Proceedings of the World Congress on Engineering 2009 Vol 11
WCE 2009, July 1 - 3, 2009, London, U.K.

Speeding Up Two-Level Simulation for Tail
Conditional Expectations by Means of Prefix
Sum Based Algorithms

Yi-Cheng Tsai, Hsin-Tsung Peng, Jan-Ming Ho

Bryant Chen, and Ming-Yang Kao

Abstract—In this paper, we study the problem of computing
tail conditional expectations (TCE) of portfolio gains at specific
times (T in the future. We present efficient algorithms to handle
the following two cases: (1) we have only one option (call or put)
in our portfolio, denoted as a single-stock-single-option portfolio
(SSS0); (2) we have a stock and some of its options in our
portfolio, denoted as a single-stock-multiple-options portfolio
(SSMO). Compared with previous simulation algorithms, our
algorithms compute TCE of a given portfolio more efficiently
and still maintain the same degree of accuracy. In the SSSO case,
we reduce the computational time complexity from the SSSO-
Naive Algorithm’s O(m*n) to SSSO algorithm’s O(m+n), where
m is the number of possible price outcomes for an underlying
stock at time T and n is the number of possible price outcomes
for an underlying stock at time U (maturity) in respect to each
possible price outcome for an underlying stock at time T . In the
SSMO case, we provide two algorithms to compute the TCE.
The computational time complexity of the SSMO-Naive
Algorithm is O(g*m*n+m*log(m)), where g is the number of
options. The computational time complexities of our two
algorithms are O(q*(m-+n)+m*log(m)), and O(g*log(g)+n+m*q+
m*g*log(g)l+m*log(m)) or O(g*log(g)+n+m*q+m*q*log(m)+m*
log(m)). In both cases, our experiments show that when m and n
are greater than five thousand, our algorithms run thousands of
times faster than the naive algorithms.

Index Terms—Portfolio, Tail Conditional Expectations, Risk
Management, Risk Measurement, and Option

I. INTRODUCTION

The current U.S. subprime mortgage crisis has highlighted
the importance of risk management in finance. In this global
financial crisis, many banks and other financial institutions
around the world have suffered huge losses, many of which
might have been avoided by better risk management.

Considerable research has been done on developing
methods for risk management. Evaluating investment risk
accurately specifically is a core issue within this research. The
value-at-risk (VaR) [1] is a well-known risk measure used for

Yi-Cheng Tsai and Hsin-Tsung Peng are research assistants, and Jan-
Ming Ho is Research Fellow in the Institute of Information Science,
Academia Sinica, Taipei, Taiwan. Their e-mails are {yicheng, m9115013,
hoho | @iis.sinica.edu.tw.

Bryant Chen is a research assistant in the Institute of Information Science,
Academia Sinica, Taipei, Taiwan. His e-mail is bryantrchen @gmail.com.

Ming-Yang Kao is Professor of Electrical Engineering and Computer
Science at Northwestern University, Evanston, IL 60201, USA. His e-mail is
kao@northwestern.edu.

ISBN:978-988-18210-1-0

evaluating investment risk. In recent years, coherent risk
measures have received attentions increasingly. According to
[2, 3], coherent risk measures must satisfy four properties,
namely, translation invariance, subadditivity, positive homo-
geneity, and monotonicity. The tail conditional expectation
(TCE) proposed in [3] is one such coherent risk measure and
is closely related to conditional value-at-risk [4].

Recently, there has been a growing interest in the use of
TCE in measuring risk. Landsman et al. [5, 6] derived explicit
formulas for computing TCE for the elliptical distribution and
derived the TCE for loss random variables in the exponential
dispersion models. Furman et al. [7] calculated the TCE for a
multivariate gamma portfolio of risks based on its non-
negative risks allocation. Brazauskas et al. [8] presented an
estimator for estimating the TCE and constructed its

confidence intervals and bands. Cai et al. [9] derived various

TCEs for multivariate phase-type distributions by using the
Markovian method and focused on the risk of an entire
portfolio. These researches focus on the TCE estimation of
some specific distributions of portfolios. However, there are
still some portfolios (such as the portfolios of options) require
using two-level simulation to obtain the portfolios gains. In
our paper, we will study the computation of the TCE of
portfolios containing options.

