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Abstract—Following the pricing approach proposed
by Zhu & Lian [19], we present an exact solution
for pricing variance swaps with the realized variance
in the payoff function being a logarithmic return of
the underlying asset at some pre-specified discrete
sampling points. Our newly-found pricing formula is
based on the Heston’s [8] two-factor stochastic volatil-
ity model. The discovery of this exact and closed-form
solution has significantly improved the computational
efficiency involved in computing the value of variance
swaps with discrete sampling points.
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1 Introduction

Volatility and variance swaps are essentially forward con-
tracts on annualized realized volatility or variance that
provide an easy way for investors to trade future realized
volatility or variance against the current implied volatil-
ity or variance. There is no cost to enter these contracts
as the initial value is typically set to zero at the in-
ception of a contract. The long position of a variance
swap pays a fixed delivery price at expiry and receives
the floating amounts of annualized realized variance,
whereas the short position is just the opposite. Most vari-
ance swaps are over-the-counter (OTC) contracts. How-
ever, there are some popularly traded exchange-listed
volatility-based products. For example, Chicago Board
Options Exchange (CBOE) launched 3-month variance
futures on S&P 500 in May 2004, and 12-month vari-
ance futures in March 2006. It can be imagined that re-
cent market turmoil due to the US subprime crisis would
further enhance the trading of volatility-based financial
derivatives, and thus greatly promote research in this
area.

Although the history of trading variance swaps is rela-
tively short, it has drawn considerable research interests,
in terms of developing appropriate valuation approaches
and trading strategies. In the literature, there have been
two types of valuation approaches, numerical methods
and analytical methods. Some typical papers in pricing
variance swaps include [2, 3, 6, 9, 12, 19] etc.

The solution approach presented here is very similar to
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that presented in Zhu & Lian [19], except that we now
adopt the realized variance defined in Broadie & Jain [2]
as the sum of squared log return of the underlying as-
set. Different from the solution approach proposed by
Broadie & Jain [2], which is primarily based on integrat-
ing the underlying stochastic processes directly, we price
discretely-sampled variance swaps based on Heston’s two-
factor stochastic volatility model by analytically solving
the associated governing PDE in two stages which was
firstly introduced by Little & Pant [12]. In this way, the
nature of stochastic volatility is included in the model
and most importantly, a closed-form exact solution can
be worked out, even when the sampling times are discrete.

For the easiness of reference, we shall start with a descrip-
tion of our solution approach and our analytical formula
for the variance swaps in Section 2. Our conclusions are
stated in Section 3.

2 Our Solution Approach

In this section, we use Heston’s [8] stochastic volatility
model to describe the dynamics of the underlying as-
set. To evaluate the discretely-sampled realized variance
swaps, we employ the dimension reduction technique pro-
posed by Little & Pant [12] to analytically solve the as-
sociated governing PDE.

2.1 The Heston Model

It is a well-known fact by now that the Black-Scholes
model [1] may fail to reflect certain features of the fi-
nancial market reality due to some unrealistic assump-
tions, such as the constant volatility assumption. In an
attempt to remedy the drawback of the constant volatil-
ity assumption in the Black-Scholes model, many models
have been proposed to incorporate stochastic volatility
[8, 13, 15]. Among all the stochastic volatility models
in the literature, model proposed by Heston [8] has re-
ceived the most attention since it can give a satisfactory
description of the underlying asset dynamics [5, 14].

In the Heston [8] model, the underlying asset St is mod-
eled by the following diffusion process with a stochastic
instantaneous variance vt, under the risk-neutral proba-
bility measure.

dSt = rStdt +
√

vtStdB̃S
t

dvt = κ∗(θ∗ − vt)dt + σV
√

vtdB̃V
t (1)
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where θ∗ is the long-term mean of the variance, κ∗ is
a mean-reverting speed parameter of the variance, σV

is the so-called volatility of volatility. The two Wiener
processes dB̃S

t and dB̃V
t describe the random noise in

asset and variance respectively. They are assumed to be
correlated with a constant correlation coefficient ρ, that
is (dB̃S

t , dB̃V
t ) = ρdt. The stochastic volatility process is

the familiar squared-root process. To ensure the variance
is always positive, it is required that 2κ∗θ∗ ≥ σ2. For
the rest of this paper, our analysis will be based on
the risk-neutral probability measure. The conditional
expectation at time t is denoted by EQ

t = EQ[· | Ft],
where Ft is the filtration up to time t.

