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Abstract—This paper investigates the finite time
ruin probability in non-homogeneous Poisson risk
model, conditional Poisson risk models and renewal
risk model with stochastic returns. Under the as-
sumption that the claimsize is subexponentially dis-
tributed, a simple asymptotic relation is established
when the initial capital tends to infinity. The results
obtained extend the corresponding results of constant
interest force. Key Words:

Keywords: ruin probability, conditional Poisson pro-
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1 The model

We consider a Sparre Anderson model perturbed by a dif-
fusion. In this model the claim sizes, X,,, n = 1,2, ..., con-
stitute a sequence of independent, identically distributed
(ii.d.) and non-negative random variables (r.v.’s) with
common distribution function (d.f.) F = 1— F. The

claim arrival times, o,,n = 1,2, ..., form a renewal count-
ing process
N(t) =max{n>1:0, <t},t >0, (1)

with a constant intensity A, where, max¢ = 0 by con-
vention. The total surplus of a company up to time t,
with perturbed term ooWy(t), is denoted by U (t), which
satisfies the following equation:
N(t)
U(t)=u-+ct— Y Xy +00Bo(s), (2)
k=1
where, u > 0 is the initial capital, ¢ > 0 is the constant
rate of premium, {By(t),t > 0} is a standard Brownian
motion and oo > 0 is the volatility coefficient of oo By(t).
If the inter-arrival times 01,0, — 0,_1 for n = 2,3, ...
have a common exponential distribution, then the model
above is called C-L model.

If in the case of C-L model, parameter \ is time depen-
dent, then {N(t),t > 0} is called non-homogeneous with
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intensity function {A(¢),t > 0}. If for arbitrarily fixed
t,s >0, N(t) satisfies that

P(N(t+s)—N(s)=k) :/ e‘M%G/\(d}\),
0 !
where A is a r.v. with d.f. Go. Then {N(¢),t > 0} is
called conditional Poisson process.

All limit relationships in this paper, unless otherwise
stated, are for u — co. A~ B and A <~ B respectively
mean that lim,_ . % =1 and lim,_. o % > 1.

1.1 Stochastic Returns

If an insurer invests his capital in a risky asset, then its
capital value should be specified by a geometric Brownian
motion

AV, = Vi(pdt + odB(1)), (3)

where {B(t),t > 0} is a standard Brownian motion and
r > 0,0 > 0 are respectively called expected rate of
return and volatility coefficient. It is well known that
stochastic equation (3) has the following solution

Vi = V(0)elnm 300t BO),

Therefore, at time ¢, the surplus with risky investment
could be expressed as

U(t) = O (u+ /Ot e~ 2qU(s)), (4)

where, A(t) = Bt +oB(t), B =pu—o?/2.

ThrOUgh out, {Xnan > 1}) {N(t):t > 0}7 {B(t)>t > 0}
and {By(t),t > 0} are assumed to be mutually indepen-
dent. We define

U, T) = P( inf U(s) < 0U(0) = ),

the finite time ruin probability within time T. If T' = oo,
we say that i(u,o00) is ultimate ruin probability. This
concept illustrates the possibility that the surplus process
moves below zero.

Under the assumption that the risk models are non-
homogenous, conditional Poisson process and renewal
risk model respectively, In this paper will derive some
asymptotics of finite time ruin probabilities with stochas-
tic returns.

WCE 2009



Proceedings of the World Congress on Engineering 2009 Vol 11

WCE 2009, July 1 - 3, 2009, London, U.K.

1.2 Some Related Results

Heavy-tailed risk has played an important role in insur-
ance and finance because it can describe large claims; see
Embrechts et al. (see [6]) for a nice review. We give here
several important classes of heavy-tailed distributions for
further references:

e class L (Long-tailed): a d.f. F belongs to L iff
F(z+1)

lim —

Tr— 00

=1

for any ¢ (or equivalently, for ¢t = 1);
e class R_,: a distribution F' belongs to R_,, iff

F(r)=2"“L(z), = >0,

where L(x) is a slowly varying function as ¢ — oo
and index —a < 0. R_, is called regularly vary-
ing function class, or Pareto-like function class with
index —a.

o class S (Subexponential): a d.f. F belongs to S iff

lim Fi’”(x) =n

for any n (or equivalently, for n = 2); where F*"
denotes the n-fold convolution of F', with convention
that F*0 is a d.f. degenerate at 0.