Let V be a portfolio’s possible gain at a specified time T in
the future. The VaR will then be defined as the negative of the
p-quantile of the cumulative distribution function of V. The
TCE, is defined as:

TCE, =E[-VIV <-VaR, |

Since risk measures typically have to deal with thousands
of probable outcomes of multiple assets in a portfolio,
computing them in naive manner often takes a prohibitive
amount of computational time. Moreover, the portfolios
calculated by two-level simulation for their gains make the
computation of their TCE more complex and time-consuming.
So, some works are done to investigate how to speed up the
computation of risk measures. Lan et al. [10] proposed an
efficient method to construct a confidence interval for TCE,
to speed up the computation of the TCE estimation of one
option.

In this paper, we will provide efficient algorithms to
compute the TCE value itself of portfolios containing options
in two cases. In the first case, we have only one option (call or
put) in our portfolio, called a single-stock-single-option

(1

WCE 2009

Proceedings of the World Congress on Engineering 2009 Vol 11
WCE 2009, July 1 - 3, 2009, London, U.K.

portfolio (SSSO); in the second case, we have a stock and
some of its options in our portfolio, called a single-stock-
multiple-options portfolio (SSMO). Two key ideas used in
our algorithms are (1) an algorithmic technique called prefix
sum computation and (2) the standard model assumption that
the distribution of the stock price Sy at a time U relative to
the stock price Srat a time T < U is identical for all S7. Our
algorithms avoid a significant amount of redundant comp-
utation by applying the prefix sum technique to take
advantage of the identical distribution assumption. We can
adapt our algorithms for a relaxation of the identical
distribution assumption at the cost of an increased running
time.

The remainder of the paper is organized as follows: In
Section II, we describe the background of our research. In
Section III, we provide a formal definition of the problem in
the paper. In Sections IV and V, we present our algorithms for
SSSO and SSMO, respectively. In Section VI, we describe
our experiments. Lastly, in Section VII, we summarize our
findings and suggest future research directions.

II. BACKGROUND

To calculate the TCE, we need a method for pricing options
at time 0 and time 7. There are many widely used pricing
models for various derivatives. In this paper, we use the
Black-Scholes model [11]. We review this model for a put
option as follows:

F= Ke™ ¢(—d,) - Syp(-d,),
B =Ke """ "¢(—d) - S,9(—d),
where
i :In(SufK)+(r+O'2/2)U
1 O'JDT ’
d,=d —oJU,
&= In(S, /K)+(r+0?/2)U —T)‘ ©)
oJU -T

d,=d,—oJU-T.

In these equations, g is the cumulative normal distribution,
ris the non-risk interest rate, K is the strike price of the option,
Sp is the initial price of the underlying stock, and o is the
volatility of the underlying stock. We can also obtain the
value of the stock price at time T (i.e., Sy) and time U (i.e., Sy)
through the geometric Brownian motion.

2
S, =S5, exp((p~%)r +0oT2),

S, =S, exp((u%)(u “Tj+oO~TZ).

Z and Z' above are the standard normal random variables at
time T and U respectively. We can then compute TCE, by
numerical integration using the equations described above.
The result obtained serves as the benchmark for our exper-
iment in the SSSO case.

