
 
 

 

  
Abstract Chimera technique has broad applications in 

complex flow field simulations because of its convenience of the 
arbitrary boundary interfaces and the easiness of gird 
generations of subzones. However, the main disadvantage or 
challenging difficulty lies in the global conservative information 
exchange between different zones or components. This work 
aims at assessing the conservation and effects of the mass flux 
based interpolation (MFBI) in a chimera multi-grid flow solver 
where Reynolds-Averaged Navier-Stokes (RANS) equations 
and Boldwin-Lomax turbulence model are introduced to 
calculate the viscous flows over a multi-element airfoil 
(NAWC1F2.2) with a flap. Numerical results reveal that, 
compared to the direct interpolation scheme, the performance 
of global conservation of MFBI are much better and more 
coincident with wind-tunnel experiments. 
 

Index Terms Chimera Technique; Conservative Algorithm; 
Multi-element Airfoils; Aerodynamics.  

I. INTRODUCTION 
For the reason that the chimera grid technique allows the 

arbitrary boundary interfaces, in which the grids can be 
generated independently for different zones or components 
and grid overlaps are allowed, the chimera grid approach is 
preferred over the single-block approach and the patched 
multi-block approach in the context of using structured grid 
to handle topologically complex geometries. Typical 
applications are reported in various engineering fields 
ranging from aerospace engineering [1], biomechanics 
engineering [2] to hydraulics engineering [3]. However, there 
are also disadvantages of chimera grid technique, two of 
which are addressed following. The first is the hurdle of 
creating the data structure that specifies the interconnectivity 
among the overset grids. The other which is more challenging 
is the difficulty of enforcement of global conservation. The 
generation of the grid connectivity for a system of 
overlapping grids is an expensive and daunting task, 
although some recent tools can be enforced, such as hole 
cutting method or implicit hole cutting method[4,5] and in 
some particular junction regions of two bodies, collar grid or 
visual grid method[6,7] can be implemented to overcome the 
deficiencies. Furthermore, references [8, 9] reveal that some 
versions of connectivity codes have been developed by 
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NASA with the attempt to ameliorate the difficulty of the 
grids connectivity.  

Another critical and more challenging issue in solving 
flow problems by chimera grids is to exchange solution 
information at grid interfaces. Some efforts and researches 
have been made and Benek [10], Ray [11] and Berger [12] 
are some of early typical researchers on this issue. Reference 
[13] takes a short but good review of pioneering literatures. 
Currently, in order to facilitate information exchange, the 
direct interpolation or Lagrange interpolation [14] of both 
velocity and pressure at grid interfaces from adjacent grids is 
often the first choice. In case of overset grids, such direct 
interpolation is frequently realized by bi-linear or tri-linear 
interpolation. The advantage of the direct interpolation is that 
it is straightforward and easy to implement. In addition to this, 
H.S. Tang [15] has shown that the direct interpolation is a 
second-order accurate scheme. However, the need for 
accurate conservative grid interfaces has been illustrated by 
amount of literatures [11, 12, 16, and 20]. Berger [12] gives a 
discussion of conservative interpolation in overlapping grids. 
Hubbard and Chen [20] developed a finite-analytic, 
SIMPLE-type algorithm for solving the Navier–Stokes 
equations on Chimera overset grids. They reported that using 
tri-linear interpolation at grid interfaces for all flow variables 
leads to oscillatory pressure and velocity fields. Part-Enander 
and Sjogreen [16] also compared the effects of both 
conservative and non-conservative interpolation on slow 
moving shock problems, and got a conclusion that the 
non-conservative interpolation can lead to a large error. From 
above literatures, it can be obviously seen that it is often 
advantageous to use a numerical scheme in conservation 
form for flow problems involving discontinuities or sharp 
gradients.  