2.2 Variance Swaps

In this subsection, we introduce the variance swaps and
provide various definitions of realized variance and the
corresponding strike prices for variance swaps.

Variance swaps are forward contracts on the future re-
alized variance of the returns of the specified underlying
asset. The payoff at expiry for the long position of a
variance swap is equal to the annualized realized variance
over a pre-specified period minus a pre-set delivery price
of the contract multiplied by a notional amount of the
swap in dollars per annualized volatility point, whereas
the short position is just the opposite. More specifically,
the value of a variance swap at expiry can be written as
VT = (RV −Kvar)× L, where the RV is the annualized
realized variance over the contract life [0, T ], Kvar is the
annualized delivery price for the variance swap, which is
set to make the value of a variance swap equal to zero for
both long and short positions at the time the contract is
initially entered. To a certain extent, it reflects market’s
expectation of the realized variance in the future. L is
the notional amount of the swap in dollars per annual-
ized volatility point squared and T is the life time of the
contract.

At the beginning of a contract, it is clearly specified the
details of how the realized variance should be calculated.
Important factors contributing to the calculation of the
realized variance include underlying asset(s), the observa-
tion frequency of the price of the underlying asset(s), the
annualization factor, the contract lifetime, the method of
calculating the variance. Some typical formulae [9, 12]
for the measure of realized variance are

V (0, N, T ) =
AF

N

N∑

i=1

log2(
Sti

Sti−1

)× 1002 (2)

where Sti is the closing price of the underlying asset at
the i -th observation time ti, and there are altogether N
observations. AF is the annualized factor converting this
expression to an annualized variance. We assume equally-
spaced discrete observations in this paper so that the an-
nualized factor is of a simple expression AF = 1

∆t = N
T .

In the literature, these two definitions have been alternat-
ingly used to measure the realized variance, even though
in practice most of the contracts appear to be drawn up
using the definition V (0, N, T ) for the realized variance.

In the risk-neutral world, the value Vt of a variance swap
at time t is the expected present value of the future payoff.
This should be zero at the beginning of the contract since
there is no cost to enter into a swap. Therefore, the fair
variance delivery price can be easily defined as Kvar =
EQ

0 [V (0, N, T )], after setting the value of Vt = 0 initially.
The variance swap valuation problem is therefore reduced
to calculating the expectation value of the future realized
variance in the risk-neutral world.

2.3 Pricing Approach

Our solution approach has been described in details in
Zhu & Lian [19]. However, for the completeness of this
paper and easiness of reference, we shall outline our ap-
proach again to show how it leads to an analytical solu-
tion for the fair delivery price of a variance swap with the
realized variance being defined the sum of log-return of
the underlying asset.

As illustrated in (2), the expected value of realized vari-
ance in the risk-neutral world is defined as:

EQ
0 [V (0, N, T )] = EQ

0 [
1

N∆t

N∑

i=1

log2(
Sti

Sti−1

)]× 1002

=
1002

N∆t

N∑

i=1

EQ
0 [log2(

Sti

Sti−1

)]

(3)
So the problem of pricing variance swap is reduced to
calculating the N expectations in the form of:

EQ
0 [log2(

Sti

Sti−1

)] (4)

for some fixed equal time period ∆t and N different
tenors ti = i∆t (i = 1, · · · , N). In the rest of this section,
we will focus our main attention on calculating the ex-
pectation of this expression. As shall be shown later, we
need to consider two cases, i = 1 and i > 1 separately,
due to the difference in the calculation procedures. The
expectation in (4) is calculated by computing the expec-
tation of log2( Sti

Sti−1
) for each fixed ti and ti−1, which are

given constants once a discretization is made along the
time axis.

Firstly we consider the case i > 1. In this case the time
ti−1 > 0 and thus Sti−1 is also an unknown at the current
time t = 0. Therefore, the payoff function depends on two
unknown variables Sti−1 and Sti which are the underlying
prices in the future. This two-dimensional payoff function
makes the problem extremely difficult to deal with. We
will however show that the problem could be solved by
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firstly introducing a new variable It and then decompos-
ing the original problem into two one-dimensional prob-
lems which could be relatively easier to be solved analyti-
cally. This technique was first proposed by Little & Pant
[12].