Since it is time-consuming to use the Black-Scholes
formula to calculate the TCE, we thus use a discrete model to
approximate the TCE. For our experiments, we chose to use

ISBN:978-988-18210-1-0

(2)
(3

4)

)

O]

(8

)]

the binomial model developed by Cox, Ross, and Rubinstein
[12]. The binomial model assumes that at each time interval,
the underlying stock price can only go up or down. Let u be
the ratio of up movement for a stock after each interval and let
d be the ratio of down movement after each interval. Then the
values of u and d are:

The parameter ¢ here is the ratio of the time period of one
interval to the time period for which ¢ is calculated. The
probability of the stock price moving higher is:

er(l) —fedl

u—d
Now we can obtain the value of each possible stock price at
all time points in the binomial tree.
The price of a put option at time T can be computed by the
equation below:

p:

(10)
(11)

(12)

" 1) i
P, =e—rw—nz[ﬂ(:; “!]p‘(l -p) K = S,ufd"")*t a3

i=0
In Equation (13), n is the number of steps in the binomial
tree. After we obtain the option prices of each node at time T
and U, we compute the TCE. This algorithm is referred to as
SSSO-Naive algorithm. Note that computational time comp-
lexity of SSSO-Naive algorithm is O(m*n).

III. PROBLEM DEFINITION

First, we assume that we can obtain the distribution Fg(f) of
the future price of a stock at time 1 ,0 = r = U, where Fy(f)
can be either empirically or theoretically computed Note that
U denotes the striking time of the option under consideration.
We are interested in computing TCE at time T, where 0 < T <
U. Let Fg= F¢(T) be the distribution of stock price § at time T
and Fy be the distribution of stock price ratio R = F{U)/F(T)
at time U with respect to time T.

Assume that at time 7, there are / assets in our portfolio and
each asset has m possible price outcomes for the underlying
stock Fs and that for each of the m values of Fs at time 7, there
are n possible price outcomes at time U. Under these
assumptions, a naive algorithm, which takes every possible
outcome into account, would require a computational time
complexity computation on the order of O(m*n*h). It would
take as long as a half of a day to compute the TCE value of just
one option, the smallest possible k, if m and n were greater
than a hundred thousand. Our algorithms achieve the same
accuracy as the naive algorithms in only a few seconds.

In order to reduce computation time, we design algorithms
that greatly avoid a considerable amount of redundant comp-
utation without sacrificing accuracy. The details of each case
will be described as follows.

IV. SINGLE-STOCK-SINGLE-OPTION PORTFOLIO (SSSO)

In SSSO, we have only one option (call or put) in our
portfolio. We chose “sell put” for this experiment case. The
gain of a put option is determined by the strike price minus the
price of the underlying stock at maturity. If the price of the
underlying stock at maturity is greater than the strike price,
the value of the option is zero. In this section, we first

WCE 2009

Proceedings of the World Congress on Engineering 2009 Vol 11
WCE 2009, July 1 - 3, 2009, London, U.K.

introduce how we used the naive algorithm to compute TCE,.
We then present our algorithm for computing TCE, in SSSO,
which we will call “SSSO Algorithm”.

A. S550-Naive Algorithm

We are interested in the computation of the TCE, at time T,
where § is the stock price, P, is the initial option price, U is the
maturity, K is the strike price, and r is the interest rate. Let the
number of nodes at time T and time U be m and n respectively.

The stock price at time Tis §; i = 1, 2,..., m, and the stock
price ratio is Ry, j= 1, 2,..., n. The period from each possible
price outcomes at time T to U is the same, so the stock price
ratio in respect to each possible price outcomes is the same.
Therefore we can use R;to express the stock price ratio in
respect to each possible price outcomes. Because the possible
prices of underlying stock on binomial tree have been sorted
by their values, the possible gains of the portfolio in this case
are sorted too. Take selling a put option for example, if the
possible underlying stock prices strict increase, the possible
gains of selling a put option will strict increase. Then, we can
find out the position of p-quantile among the nodes at time T
before calculating the portfolio gain. After determining the
position of p-quantile, we can screen out the points that are
greater than the p-quantile in the tree at time 7. If K = S/*R,,
portfolio gain (v) equals

v=e VTN (Be” —(K-S5,*R)))
If K < §;*R;, portfolio gain (v) equals
p= e—r(U-T}PoerU

The portfolio gain at time T can be computed by
V,=EvIS,]

Then we can get TCE, by Equation (1). The computational
time complexity of the SSSO-Naive Algorithm is O(m*n).