These heavy-tailed classes satisfies R_, C S C L (see
Embrechts et al. [6]). The asymptotic behavior of the
ultimate ruin probability ¢(u) is an important topic
in risk theory. In the recent literature, the asymp-
totic behavior of the ruin probability with constant in-
terest force has been extensively investigated. One of
the interesting results was obtained by Kliippelberg and
Stadtmuller([12]), who used a very complicated L,, trans-
form method, proved that, in the Cramér-Lundberg risk
model, if the claimsize is of regularly varying with index

—a, then
blu) ~ 2 F(u), (5)

ar

where r is constant interest force. Asmussen ([1]) and
Asmussen et al. ([2]) obtained a more general result:

ﬁ/ F@My
rJu Y

where the claimsize is assumed to be in $*, an important
subclass of S. In the case of compound Poisson model
with constant interest force and without diffusion term,
Tang ([16]) obtained the asymptotic formula of finite time
ruin probability for sub-exponential claims. Tang ([17])
proved that, in the renewal risk model with constant in-
terest force, if the d.f. of claimsize belongs to regularly

P(u) ~ ; (6)

ISBN:978-988-18210-1-0

varying class with index —c«, then ultimate ruin proba-
bility satisfies that

Be—rafr
¥(u) ~ T Fo et = (u),
which extends (5) essentially. Jiang ([10]) extended some
results to the risky case. See also Jiang ([8], [9]). Dufresne
and Gerber ([4]) first researched the ruin probability for
jump-diffusion Poisson process. Veraverbeke ([20]) dis-
cussed the asymptotic behavior of ruin with diffusion
term.

The rest of this paper is organized as follows: In Section
2, main results of this paper are presented. In Section 3,
after some necessary lemmas are supplied, the proofs of
the main results are completed.

2 Main Results

The following theorems are main results of this paper:

Theorem 1. Consider non-homogenous Poisson model
introduced in Section 1. If F' € R_,, then it holds that

T
(s T) ~ Fu) /0 Ag)e™ (@3 g (1)

Notes and Comments. When F' € R_, and the per-
turbed term disappears, the results of Tang ([10]) is con-
sistent with this Theorem. In particular, this result is
also in consistence with that of Veraverbeke ([20]), who
pointed out that the diffusion term Wy(¢) does not influ-
ence the asymptotic behavior of the ruin probability. We
should point out that the diffusion term W (t) plays an
essential role in influencing the interest force.

Theorem 2. Consider conditional Poisson process intro-
duced in Section 1. If F' € R_,,, then

T
W T) ~ F(u)EA / e—(@f=ba%sg(g)
0

Notes and Comments. In these two Theorems, if pa-
rameter ) is a constant and perturbed term disappears,
then (7) and (8) turn to the following:

Y0 T) ~ 2 Fu)(1 - T, o)

which is in consistence with the result of Kliippelberg and
Stadtmuller ([12]).

Theorem 3. In the renewal model with surplus process
(4). Denote
4 = Ee—(i-}a%a%)01
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If F €S and m(s) is the renewal function of N(s), then
T
b T) ~ / P(X1e%B6) > w)dm(s).  (10)
0

If F € R_,, then (10) tends to

WD) ~F) [ e . )

If we denote 15 (u) as the ruin probability when ruin hap-
pens not later than kth claim, then in the renewal case,
we can obtain the following Theorem:

Theorem 4. In the renewal model with surplus (4). If
FeR_,, then

q-— qk+l

() ~ Pl

(12)

Notes and Comments. From Theorem 5, we can get
the main result of Tang (2005a) easily.

