r.v.’s) with
common distribution function (d.f.) F = 1 − F . The
claim arrival times, σn, n = 1, 2, ..., form a renewal count-
ing process

N(t) = max {n ≥ 1 : σn ≤ t} , t > 0, (1)

with a constant intensity λ, where, maxφ = 0 by con-
vention. The total surplus of a company up to time t,
with perturbed term σ0W0(t), is denoted by U(t), which
satisfies the following equation:

U(t) = u+ ct−
N(t)∑
k=1

Xk + σ0B0(s), (2)

where, u > 0 is the initial capital, c > 0 is the constant
rate of premium, {B0(t), t ≥ 0} is a standard Brownian
motion and σ0 > 0 is the volatility coefficient of σ0B0(t).
If the inter-arrival times σ1, σn − σn−1 for n = 2, 3, ...
have a common exponential distribution, then the model
above is called C-L model.

If in the case of C-L model, parameter λ is time depen-
dent, then {N(t), t ≥ 0} is called non-homogeneous with
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intensity function {λ(t), t ≥ 0}. If for arbitrarily fixed
t, s > 0, N(t) satisfies that

P (N(t+ s)−N(s) = k) =

∫ ∞

0

e−λt (λt)
n

n!
GΛ(dλ),

where Λ is a r.v. with d.f. GΛ. Then {N(t), t ≥ 0} is
called conditional Poisson process.

All limit relationships in this paper, unless otherwise

stated, are for u → ∞. A ∼ B and A
>∼ B respectively

mean that limu→∞ A
B

= 1 and limu→∞ A
B
≥ 1.

1.1 Stochastic Returns

If an insurer invests his capital in a risky asset, then its
capital value should be specified by a geometric Brownian
motion

dVt = Vt(μdt+ σdB(t)), (3)

where {B(t), t ≥ 0} is a standard Brownian motion and
r ≥ 0, σ ≥ 0 are respectively called expected rate of
return and volatility coefficient. It is well known that
stochastic equation (3) has the following solution

Vt = V (0)e(μ−
1

2
σ2)t+σB(t).

Therefore, at time t, the surplus with risky investment
could be expressed as

U(t) = eΔ(t)(u+

∫ t

0

e−Δ(s)dU(s)), (4)

where, Δ(t) = βt+ σB(t), β = μ− σ2/2.

Through out, {Xn, n ≥ 1}, {N(t), t ≥ 0}, {B(t), t ≥ 0}
and {B0(t), t ≥ 0} are assumed to be mutually indepen-
dent. We define

ψ(u, T ) = P ( inf
0≤s≤T

U(s) < 0|U(0) = u),

the finite time ruin probability within time T . If T = ∞,
we say that ψ(u,∞) is ultimate ruin probability. This
concept illustrates the possibility that the surplus process
moves below zero.

Under the assumption that the risk models are non-
homogenous, conditional Poisson process and renewal
risk model respectively, In this paper will derive some
asymptotics of finite time ruin probabilities with stochas-
tic returns.
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1.2 Some Related Results

Heavy-tailed risk has played an important role in insur-
ance and finance because it can describe large claims; see
Embrechts et al. (see [6]) for a nice review. We give here
several important classes of heavy-tailed distributions for
further references:

• class L (Long-tailed): a d.f. F belongs to L iff

lim
x→∞

F (x+ t)

F (x)
= 1

for any t (or equivalently, for t = 1);

• class R−α: a distribution F belongs to R−α iff

F (x) = x−αL(x), x > 0,

where L(x) is a slowly varying function as x → ∞
and index −α < 0. R−α is called regularly vary-
ing function class, or Pareto-like function class with
index −α.

• class S (Subexponential): a d.f. F belongs to S iff

lim
x→∞

F ∗n(x)

F (x)
= n

for any n (or equivalently, for n = 2); where F ∗n

denotes the n-fold convolution of F , with convention
that F ∗0 is a d.f. degenerate at 0.

These heavy-tailed classes satisfies R−α ⊂ S ⊂ L (see
Embrechts et al. [6]). The asymptotic behavior of the
ultimate ruin probability ψ(u) is an important topic
in risk theory. In the recent literature, the asymp-
totic behavior of the ruin probability with constant in-
terest force has been extensively investigated. One of
the interesting results was obtained by Klüppelberg and
Stadtmuller([12]), who used a very complicated Lp trans-
form method, proved that, in the Cramér-Lundberg risk
model, if the claimsize is of regularly varying with index
−α, then

ψ(u) ∼ λ

αr
F (u), (5)

where r is constant interest force. Asmussen ([1]) and
Asmussen et al. ([2]) obtained a more general result:

ψ(u) ∼ λ

r

∫ ∞

u

F (y)

y
dy, (6)

where the claimsize is assumed to be in S∗, an important
subclass of S. In the case of compound Poisson model
with constant interest force and without diffusion term,
Tang ([16]) obtained the asymptotic formula of finite time
ruin probability for sub-exponential claims. Tang ([17])
proved that, in the renewal risk model with constant in-
terest force, if the d.f. of claimsize belongs to regularly

varying class with index −α, then ultimate ruin proba-
bility satisfies that

ψ(u) ∼ Ee−rαθ1

1− Ee−rαθ1

F (u),

which extends (5) essentially. Jiang ([10]) extended some
results to the risky case. See also Jiang ([8], [9]). Dufresne
and Gerber ([4]) first researched the ruin probability for
jump-diffusion Poisson process. Veraverbeke ([20]) dis-
cussed the asymptotic behavior of ruin with diffusion
term.

The rest of this paper is organized as follows: In Section
2, main results of this paper are presented. In Section 3,
after some necessary lemmas are supplied, the proofs of
the main results are completed.

2 Main Results

The following theorems are main results of this paper:

Theorem 1. Consider non-homogenous Poisson model
introduced in Section 1. If F ∈ R−α, then it holds that

ψ(u;T ) ∼ F (u)

∫ T

0

λ(s)e−(αβ− 1

2
α2σ2)sds. (7)

Notes and Comments. When F ∈ R−α and the per-
turbed term disappears, the results of Tang ([10]) is con-
sistent with this Theorem. In particular, this result is
also in consistence with that of Veraverbeke ([20]), who
pointed out that the diffusion term W0(t) does not influ-
ence the asymptotic behavior of the ruin probability. We
should point out that the diffusion term W (t) plays an
essential role in influencing the interest force.

Theorem 2. Consider conditional Poisson process intro-
duced in Section 1. If F ∈ R−α, then

ψ(u;T ) ∼ F (u)EΛ

∫ T

0

e−(αβ− 1

2
α2σ2)sds. (8)

Notes and Comments. In these two Theorems, if pa-
rameter λ is a constant and perturbed term disappears,
then (7) and (8) turn to the following:

ψ(u;T ) ∼ λ

αr
F (u)(1− e−αrT ), (9)

which is in consistence with the result of Klüppelberg and
Stadtmuller ([12]).

Theorem 3. In the renewal model with surplus process
(4). Denote

q = Ee−(αβ− 1

2
α2σ2)θ1 .
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If F ∈ S and m(s) is the renewal function of N(s), then

ψ(u;T ) ∼
∫ T

0

P (X1e
−βs−σB(s) ≥ u)dm(s). (10)

If F ∈ R−α, then (10) tends to

ψ(u;T ) ∼ F (u)

∫ T

0

e−(αβ− 1

2
α2σ2)sdm(s). (11)

If we denote ψk(u) as the ruin probability when ruin hap-
pens not later than kth claim, then in the renewal case,
we can obtain the following Theorem:

Theorem 4. In the renewal model with surplus (4). If
F ∈ R−α, then

ψk(u) ∼ F (u)
q − qk+1

1− q . (12)

Notes and Comments. From Theorem 5, we can get
the main result of Tang (2005a) easily.

3 Proofs of the Main Results

3.1 Several Lemmas

The following lemma is well known Ross ([19]):

Lemma 1. Let {N(t)}t≥0 be a Poisson process with ar-

rival times {σk, k ≥ 1}. Given N(T ) = n for any fixed

T > 0, the random vector (σ1, σ2, ..., σn) is equal in distri-

bution to the random vector
(
TU(1,n), ..., TU(n,n)

)
, where(

U(1,n), ..., U(n,n)

)
are the order statistics of n i.i.d. (0, 1)

uniformly distributed random variables U1, ..., Un.

The following lemma can be found in many standard text-
books on stochastic process, see, for example, Karatzas
and Shreve ([11]).

Lemma 2. If B(t) is a standard Brownian Motion, then

the moment of any order of max0≤t≤T B(t) exists. The
following Lemma can be found in Tang ([15]):

Lemma 3. Let {Xi, 1 ≤ i ≤ n} be n i.i.d. subexponential

r.v.s, with common distribution F . Then for any fixed

0 < a ≤ b <∞, uniformly for all a ≤ ci ≤ b, 1 ≤ i ≤ n

P (
n∑

i=1

ciXi > u) ∼
n∑

i=1

P (ciXi > u).

3.2 Proofs of Main Results

Proof of Theorem 1.

By the definition of ruin probability, we have

ψ(u;T )

= P
(
e−Δ(t)U(t) < 0 for some T ≥ t > 0|U(0) = u

)
.

(13)

For each t ∈ (0, T ], we have

u−
N(t)∑
i=1

Xie
−Δ(σi) + σ0

∫ t

0

e−Δ(s)dB0(s)

≤ e−Δ(t)U(t)

≤ u+ c

∫ T

0

e−Δ(s)ds−
N(t)∑
i=1

Xie
−Δ(σi) +

σ0

∫ t

0

e−Δ(s)dB0(s).