B. 8880 Algorithm

We can reduce our computation time if we can find the
value of K/S; in Fgrapidly. K/S; for the purposes of this paper,
will be called the strike price ratio.

We can derive these two inequalities from the binomial
model: §;> S,> ...>5,, and R,> R, >... > R,. From the first
inequality, we obtain that the strike price ratio K/S; is a
monotonic series, K/S,, > KIS,,.; =...= K/S,. Now, we want to
find the point that is closest and smaller than K/S; in Fg, and
we will use R, to represent those points, where i=1,2,...,m.
The strike price ratio is a monotonic series, so is the series R,;.
First, we use linear comparison to find out the closest point of
K/S; in Fp showing as the point R, in Fig. 1(a). Because
monotonicity of R, we do not need to compare K/S; and R;
from the beginning. However, it is necessary to compare the
points that are equal or greater than R,;. We will save the
results of R for the searching of R, ;). Take the computation
of V, and V; for example, we show that SSSO Algorithm uses
prefix sum method to reduce the computation. After deter-
mining the position of the R,;, we can divide Fg into two
regions: The first region is the points equal or lesser than R,
in Fg. The second region is the points greater than R, in Fj.,
as shown in Fig. 1. In Fig. 1(a), we can use Equation (14) to
compute the possible gains in region land Equation (15) to
compute the possible gains in region 2, then use equation (16)

ISBN:978-988-18210-1-0

(14)

(15)

to compute V;. When we want to compute V; in Fig. 1(b), we
do not need to compute the points in region 1 again. We
merely need the sum of the points in region 3 and the results
fromregion 1to obtain V,. Using this prefix sum computation,
we only need to go through Fj once, and we can obtain the
values from V, to V,. In the same fashion as the naive
algorithm, we can screen out the points that are greater than
the p-quantile in the tree at time 7. After calculating all the
values of the portfolio gain in the p-quantile region, we can
get TCE, by Equation (1). The computational time complexity
of the SSSO Algorithm is O(m+n).

R,

(a) In 5y, strike price ratio (K/S;) divides Fg into two regions.
A,

(b) In 53, we only need to compute the region 3 when the region | was
calculated in S;.
Fig. 1: Prefix Sum Computation.

(16) V. SINGLE-STOCK-MULTIPLE-OPTION PORTFOLIO (SSMO)

In SSMO, there is one stock and multiple options (buy call,
sell call, buy put or sell put four kinds of trading) of that stock
in our portfolio. We assume that there are g options and that
the weight of each option is equal. We will first discuss the
naive algorithm in SSMO and present two algorithms to
handle this case, comparing the time complexity with
SSMO-Naive Algorithm.

A. SSMO-Naive Algorithm

Because there are g options in our portfolio, we need to
repeat the SSSO-Naive Algorithm g times to get probable
gains for every option at time 7. We name the probable gains
for every option Vj; where k= 1, 2,....gand i = 1, 2,...,m.
Then, we can compute the probable gain of our portfolio at
time T by summing up the gain provided by each option,
which is ¥ =21 Y%. After obtaining the portfolio gain V;, we
sort V; and find the p-quantile and compute the TCE, as
described in SSSO. The computational time complexity of the
naive algorithm is O(g*m*n+m*log(m)).

B. Two Algorithms for SSMO
We present two algorithms to handle SSMO. The first will
be called the g-times-SSSO Algorithm, and the second will be
called the SSMO Algorithm.
1) gq-times-S850 Algorithm
We use SSSO algorithm to compute Vj;. Then, we calculate
the TCE,, value by the process described in naive algorithm of
SSMO. The computational time complexity of g-times-SSSO
Algorithm is O(g*(m+n)+m*log(m)).