Introduce a new variable It

It =
∫ t

0

δ(ti−1 − τ)Sτdτ =
{

Sti−1 , ti−1 ≤ t ≤ ti

0, 0 ≤ t < ti−1(5)

where the δ(·) is the Dirac delta function.

We now consider a contingent claim Ui = Ui(S, v, I, t)
whose payoff at expiry ti is log2(Sti

Iti
). Following the stan-

dard analysis of Asian options with stochastic volatility
[7], we obtain the PDE for Ui (Subscripts have been omit-
ted in the PDE without ambiguity).

∂Ui

∂t
+

1
2
vS2 ∂U2

i

∂S2
+ ρσV vS

∂U2
i

∂S∂v
+

1
2
σ2

V v
∂U2

i

∂v2
+ rS

∂Ui

∂S

+[κ∗(θ∗ − v)]
∂Ui

∂v
− rUi + δ(ti−1 − t)

∂Ui

∂I
= 0

(6)
The terminal condition is

Ui(Sti , vti , Iti , ti) = log2(
Sti

Iti

) (7)

The Feynman-Kac theorem [11] states that the solution
of the PDE system satisfies:

EQ
0 [log2(

Sti

Iti

)] = ertiUi(S0, v0, I0, 0) (8)

Thus it is sufficient to solve the PDE (6) with terminal
condition (7) to obtain the expectation (4) we require. To
solve this PDE system, we need to utilize the properties
of variable It and the Dirac delta function in the equation.

The property of Dirac delta function indicates that any
time away from ti−1 the PDE (6) could be reduced as

∂Ui

∂t
+

1
2
vS2 ∂U2

i

∂S2
+ ρσV vS

∂U2
i

∂S∂v
+

1
2
σ2

V v
∂U2

i

∂v2
+ rS

∂Ui

∂S

+[κ∗(θ∗ − v)]
∂Ui

∂v
− rUi = 0

(9)
This means that we have managed to get rid of variable
It in the equation except at the time ti−1. However,
we cannot declare that we have succeeded in getting rid
of one spatial dimension due to the presence of It in the
terminal condition (7). To deal with the It in the terminal
condition, we need to use the so-called jump condition.

As mentioned previously, It = 0, t < ti−1 and It = Sti−1 ,
t ≥ ti−1. The variable It therefore experiences a jump
in value across time ti−1. The no-arbitrary assumption
leads to the condition that Ui(S, v, I, t) should remain
continuous across time ti−1. This is a jump condition at
time ti−1 because a “jump” has occurred in the indepen-
dent variable It, rather than occurring on the dependent

variable Ui(S, v, I, t) as in the definition of the jumps in
traditional sense [17]. Mathematically, the jump condi-
tion is of the form

lim
t↑ti−1

Ui(S, v, I, t) = lim
t↓ti−1

Ui(S, v, I, t) (10)

From this viewpoint, we can equivalently solve the PDE
(9) with terminal condition (7) and jump condition (10)
in order to get the expectation we are interested in. Fur-
thermore, inspired by the property of variable It, we
consider dividing the time domain [0, ti] into two parts
[0, ti−1] and [ti−1, ti] since during each of the two time
sub-domains, It could be regarded as constant. Hence,
it is an intelligent idea to solve the PDE system by two
stages, the first stage in [ti−1, ti] and the second stage
in [0, ti−1]. During each of the two stages the PDE sys-
tems have one dimension less than the original PDE sys-
tem. The obtained solution of the first stage will provide
the terminal condition for PDE system in second stage
through the jump condition (10). We need to remark
that this is one of the key features of this paper. Little &
Pant [12] were the first to use this dimension reduction
approach which provides many computational benefits in
their instantaneous local volatility model. In this paper,
the approach is applied to the stochastic volatility model
and provides us with closed-form solution.