3 Proofs of the Main Results
3.1 Several Lemmas

The following lemma is well known Ross ([19]):

Lemma 1. Let {N(t)},, be a Poisson process with ar-
rival times {og,k > 1}. Given N(T) = n for any fized
T > 0, the random vector (01,02, ..., 0p) is equal in distri-
bution to the random vector (TU(l,n), - TU(n’n)), where
(U(Ln), - U(nm)) are the order statistics of n i.i.d. (0,1)
uniformly distributed random variables Uy, ...,Uy.

The following lemma can be found in many standard text-

books on stochastic process, see, for example, Karatzas
and Shreve ([11]).

Lemma 2. If B(t) is a standard Brownian Motion, then

the moment of any order of maxo<i<t B(t) exists. The
following Lemma can be found in Tang ([15]):

Lemma 3. Let {X;,1 <i<n} ben i.id subexponential
r.u.s, with common distribution F. Then for any fized
0 <a<b< oo, uniformly for alla <c¢; <b, 1<i<n

n n
P(Z i X; > u) ~ ZP(61X7 > u)
=1 i=1

3.2 Proofs of Main Results

Proof of Theorem 1.

ISBN:978-988-18210-1-0

By the definition of ruin probability, we have

U(u; T)
= P (e*A(t)U(t) <0 forsome T >t¢>0|U(0) = u) .
(13)
For each t € (0,T], we have
N(t) t
u— Y Xje 2 4 cro/ e 2 dBy(s)
i=1 0
< e AOU(t)
T N(@)
< u+ c/ e 20 ds — Z Xie A 4
0 i=1
¢
0'0/ e_A(s)dBo(s).
0
(14)

Without essential difficulty, one can see that ¢ (u;T") sat-
isfies that

N(T)
Y T) = P(Y Xie ) >t gs +en) (15)
i=1
and
N(T)
Y T) < P(Y Xie™ ) >utgn),  (16)
i=1
where
€= e maxo<s<T (—B(s))
and

t
= ~P%dB
n UOOISntaSXT/O e o(s).

From Ross ([19]), N(t) with intensity function A(s) can
be regarded as a random sampling of some homogenous
Poisson process N(t) with constant parameter \, where
A(s) < A. Now we introduce the indicator function Of
event A;, I(A;). We say that A; happens, if at time oy,
with probability A\(o;)/A, X; is picked out. From Lemma
3

N(T)

P(Y Xiem 20 > u)
i=1
N(T)
= P(Y Xie 2UI(A;) > u)

i=1

— p(i X,e 2EI(ADI(0; < T) > u)

i=1

~ F@ Y [ B SO M ()

~ Pl [ B SO0 Ndn(s)

T 2
— F(u) / A(s)e@B—e*eMs g (17)
0
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where, we have used the fact that, the renewal function Notes and Comments. Rewrite
of Poisson process m(t), is just At. For any fixed ¢ > 0 t
max / e "*dB(s)
0

N(T) c 0<t<T
P( Z Xie_A(gi) >u+ —f + 67}) — 5= In(1—2rt)
i=1 p = max / e "dB(s). (23)
N(T) ot<i= 2T Jo
> P Xie 200 > (14 e)u) — P(SE+&n> T
- (; ‘ = (1+e) (ﬂ§ &n 2 eu) Denote fo 25 In(1=2r1) e~ "dB(s) by M(t). We aim to
prove that M (t) is Brownian motion. From Fima ([7]), we
N(T) E¢TE(n+ <) . s
> P Z X;e~20) > (1 + e)u) — =5 AT R only need to prove that, the quadratic variation process,
- - (eu)” ’ [M, M](t), equals to ¢, because M (t) is a local martin-

i=1
! (18) gale. Using the definition of the quadratic variation, we

have [M, M|(t) = fo_ﬂln(l ) ¢=2rsds = t. Hence, the

where we have used Markov inequality. Lemma 2 implies m.g.f. of maxo<i<r fo ~TsdB(s) exists and En" exists.