WCE 2009

Proceedings of the World Congress on Engineering 2009 Vol 11
WCE 2009, July 1 - 3, 2009, London, U.K.

2) SSMO Algorithm

In SSMO, there is only one underlying stock of the options
in our portfolio and its initial price is So. Let the strike price of
kth option be K, k=1, 2,..., g. We sort K first, so K; = K>
=...= KgletA=[ay}, ag=Ky/S;, i=1,2,..m; 8§, = > =...
= Sn. We can then see that every row and every column in the
matrix A is sorted, so we can use a merge sort to sort every
element in the matrix A to form a non-decreasing vector B.
The probability distribution of price change ratio at time U R;,
J=1,2,...,n, is also a sorted vector. A merge sort can then be
done again to combine vector B and vector R and form a
non-decreasing vector C. As described in Section IV SSSO
Algorithm, when we have the position of the strike price ratio
in the distribution Fg, we can use Equation (14) and (15) to
compute V;. Therefore, we only need to go through vector C
once to obtain the portfolio gain V;, Vs,..., V,.

Similar to SSMO-Naive Algorithm and g-times-SSSO
Algorithm in this section, we just need to follow the same
process (o obtain the TCE, value. The computational time
complexity of the SSMO Algorithm is O(g*log(q)+n+m*q
+m*g*log(g)+m*log(m)) or O(g*log(q)+n+m*q+m*q*log(m)
+m*log(m)).

The difference of these two computational complexities
comes from which direction (row or column) you choose for
the merge sort. We will compare the value of g to the value of
m. If m is bigger than g, we will choose the algorithm of
O(g*log(g)+n+m*q+m*q*log(g)+m*log(m)) computational
time complexity. If ¢ is bigger than m, we will choose the
other one.

VI. EXPERIMENTS

In order to analyze the property of our algorithms in both
cases, we conducted a few experiments where we calculated
the accuracy of our algorithms and compared the computation
time to the naive algorithms of both cases. Our facility is
equipped with an IBM XSERIES_3455 loaded with 10 GB of
RAM. The programs are written by using Perl language.

A. Experiment Setting

In SSSO, we sell a put option in our portfolio. The initial
price is Sp= 100; the strike price of the put option is K= 110;
the maturity is U = 1 year; and the volatility of the underlying
stock is o = 15%,; the interest rate is r = 6%.

In SSMO, the parameters of the underlying stock are the
same as those in SSSO. The strike prices of the options in
SSMO are random numbers and the value of the strike prices
is lesser than Sp*(1+20%) and greater than S;*(1-20%). The
maturity of all options is U, In both cases, we are interested in
calculating the TCE,, where p =1% at time T =1/52 year.

In our experiment, we use two metrics to evaluate the
performances of our algorithms as follows.

=|TCEp_m0 Algorithm _TCE-"—MM'* |X 100% (I?)
TCEP_hMmd I

accuracy =1—error rate (18)
where TCE,, 556 algorimm 18 the TCE,, value calculated by SSSO
algorithm, and TCE, _p.nctmar 1S the TCE, value calculated by
Black-Scholes formula.

error rate

ISBN:978-988-18210-1-0

B. Experiment Results
1) S§8sO
For this case, we used Black-Scholes formula to calculate
TCEj4;, and the result was 3.39148. We then used this value
as TCE,, penchmart in Equation (17) to analyze the accuracy of
our algorithm. We repeated every experiment five times and
took the average for the result. In Fig. 2, we fixed the value of
n to 10000. We observed that the error rate of TCEgg,;
decreases as m increases from 100 to 10000. When m is
greater than 5000, the accuracy of SSSO Algorithm rises
above 99.5%.