The contributor to these deficiencies is that the physical 
sense of a numerical scheme is not under consideration at the 
time when the direct interpolation is implemented. Not 
ideally, the physical (mass, momentum and energy) 
conservation laws are not satisfied in the entire domain. 
However, the point which needs to be addressed is that 
simultaneous achievement of both conservation of all 
physical quantities (mass, momentum and energy) and 
accuracy can be a really difficult task. In fact, for some 
problems, compromise has been made between enforcing the 
flux conservation and maintaining the comparable 
interpolation accuracy in both the grid interface and the 
interior regions. Researchers Tang HS [18, 19] and Jones SC 
[18] modified the standard interpolation and a mass flux 
based interpolation (MFBI) interface algorithm was proposed 
for Chimera grids. MFBI determines velocity and pressure at 
grid interfaces by mass conservation and interpolation, and it 

Assessment of an Interface Conservative 
Algorithm MFBI in a Chimera Grid Flow 

Solver for Multi-Element Airfoils 
Xu Kangle   Sun Gang    

Proceedings of the World Congress on Engineering 2009 Vol II
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN:978-988-18210-1-0 WCE 2009



 
 

 

is easy to implement while maintaining good efficiency and 
desirable accuracy.  

In this paper, the chimera grids approach, 
Reynolds-Averaged Navier-Stokes (RANS) equations and 
Boldwin-Lomax turbulence model are adopted to calculate 
the viscous flows over a multi-element airfoil (NAWC1F2.2) 
with a flap. The main attention is paid to the assessment of 
the conservation and effects of the mass flux based 
interpolation (MFBI) algorithm in chimera grid flow solver 
for multi-element airfoils. 

II. MASS FLUX BASED INTERPOLATION SCHEME 
In the MFBI algorithm, the velocity component in the 

normal direction of grid interfaces is determined by enforcing 
mass flux balance, and the two tangential velocity 
components and pressure are obtained by the direct 
interpolation. Since the normal velocity is computed on the 
basis of mass flux balance that is the result of the continuity 
equation, only three variables, pressure and the two 
tangential velocity components, are actually imposed at grid 
interfaces 

Consider Fig.1, the composite domain Ω  is obtained by 
overlaying domains AΩ  and BΩ  that is, A BΩ = Ω ΩU . Let 

AΓ  be the boundary of AΩ  and aΓ  the portion of this 
boundary that is within the overlapping region. By adopting a 
similar notation for BΩ , the boundary Γ  of Ω  can be 
written as A a B bΓ = Γ Γ Γ Γ− + − .and let F

v
be the mass 

flux. Mass conservation necessitates that the following 
integral constraints should be satisfied: 
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From the equation above, we acquire: 
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Furth more, the condition that mass conservation should be 
satisfied as well for the overlapping region gives rise to the 
following constraint: 
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Combining (2) and (3), we obtain the following equations for 
global conservation to be satisfied in the composite domain: 
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The physical sense of equation (4) is obvious, which is that 
global mass conservation in the composite domain is satisfied 
if and only if at each interface of the overlapping region the 
mass fluxes conservation is satisfied. 
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Fig. 1. Mass conservation 

Take a consideration on Fig. 2. A common grid line 'Γ  
is drawn along 1 2( ) / 2ξ ξ ξ= + , where equation (4) is 
discredited. Suppose 'Γ  is fixed, as 0→Δ , mass 
conservation requires that 
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       (5) 
Where AU  and BU  are the normal components of the 
contravariant velocities computed from the solution on grid 

AG  and BG  respectively. Thus, the mass conservation 
condition is: 
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Fig. 2. Two chimera overset grids 

In order to transfer the solution information on grid B to grid 
A through the overlapping area, we use I

pU  and I
qU  to 

approximate B
pU  and B

qU , respectively. We obtain 
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By which, equation (6) gives rise to 
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Equation (8) is the general formation of MFBI algorithm for 
grid interfaces. Furthermore, by Taylor expansion of 
equation (8), it is obtained that 
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(9) 
In the view that central difference is used for continuity 
equation, it leads to 
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Thus, equation (9) can be simplified 
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Therefore, Eqs. (8) and (11) yield 
( )2