(14)

Without essential difficulty, one can see that ψ(u;T ) sat-
isfies that

ψ(u;T ) ≥ P (

N(T )∑
i=1

Xie
−Δ(σi) ≥ u+

c

β
ξ + ξη) (15)

and

ψ(u;T ) ≤ P (

N(T )∑
i=1

Xie
−Δ(σi) ≥ u+ ξη), (16)

where
ξ = eσ max0≤s≤T (−B(s))

and

η = σ0 max
0≤t≤T

∫ t

0

e−βsdB0(s).

From Ross ([19]), N(t) with intensity function λ(s) can
be regarded as a random sampling of some homogenous
Poisson process N(t) with constant parameter λ, where
λ(s) ≤ λ. Now we introduce the indicator function 0f
event Ai, I(Ai). We say that Ai happens, if at time σi,
with probability λ(σi)/λ, Xi is picked out. From Lemma
3

P (

N(T )∑
i=1

Xie
−Δ(σi) ≥ u)

= P (

N(T )∑
i=1

Xie
−Δ(σi)I(Ai) ≥ u)

= P (

∞∑
i=1

Xie
−Δ(σi)I(Ai)I(σi ≤ T) ≥ u)

∼ F (u)

∞∑
i=1

∫ T

0

E[e−αΔ(s)(λ(s)/λ)]dFσi
(s)

∼ F (u)

∫ T

0

E[e−αΔ(s)(λ(s)/λ)]dm(s)

= F (u)

∫ T

0

λ(s)e−(αβ− 1

2
α2σ2)sds, (17)
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where, we have used the fact that, the renewal function
of Poisson process m(t), is just λt. For any fixed ε > 0

P (

N(T )∑
i=1

Xie
−Δ(σi) ≥ u+

c

β
ξ + ξη)

≥ P (

N(T )∑
i=1

Xie
−Δ(σi) ≥ (1 + ε)u)− P (

c

β
ξ + ξη ≥ εu)

≥ P (

N(T )∑
i=1

Xie
−Δ(σi) ≥ (1 + ε)u)−

EξτE(η + c
β
)
τ

(εu)
τ ,

(18)

where we have used Markov inequality. Lemma 2 implies
that Eξτ <∞. Choosing τ > 0 such that

EξτE(η + c
β
)
τ

(εu)τ

is the higher order infinitesimal of

P (

N(T )∑
i=1

Xie
−Δ(σi) ≥ (1 + ε)u).

By (17)

P (

N(T )∑
i=1

Xie
−Δ(σi) ≥ (1 + ε)u)

∼ F (u)
∫ T

0
λ(s)e−(αβ− 1

2
α2σ2)sds

(1 + ε)
α . (19)

By the arbitrariness of ε, we obtain that

P (

N(T )∑
i=1

Xie
−Δ(σi) ≥ u+

c

β
ξ + ξη)

>∼ F (u)

∫ T

0

λ(s)e−(αβ− 1

2
α2σ2)sds. (20)

On the other hand

P (

N(T )∑
i=1

Xie
−Δ(σi) ≥ u+ ξη)

≤ P (

N(T )∑
i=1

Xie
−Δ(σi) ≥ (1− ε)u) + P (ξη ≥ εu)

≤ P (

N(T )∑
i=1

Xie
−Δ(σi) ≥ (1− ε)u) +

EξτEητ

(εu)
τ . (21)

Similarly

P (

N(T )∑
i=1

Xie
−Δ(σi) ≥ u+ ξη)

<∼ F (u)

∫ T

0

λ(s)e−(αβ− 1

2
α2σ2)sds. (22)

Notes and Comments. Rewrite

max
0≤t≤T

∫ t

0

e−rsdB(s)

= max
0≤t≤ 1−e−2rT

2r

∫ − 1

2r
ln(1−2rt)

0

e−rsdB(s). (23)

Denote
∫ − 1

2r
ln(1−2rt)

0 e−rsdB(s) by M(t). We aim to
prove thatM(t) is Brownian motion. From Fima ([7]), we
only need to prove that, the quadratic variation process,
[M,M ](t), equals to t, because M(t) is a local martin-
gale. Using the definition of the quadratic variation, we

have [M,M ](t) =
∫ − 1

2r
ln(1−2rt)

0
e−2rsds = t. Hence, the

m.g.f. of max0≤t≤T

∫ t

0
e−rsdB(s) exists and Eητ exists.

It is not difficult to check that the result of Klüppelberg
and Stadtmuller ([12]) is the special case of Theorem 1 if
F ∈ R−α, λ is some constant and T = ∞.