L]
100 800 1100 1600 100 2600 3100 3600 4100 S600 $100 5600 §100 6600 1100 700 $100 BESG F100 PE0D

™ [= 18,000}

Fig.2: TCEpg; error rate curve of SS50 Algorithm, where n was fixed to
10000 and m was increased from 100 to 10000

In Fig. 3, we fixed the value of m to 10000. We observed
that when n was greater than 2000, the accuracy remained
almost constant. Thus, we need only let n be greater than 2000
and the value of n will not influence our experiment results.

74

5 el

I ws _
B

(X

"
58 800 1100 1600 2100 3600 3100 3600 4100 4600 §120 $400 §100 $400 TI00 THA0 1100 B0D FI0D MDD
n (m = 10,000)

Fig. 3: TCEg gy error rate curve of SSS0 Algorithm, where m was fixed to
10000 and n was increased from 100 to 10000

In Fig. 4, we fixed the value of n to 10000. When the value
of m approaches 1000000, the accuracy of SSSO Algorithm is
higher than 99.95%. When we use SSSO Algorithm to
calculate the TCEjq; with m = 1000000 and n = 10000, it
takes merely 4.03 seconds for the system to finish calculating.
Had we used SSSO-Naive Algorithm to do this, it would have
taken almost a half of a day!

TI0 160 M0 M0 N0 MO 410 480 510 BS0 10 880 M@ TEO MO B W0 880
w10 (m = 10,000}

w oW

Fig.4: TCEy g error rate curve, where n was fixed to 10000 and m was
increased from 10000 to 1000000

WCE 2009

Proceedings of the World Congress on Engineering 2009 Vol 11

WCE 2009, July 1 - 3, 2009, London, U.K.

Here, we compared the computation times of SSSO
Algorithm and SSSO-Naive Algorithm. In Fig. 5, we fixed the
value of n to 10000. We observed that when m increases, the
ratio of the computation time of SSSO-Naive Algorithm to the
computation time of SSSO Algorithm is also increased.
Furthermore, when m is greater than 10000, the ratio is
greater than 2500.

T Lo

|
1

Time af SES0-Natvs Algarfitem

Ll
e 80 1100

w0 5100 e baaad
™ (= 18,0000
Fig. 5: The ratio of the computation time of SSSO-Naive Algorithm to the

computation time of SSSO Algorithm, where n was fixed to 10000 and m
was increased from 100 to 10000

In Fig. 6, we fixed the value of m to 10000 and we achieved
similar results to those in Fig.5.

p
L n_fﬂ\/ |
A/‘.'J
P

et _

100 8500 TH0D
" (m o 18,000}
Fig. 6: The ratio of the computation time of $$S0O-Naive Algorithm to the

computation time of SSSO Algorithm, where m was fixed to 10000 and n
was increased from 100 to 10000

Finally, we wanted to know how much time it would take to
reach the same accuracy if we were to calculate a quantile
smaller than 1%. Hence, in Fig. 7 we used SSSO algorithm to
compute TCE ;. The value of TCE, penchmars in Equation (17)
in this experiment is 4.38054. We fixed the value of n to
10000. We observed that comparing with the results of
TCEy,, the value of m slightly increases to reach a certain
level of accuracy.

s

e e e e .o we
mE 190 (n = 18.000)

Fig. 7: TCEq00; error rate curve, where n was fixed to 10000 and m was
increased from 10000 to 10000000

Fig. 8 shows that when n is fixed at 10000, even if m is
equal to ten millions, SSSO Algorithm only takes about 40
seconds to compute TCEj p;.

ISBN:978-988-18210-1-0

=

% =
},, ~
" //

" wie

0 a9 “-e o L] e g e
m 18t (- 00001

Fig. 8: Computation time of $5S0 Algorithm, where n was fixed to 10000
and m was increased from 10000 to 10000000

2) SSMO

In this case, we wanted to compare the computation times
for the SSMO-Naive Algorithm, g-times-SSSO Algorithm,
and SSMO Algorithm. Because there are three parameters, we
fixed two of the parameters to analyze how the remaining
parameter influences the computation time. The SSMO-Naive
Algorithm takes too much time, so in our experiments we only
used ten points to compare our algorithms to the
SSMO-Naive Algorithm. In our experiments, we used the
algorithm of O(g*log(g)+n+m*g+m*gq*log(g)+m*log(m)) co-
mputational time complexity as SSMO Algorithm because in
this algorithm, m is always greater than g.