that FE™ < co. Choosing 7 > 0 such that It is not difficult to check that the result of Kliippelberg
EETE(n+ <) and Stadtmuller ([12]) is the special case of Theorem 1 if
#75 F € R_,, A is some constant and T = co.
eu
P Th 2. Similar to th f of Th 1,
is the higher order infinitesimal of W;“Oggjéf corem Hiat 1o Bhe proot o corer
N(T) N(T)
PO Xie 20 > (1+e)u). Z Xie 20 > )
i=1
By (17) ~ / ZP (ZX e A7) > y|N(T) = n, A = A)
N(T)
P(Y" Xie™2) > (1 + e)u) ( ) =n|A = NG(d))
i=1
2 2 — 7A(TU)
Db / ZP(ZXe )
(1+e) (T) = n|A = \)G(dN)
By the arbitrariness of €, we obtain that ~ P (XlefA(TUl) > u)
N(T) .
P Xe 200 >4 Ze 4 ¢p / nP(N(T) = n|A = N)G(dA
(; 3 ) ; Z | )G(dA)
> 5 r —(af—-La?0?)s il T —(af—-L1a?0?)s
2 Flu) / A(s)e—(@B—3ataD)s gy (200 = EAF(u) [ e (@830 (24)
0 0
On the other hand where we have used Lemma 2.
N(T) Proof of Theorem 3. We only consider
P(Y " Xie 200 > u+ &) N
i=1
N(T) P(D_ Xie 80 > ).
< P Xie 20 > (1—e)u) + P(én > eu) =
i=1 Because
N(T)
TEn N(T)
< P Xie 20 > (1 - 57 21 NG
Similarly ° k
> PO Xie ) > u,N(T) = k), (25)
N(T) k=1 i=1
P(Y_ Xiem 2 > u+ &) .
pt while
- T e k
~ F(u)/ A(s)e™(@B=30707)s g, (22) P(Z X;e 20D > 4 N(T) = k)
0

i=1
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/(N<T>=k->
k
EEP)_ Xie ) >4

/(N(T)—k) i=1

|B(c1), ... B(ok))|JdF (o1, .y Ot1)

/<N<T>—k>

1B(01), ..., Bop))]JdE (01, ..., 0s1)

k
/ Z P(X;e 20 > 4)dF(oy, ...
(N(T)=k) ;=1

k

k
P> Xiem ) > w)dF (o1, ..., 0k11)
=1

o

E[EY P(Xie 2 >4
=1

5 Uk+1)

P(X;e™ 20 >4 N(T) = k),
1

(26)
hence

N(T)
P( Z X,e 8 > w)

i=1

00 k
Y PO Xiem ) > u, N(T) = k)
k=1

i=1

o k

> > P(Xiem ) > u, N(T) = k)

k=1 1i=1

33 P00 2 0N =)
i=1 k=1t

> P(Xiem ) > u, N(T) > i)

=1

ZP(Xie_A(‘”) >u,0, <T)

i=1

0o T

Z/ P(X;e 2 > w)dF,,(s)
i=1"0

T
/ P(X;e 2 > w)dm(s).
0

(27)
Hence Theorem 3 is completed.

Proof of Theorem 4. We deal with the proof by induction.
For k=1

Y1(u)

01
Pu+ / e AW dy — X720 < ()
0

[l

P(X; > uelstot 4

s 1 t2
Bs+ot 7A(y)d — 5 dt
(& e e
/0 y) V2ms

- oo © 1 2

jal —aos (] - 70(0'1)\/§d
(u) A ‘ 01( S) /;oo \/%e ‘ !

(u)g, (28)

|
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we have used the fact that X7 is in £ class. Assume that
q—q*t

() ~ Fla

; (29)

we should prove that (29) holds for n + 1. Denote
01
BNCAIN C/ ENCIENOPS
0

by V (01, u). With total probability formula

¢n+1(u)
U1 (u) + P1(WER(V = X1, w)I[(V > X1)]

_ n+l o) o]
) ek i / Foy (ds) / B(o.0)(dt)

I—gq
| et @y F)
0

q—q"t!

e My (ds
— / (ds)

/ 6%02025@(0,1)(dt))ﬁ(u)

_ n+2_
=% F(u),
1-g¢

(¢ +

(30)

so by using induced assumption, Theorem 4 is finished.

We can see that, when n = oo, this Theorem turns to
q J—
~——F(u
Voo~ L Fw)

which contains the result of Tang ([16]) as a special case.
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