Now, the PDE system (6) could be equivalently expressed
by two PDE systems as





∂Ui

∂t
+

1
2
vS2 ∂U2

i

∂S2
+ ρσV vS

∂U2
i

∂S∂v
+

1
2
σ2

V v
∂U2

i

∂v2

+rS
∂Ui

∂S
+ [κ∗(θ∗ − v)]

∂Ui

∂v
− rUi = 0

Ui(S, v, I, ti) = log2(
S

I
), ti−1 ≤ t ≤ ti

(11)
and




∂Ui

∂t
+

1
2
vS2 ∂U2

i

∂S2
+ ρσV vS

∂U2
i

∂S∂v
+

1
2
σ2

V v
∂U2

i

∂v2

+rS
∂Ui

∂S
+ [κ∗(θ∗ − v)]

∂Ui

∂v
− rUi = 0

lim
t↑ti−1

Ui(S, v, I, t) = lim
t↓ti−1

Ui(S, v, I, t), 0 ≤ t ≤ ti−1

(12)
Note that It is a fixed number It = Sti−1 in the domain
ti−1 ≤ t ≤ ti and It = 0 in 0 ≤ t < ti−1. We firstly
analytically solve the PDE system (11) using generalized
Fourier transform method.

Proposition 1 1 If the underlying asset follows the
dynamic process (1) and a European-style derivative
written on this underlying asset has a payoff function
U(S, v, T ) = H(S) at expiry T , then the solution of the

1The proof of this proposition can be obtained from the authors
on request.
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associated governing PDE system of the derivative value




∂U

∂t
+

1
2
vS2 ∂U2

∂S2
+ ρσV vS

∂U2

∂S∂v
+

1
2
σ2

V v
∂U2

∂v2

+rS
∂U

∂S
+ [κ∗(θ∗ − v)]

∂U

∂v
− rU = 0

U(S, v, T ) = H(S)

(13)

can be expressed in closed form as:

U(x, v, t) = F−1[eC(ω,T−t)+D(ω,T−t)vF [H(ex)]] (14)

using generalized Fourier transform method, where x =
ln S, j =

√−1 and ω is the Fourier transform variable,
and




C(ω, τ) = r(ωj − 1)τ +
κ∗θ∗

σ2
V

[(a + b)τ − 2 ln(
1− gebτ

1− g
)]

D(ω, τ) =
a + b

σ2
V

1− ebτ

1− gebτ

a = κ∗ − ρσV ωj, b =
√

a2 + σ2
V (ω2 + ωj), g =

a + b

a− b
(15)

It should be noted that Formula (14) has been deliber-
ately left in a rather general form. This is because the
payoff function H(S) hasn’t been specified yet. In fact,
Proposition 1 in this general form is applicable to most
derivatives, as long as their payoffs depend only on the
spot price S of underlying asset at expiry. The original
result of Heston [8] is actually a special case covered by
this proposition.

However, for some payoffs, the Fourier transform in
Proposition 1 has to be interpreted as the General-
ized Fourier transform, which is a useful tool for pric-
ing derivatives. For most popularly used financial
derivatives, such as vanilla call options with H(S) =
max(S −K, 0), performing the generalized Fourier trans-
form is straightforward. The main difficulties with this
approach, however, are associated with the Fourier in-
verse transform needed to be performed, if one wishes to
reduce the computational time substantially. For our spe-
cific case, H(S) = log2(S

I ), the Fourier inverse transform
could be explicitly worked out and hence the solution can
be written in a much simple and elegant form.

Based on the generalized Fourier transform, we can per-
form the transformation as

F [xn] = 2πjnδ(n)(ω) (16)

where j =
√−1, n is any integer and δ(n)(ω) is the n-th

order derivative of the generalized delta function satisfy-
ing ∫ ∞

−∞
δ(n)(ω)Φ(ω)dω = (−1)nΦ(n)(0) (17)

In our specified case PDE (11), H(S) = log2(S
I ). By

setting x = ln S and noting I a constant, we perform the

generalized Fourier transform to the payoff function H(x)
with regards to x.

F [(x−log I)2] = 2π[−δ(2)(ω)−2jδ(1)(ω) log (I)+δ(ω) log2 I]
(18)

Using the Proposition 1, the solution of PDE (11) is given
by

Ui(S, v, I, t)
= −f (2)(0) + 2jf (1)(0) log (I) + f(0) log2 I (19)

where f(ω) = eC(ω,ti−t)+D(ω,ti−t)v+xωj , with x = log S
and ti−1 ≤ t ≤ ti. The terms f (2)(0) and f (1)(0) can
be easily computed, using symbolic calculation packages,
such as Maple 10.

Now, we have succeeded in obtaining the solution for the
PDE system (11), which is the first stage in calculating

EQ
0 [log2 (

Sti

Sti−1

)].