In Fig. 9, we fixed the value of m to 10000 and g to 10. We
observed that the time ratio of the SSMO-Naive Algorithm to
our two algorithms increased as n increased from 1000 to
10000.

Firme Ratsa
NEEEREEEEE

 (m = 18,000) (9 = 10)

Fig. 9: The ratios of the computation time of SSMO-Naive Algorithm to the
computation time of our algorithms, where m was fixed to 10000, g was
fixed to 10, and n was increased from 1000 to 10000

In Fig. 10, we fixed the value of n to 10000 and g to 10. We
observed that the time ratio of the SSMO-Naive Algorithm to
our two algorithms increased as m increased from 1000 to
10000. When m is greater than 6000, the ratios of the time of
the SSMO-Naive Algorithm to the time of our algorithms
increase very slowly.

e S5 Nalvw Aigoriinm - imee SO Algarithm
| ~@— S8 0-Maiw Algoriien / S5 O Aigorither

w000 mee0 MM Y0P M09 fom o0
™ (s 10,0000 (g = 19}

Fig. 10: The ratios of the computation time of the SSMO-Naive Algorithm to
the computation time of our algorithms, where n was fixed to 10000, ¢ was
fixed to 10, and m was increased from 1000 to 10000

Proceedings of the World Congress on Engineering 2009 Vol 11
WCE 2009, July 1 - 3, 2009, London, U.K.

InFig. 11, we fixed the value of n to 10000 and m to 10000.
We observed that the time ratio of the SSMO-Naive
Algorithm to our two algorithms increased as g increased
from 1 to 10.

-
-
-
-
-
-
]

@ (m s 1,000) (7« 10,000)

Fig. 1 1: The ratios of the computation time of SSMO-Naive Algorithm to the
computation time of our algorithms, where m was fixed to 10000, n was
fixed to 10000, and g increased from 1 to 10

From the experimental results in SSSO, we know that when
n is greater than 2000, the value of n does not influence the
precision of our results. Furthermore, in this paper, we focus
on how much time it takes to get the TCE, value. We do not
want to discuss which kind of portfolio is better. Hence, we
will fix the value of both g and n to compare the computation
time of g-times-SSSO Algorithm to the computation time of
the SSMO Algorithm. In Fig. 12, we fixed the value of n to
10000 and ¢ to 10 and changed m from 100 to 10000 by
adding 100 each time. The y-axis represents the time of the
SSMO Algorithm minus the time of the g-limes-SSSO
Algorithm. We observed that in some situations, SSMO
Algorithm took less time to compute the results. However, in
other situations, the g-times-SSSO Algorithm performed
better. We are still not able to confirm under what kind of
situation, i.e. different values of m, n, and g, which results
perform better though we did observe that when m or ¢
increased from computational time complexity of these two
algorithms, the g-times-SSSO Algorithm was more efficient
than the SSMO Algorithm. When n increases, the SSMO
Algorithm performs better. Therefore, when we handle
SSMO, we can use both algorithms at the same time.
Moreover, once one of these algorithms finishes calculating
the TCE, value, the results of the slower algorithm may be
discarded.