1, , 1, , 2, , 2, ,
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Because x x xU u v wξ η ζ= + + , whereu , v , w  are three 
Cartesian components of the velocity, and by Taylor 
expansion, it is easy to verify that Eq. (12) can be guaranteed 
by 
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Thus, the complete formation of MFBI algorism can be 
formulated as 
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From equation (14), it can be seen that algorism MFBI 
makes modifications to the direct interpolation and just these 
modifications simultaneously grantee the global mass 
conservation and simple enforcement of the scheme. 

 

III. NUMERICAL EXPERIMENT AND RESULTANTS 
In order to validate and demonstrate capacities of the 

MFBI scheme, the flows around a multi-element airfoils 
NAWC1F2.2 under different conditions are considered. 
Boeing Company and NASA made lots of wind-tunnel 
experiments and obtained amount of aerodynamic 
experimental data about NAWC1F2.2, and related work can 
be found in Ref [21]. The flow solver for multi-element 
airfoils is composed of Reynolds-Averaged Navier-Stokes  
(RANS) equations, which are approximated by 
central-difference spatial scheme and five coupled 
Runge-Kutta time stepping scheme, and Boldwin-Lomax 
turbulence model. In order to accelerate the convergence and 
reduce oscillation in computation, local time stepping, 
implicit residual smoothing and carefully controlled artificial 
dissipative terms are also adopted in solver. For a complex 
flow about multi-element airfoils, the overlapping grids 
technique is set up. Each element grid is C-type and 
generated by partial differential equations. Fig. 3 and Fig.4 
illustrate overlapping grids for the airfoils before and after 
hole cutting, respectively. 

 The pressure distribution along each element airfoil with 
different interpolations for the inflow Ma=0.2, Re=2,830,000 
is displayed in Fig. 5. Numerical results about variation of lift 
coefficient versus angle of attack and relative experimental 
data are illustrated in Fig. 6. Fig. 7 gives polar lift curves of 
the airfoil NAWC1F2.2 with flap deflection 20 degrees. The 
calculated time histories for mass flux and velocity flux 
through closed interfaces Γa + Γb of overlapping areas are 
displayed in Fig. 8 and 9, respectively. 
 Considering the differences in Figs. 5-7 between 
non-conservative direct interpolation and mass conservative 
interpolation, it can be seen that the conservative scheme is 
more in agreement with the experimental data. Figs. 8 and 9 
indicate that algorithm MFBI do not only grantee the 
attribution of the global mass conservation, but also 
ameliorate the moment conservation oscillations in 
computation. So for flows involving large solution gradients 
and strong elliptic effects, such as flows around 
multi-element airfoils which frequently exist large flow 
separation regions, the conservative scheme is more suitable. 
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Fig. 3 overlapping grids for multi-element airfoils before 

hole cutting 
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Fig. 4 overlapping grids for multi-element airfoils after hole 

cutting 
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Fig. 5 surface pressure distribution  
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Fig. 6 lift curves of NAWC1F2.2 DEFL=20       
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Fig. 7 polar curves of NAWC1F2.2 DEFL=20 
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Fig. 8 Mass flux through closed interfaces of overlapping 

areas 
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Fig. 9 Velocity flux through closed interfaces of 

overlapping areas 
 

IV. CONCLUSION 
In the present study, a lot of attentions are paid to an 

interface mass conservative algorism MFBI in a chimera 
girds flow solver. To assess the conservative attribution of 
the scheme, complex flows around a multi-element airfoil 
NAWC1F2.2 with a flap are calculated under different 
conditions. Related results indicate that algorism MFBI has 
not only better performances on convergence of solutions, 
conservation of both mass and moment flux in global domain 
but also better consistency of experimental results.  
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