To finish off the calculation, we need to move to the
second stage, i.e. solving the PDE system (12), after
the imposition of the jump condition (10). As we shall
show later, the simple form of solution (19) has paved an
easy way of obtaining an analytical solution in the second
stage.

By noting the fact that limt↓ti−1 log St = log I due to the
definition of I, we obtain

lim
t↓ti−1

Ui(S, v, I, t) = e−r∆tg(v) (20)

where g(v) is the expression

g(v) = (D(1))2v2 + (2C(1)D(1) −D(2))v + (C(1))2 − C(2)

(21)
resulting from computing all the derivatives in (19) with
C(1) = ∂C(ω,∆t)

∂ω |ω=0, C(2) = ∂2C(ω,∆t)
∂ω2 |ω=0. D(1) and

D(2) are defined similarly. C(ω, τ) and D(ω, τ) are given
in Eq. (15).

Eq. (20) is now the terminal condition for the PDE sys-
tem (12) in the period 0 ≤ t ≤ ti−1, according to the
jump condition (10).

It should be noticed that the terminal condition (20) for
the PDE system (12) in the period 0 ≤ t ≤ ti−1 happens
to contain one independent variable, v, only. One can
thus take the advantage of this fact and solve the problem
neatly with the following proposition.

Proposition 2 If the underlying asset follows the dy-
namic process (1), the derivative written on some
stochastic aggregated property of this underlying asset
with payoff function depending on the vT only, i.e.,

Proceedings of the World Congress on Engineering 2009 Vol II
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN:978-988-18210-1-0 WCE 2009



U(S, v, T ) = G(vT ) at expiry T will satisfy the PDE




∂U

∂t
+

1
2
vS2 ∂U2

∂S2
+ ρσV vS

∂U2

∂S∂v
+

1
2
σ2

V v
∂U2

∂v2

+rS
∂U

∂S
+ [κ∗(θ∗ − v)]

∂U

∂v
− rU = 0

U(S, v, T ) = G(v)

(22)

The solution of this PDE can be obtained analytically in
the form of

U(S, v, t) =
∫ +∞

0

e−r(T−t)G(vT )p(vT |vt)dvT . (23)

where

p(vT |vt) = ce−W−V (
V

W
)q/2Iq(2

√
WV ), q =

2κ∗θ∗

σ2
V

− 1,

W = cvte
−κ∗(T−t), c =

2κ∗

σ2
V (1− e−κ∗(T−t))

(24)
and Iq(·) is the modified Bessel function of the first kind
of order q.

The proof of Proposition 2 is trivial, as it is actually
implied by the Feynman-Kac formula, which states that
the solution of PDE (22) can be derived from the condi-
tional expectation of the payoff function under the risk-
neutral probability measure. Hence, the solution can be
expressed in form as

U(S, v, t) = EQ
t [e−r(T−t)G(vT )] (25)

where the associated two processes St and vt follow the
stochastic processes in (1), respectively. The expecta-
tion is actually not related to the process St since the
payoff function is independent of S. The process vt is
the well-known CIR squared-root process [4] which is
associated with the noncentral chi-square distribution,
χ2(2V ; 2q+2, 2W ), with 2q+2 degrees of freedom and pa-
rameter of non-centrality 2W proportional to the current
variance, vt. Once we realized that the needed transition
probability density function p(vT |vt) has been given in
[4], as shown in Eq. (24), the proof naturally follows.

Using the Proposition 2, we can express the solution of
PDE system (12) as

Ui(S, v, I, t) =
∫ ∞

0

e−r(ti−1−t)e−r∆tg(vti−1)p(vti−1 |vt)dvti−1

(26)
where 0 ≤ t < ti−1, g(vti−1) and p(vti−1 |vt) are given in
Eq. (21) and Eq. (24) respectively. This means for each
i > 1 the expectation (4) has been found by solving the
PDE systems (11) and (12) in two stages,

EQ
0 [log2(

Sti

Sti−1

)] = ertiUi(S0, v0, I0, 0)

=
∫ ∞

0

g(vti−1)p(vti−1 |v0)dvti−1 (27)

As Zhang & Zhu [18] commented in their paper, the inte-
gration in the above equation usually cannot be explicitly
carried out; we had initially decided to leave our final so-
lution in this integral form too. However, after a careful
examination of the properties of the integrand, we real-
ized that the elegant form of g(v), which is the solution of
the first stage, could be further explored again. Utilizing
the characteristic function of noncentral chi-squared dis-
tribution [10], we have successfully carried out the above
integral analytically and obtain a fully closed-form solu-
tion as our final solution for the price of a variance swap
with the realized variance defined by (2). This has made
our solution in a remarkably simple form as