Tirse of SIIO Atgowithe
Tima of g-nemae- SRS Alpaciriee

th. disisisks

190 850 190 180 10 MO 300 M0 410 80
e ¢ 0 0 8 0

- (e 10.000) (= 10)

Fig. 12: The difference of the computation time of g-times-SSSO Algorithm

to the computation time of the SSMO Algorithm, where n was fixed to 10000,

g was fixed to 10, and m increased from 1000 to 10000

VII. CONCLUSIONS

In this paper, we have designed efficient algorithms that
speed up the computation of the risk measure TCE,. In the
SSSO case, we have reduced the computational time

ISBN:978-988-18210-1-0

complexity from the SSSO-Naive Algorithm’s O(m*n) to the
SSSO Algorithm’s O(m+n). From the experimental results,
we have observed that when we wanted 99.95% accuracy, our
algorithms ran thousands of times faster than the SSSO-Naive
Algorithm. In the SSMO case, we have provided two
algorithms to calculate the TCE, when there are multiple
options in our portfolio. The computational time complexity
of the SSMO-Naive Algorithm is O(g*m*n+ m*log(m)). The
computational time complexity of the g-times-SSSO Algo-
rithm is O(g*(m+n)+m*log(m)) and the computational time
complexity of the SSMO Algorithm is O(g*log(g)+n+m*q+
m*g*log(g)+m*log(m)) or O(gq*log(g)+n+m*g+m*q*log(m)
+m*log(m)). Our experimental results also showed that in the
SSMO case our algorithms run thousands of times faster than
the SSMO-Naive Algorithm.

For future work, we plan to apply our algorithms to several
kinds of financial assets, such as convertible bonds, pure
bonds, and stocks whose price movements have correlations.

ACKNOWLEDGMENTS

We would like to thank Professor Staum at the department
of Industrial Engineering and Management Sciences, North-
western University for providing us with a program to
compute the benchmark of the SSSO case in this paper.

REFERENCES

[1] P Jorion, Value at Risk: The New Benchmark for Managing Financial
Risk, 3rd ed. McGraw-Hill, 2006.

[2] P. Anzner, F. Delbaen, J.-M. Eber, and D. Heath,
Coherently,” Risk, vol. 10, no. 11, pp. 68-71, 1997.

[3] P. Artzner, E Delbaen, J.-M. Eber, and D. Heath, “Coherent measures
of risk,” Mathematical Finance, vol. 9, no. 3, pp. 203-228, 1999.

[4] C. Acerbi and D. Tasche, “Expected Shortfall: A Natural Coherent
Alternative to Value at Risk,” Economic Notes -Siena-, vol. 2, pp.
379-388, 2002.

[5] Z. Landsman and E. A. Valdez, “Tail Conditional Expectations for
Elliptical Distributions,” North American Actuarial Journal, vol. 7, no.
4, pp. 55-71, 2003.

[6] Z. Landsman and E. A. Valdez, “Tail Conditional Expectations for
Exponential Dispersion Models,” Astin Bulletin, vol. 35, no. 1, pp.
189-209, 2005.

|7] E. Furman and Z. Landsman, “Risk capital decomposition for a
multivariate dependent gamma portfolio,” Insurance Mathematics and
Economics, vol. 37, no. 3, pp. 635-649, 2005.

|8] V. Brazauskas, B. L. Jones, M. L. Puri, and R. Zitikis, “Estimating
Conditional Tail Expectation with Actuarial Applications in View,"
Journal of Statistical Planning and Inference, vol. 138, pp. 3590-3604,
2008.

[9] J. Cai and H. Li, “Conditional Tail Expections for Multivariate

Phase-Type Distributions,” Journal of Applied Probability, vol. 42, no.

3, pp. 810-825, 2005.

H. Lan, B. L. Nelson, and J. Staum, “A Confidence Interval for Tail

Conditional Expectation via Two-Level Simulation,” The Proceedings

of the Winter Simulation Conference, pp. 949-957, 2007.

F. Black and M. Scholes, “The Pricing of Options and Corporate

Liabilities,” Journal of Political Economy, vol. 81, no. 3, pp. 637-654,

1973,

J. C. Cox, S. A. Ross, and M. Rubinstein, “Option Pricing: A

Simplified Approach,” Journal of Financial Economics, vol. 7, pp.

229-263. 1979.

“Thinking

(10]

[

112]

WCE 2009