Proof of Theorem 2. Similar to the proof of Theorem 1,
we have

P (

N(T )∑
i=1

Xie
−Δ(σi) ≥ u)

∼
∫ ∞

0

∞∑
n=1

P

(
n∑

i=1

Xie
−Δ(σi) ≥ u|N(T ) = n,Λ = λ

)

P (N(T ) = n|Λ = λ)G(dλ)

=

∫ ∞

0

∞∑
n=1

P

(
n∑

i=1

Xie
−Δ(TUi) ≥ u

)

P (N(T ) = n|Λ = λ)G(dλ)

∼ P
(
X1e

−Δ(TU1) ≥ u
)

∫ ∞

0

∞∑
n=1

nP (N(T ) = n|Λ = λ)G(dλ)

= EΛF (u)

∫ T

0

e−(αβ− 1

2
α2σ2)sds, (24)

where we have used Lemma 2.

Proof of Theorem 3. We only consider

P (

N(T )∑
i=1

Xie
−Δ(σi) ≥ u).

Because

P (

N(T )∑
i=1

Xie
−Δ(σi) ≥ u)

=
∞∑

k=1

P (
k∑

i=1

Xie
−Δ(σi) ≥ u,N(T ) = k), (25)

while

P (

k∑
i=1

Xie
−Δ(σi) ≥ u,N(T ) = k)
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=

∫
(N(T )=k)

P (
k∑

i=1

Xie
−Δ(σi) ≥ u)dF (σ1, ..., σk+1)

=

∫
(N(T )=k)

E[E[P (
k∑

i=1

Xie
−Δ(σi) ≥ u

|B(σ1), ..., B(σk))]]dF (σ1, ..., σk+1)

∼
∫

(N(T )=k)

E[E[
k∑

i=1

P (Xie
−Δ(σi) ≥ u

|B(σ1), ..., B(σk))]]dF (σ1, ..., σk+1)

=

∫
(N(T )=k)

k∑
i=1

P (Xie
−Δ(σi) ≥ u)dF (σ1, ..., σk+1)

=

k∑
i=1

P (Xie
−Δ(σi) ≥ u,N(T ) = k), (26)

hence

P (

N(T )∑
i=1

Xie
−Δ(σi) ≥ u)

=

∞∑
k=1

P (

k∑
i=1

Xie
−Δ(σi) ≥ u,N(T ) = k)

∼
∞∑

k=1

k∑
i=1

P (Xie
−Δ(σi) ≥ u,N(T ) = k)

=
∞∑

i=1

∞∑
k=i

P (Xie
−Δ(σi) ≥ u,N(T ) = k)

=

∞∑
i=1

P (Xie
−Δ(σi) ≥ u,N(T ) ≥ i)

=
∞∑

i=1

P (Xie
−Δ(σi) ≥ u, σi ≤ T )

=

∞∑
i=1

∫ T

0

P (Xie
−Δ(s) ≥ u)dFσi

(s)

=

∫ T

0

P (Xie
−Δ(s) ≥ u)dm(s). (27)

Hence Theorem 3 is completed.

Proof of Theorem 4. We deal with the proof by induction.
For k = 1

ψ1(u)

= P (u+

∫ θ1

0

e−Δ(y)dy −X1e
−Δ(θ1) < 0)

=

∫ ∞

0

Fθ1
(ds)

∫ ∞

−∞
P (X1 > ueβs+σt +

eβs+σt

∫ s

0

e−Δ(y)dy)
1√
2πs

e−
t
2

2s dt

∼ F (u)

∫ ∞

0

e−ασsFθ1
(ds)

∫ ∞

−∞

1√
2π
e−

v
2

2 e−ασv
√

sdv

= F (u)q, (28)

we have used the fact that X1 is in L class. Assume that

ψn(u) ∼ F (u)
q − qn+1

1− q , (29)

we should prove that (29) holds for n+ 1. Denote

ueΔ(θ1) + c

∫ θ1

0

eΔ(θ1)−Δ(y)dy

by V (θ1, u). With total probability formula

ψn+1(u)

= ψ1(u) + ψ1(u)E[ψn(V −X1, u)I(V ≥ X1)]

∼ ψ1(u) +
q − qn+1

1− q

∫ ∞

0

Fθ1
(ds)

∫ ∞

−∞
Φ(0,s)(dt)∫ ∞

0

e−αrs−ασtFX1
(dy)F (u)

∼ (q +
q − qn+1

1− q
∫ ∞

0

e−αμsFθ1
(ds)∫ ∞

−∞
e

1

2
α2σ2sΦ(0,1)(dt))F (u)

=
q − qn+2

1− q F (u), (30)

so by using induced assumption, Theorem 4 is finished.

We can see that, when n =∞, this Theorem turns to

ψ∞ ∼ q

1− qF (u),

which contains the result of Tang ([16]) as a special case.
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