EQ
0 [log2(

Sti

Sti−1

)] = gi(v0) (28)

where

gi(v0) =
∫ ∞

0

g(vti−1)p(vti−1 |v0)dvti−1

= (D(1))2(
q̃ + 2Wi + (q̃ + Wi)2

c2
i

)

+(2C(1)D(1) −D(2))(
q̃ + Wi

ci
) + (C(1))2 − C(2)(29)

ci = 2κ∗

σ2
V (1−e−κ∗ti−1 )

, Wi = civ0e
−κ∗ti−1 and q̃ = 2κ∗θ∗

σ2
V

.

To a certain extent, it is even simpler than that of the
classic Black-Scholes formula, because the latter still in-
volves the calculation of the cumulative distribution func-
tion, which is an integral of a smooth real-value function,
whereas there is no need to calculate any integral at all
in our final solution!

Utilizing (28), the summation in (24) can now be carried
out all the way except for the very first period with i = 1.

We need to treat the case i = 1, separately, simply be-
cause in this case we have ti−1 = 0 and Sti−1 = S0, which
is the current underlying asset price and is a known value,
instead of an unknown value of Sti−1 for any other cases
with i > 1. So the expectation that needs to be calculated
in this special case is reduced to

EQ
0 [log2(

Sti

Sti−1

)] (30)

which can be easily derived by invoking Proposition 1
directly,

EQ
0 [log2(

Sti

Sti−1

)] = g(v0) (31)

Summarizing the calculation procedure discussed above,
we finally obtain the fair strike price for the variance swap
as:

Kvar = EQ
0 [V (0, N, T )] =

1
T

[g(v0) +
N∑

i=2

gi(v0)]× 1002

(32)

Proceedings of the World Congress on Engineering 2009 Vol II
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN:978-988-18210-1-0 WCE 2009



0 10 20 30 40 50

230

240

250

260

270

280

290

300

Sampling Frequency (Times/Year)C
al

cu
la

te
d 

F
ai

r 
S

tr
ik

e 
P

ric
e 

fo
r 

V
ar

ia
nc

e 
S

w
ap

s 
(V

ol
at

ili
ty

 p
oi

nt
s 

%
)2

Kvar calculated from Eq. (35)
Kvar obtained from Monte Carlo simulation
Kvar in Swishchuk (2004)

Figure 1: A Comparison Of Fair Strike Values Based on
the Discrete Model, Continuous Model and the Monte
Carlo Simulations

N is a finite number denoting the total sampling times of
the swap contract. The above equation gives a fair strike
price for variance swaps in a simple and closed-form so-
lution. This formula is obtained by solving the intricate
associated PDE in two stages. In these two stages, PDEs
are cracked separately and, unexpectedly, the two corre-
sponding solutions of these two stages can be expressed
in a simple and neat form. Hence, the final solution (32)
for the variance swap is written in analytical and closed
form.

2.4 Verification

To ensure the correctness of our solution, we have used
Monte Carlo method to simulate the underlying process
(1) and calculate realized variance according to definition
(2). Shown in Fig. 1 are the results of the strike price of
variance swaps obtained with the numerical implementa-
tion of Formula (32), and those from Monte Carlo sim-
ulations. One can clearly observe that the results from
our exact solution perfectly match the results from the
Monte Carlo simulations. The values of the relative dif-
ference is less than 0.1% already when the number of
paths reaches 200,000 in Monte Carlo simulation. Such a
relative difference is further reduced when the number of
paths is increased; demonstrating the convergence of the
Monte Carlo simulation towards our exact solution. We
have also compared our solution with that of continuous
sampling time obtained by Swishchuk [16]; the difference
between the two becomes more significant when the the
sampling frequency becomes small.

3 Conclusion

In this paper, we have applied the approach proposed by
Zhu & Lian [19] to price variance swaps with the real-
ized variance defined as the sum of the log return of the
underlying asset, and obtained a closed-form exact so-
lution based on the Heston stochastic volatility model.

Our newly-found pricing formula can be used to signif-
icantly improve the computational efficiency involved in
computing the value of variance swaps with discrete sam-
pling points.
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