
 
 

 

  
Abstract—The aim of the paper is to determine the most 

important features of damping in the case of an advanced 

sandwich composite structure starting from the dampings, 

dynamic Young moduli and Poisson ratio for every lamina. The 

structure features two carbon/epoxy skins reinforced with twill 

weave fabric and an expanded polystyrene (EPS) core. At the 

damping analysis of fibre reinforced composite materials, a so 

called concept of complex moduli will be used in which the 

elastic constants will be replaced through their viscoelastic 

correspondences. The mechanical modeling is based on the 

correspondence principle of linear viscoelastic theory. Testing 

scheme allows specimens to be put in one side fixed connection 

and subjected at bending oscillations in normal conditions: 

23°C, 50% relative air humidity. Dampings, rigidities and 

compliances of the composite structure are computed. 

 
Index Terms—polymer matrix composites, sandwich, core, 

damping.  

 

I. INTRODUCTION 

  Polymer matrix composites have been used increasingly in 
applications in aeronautics, in transportations, in automotive 
industry, in machine-tools construction, robotics, etc., where 
high dynamic loaded parts are needed. To avoid dangerous 
oscillating loadings, the designer of a fibre reinforced 
composite structure has the possibility to choose the materials 
couples, fibres orientation and plies succession, to improve 
significantly the damping of the respective structure. 

The aim of the paper is to determine the most important 
features of damping in the case of an advanced sandwich 
composite structure starting from the dampings, dynamic 
Young moduli and Poisson ratio υ║┴ for every lamina. The 
mechanical modeling is based on the correspondence 
principle of linear viscoelastic theory [1]–[3]. 

In technique, the damping is usually defined as the decrease 
of oscillations, in which the mechanical energy contained in 
the system is converted into heat. This dissipation process 
which occurs at the interior of materials is called material’s 
damping [4]–[6]. 

When a composite material is subjected to a sinusoidal 
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varying stress in which the strain is also sinusoidal, the 
angular frequency is retarded in phase by an angle δ, 
retardation which takes place due to viscoelastic behaviour of 
the matrix. 

 

II. THEORETICAL APPROACH 

The introduction of material’s damping in the conditions of 
elastic deformations, occurs under the assumption of 
harmonic stresses and strains. If we choose the abscissa as the 
time axis where the strain reaches its maximum, the strain and 
stress can be written as a function of time: 

 
tωεε cos0= ,                    (1) 

 
( )δωσσ += tcos0 .                 (2) 

 
In the analysis of harmonic systems is more convenient to 
write the stress function as a complex quantity σ* which 
presents a real and an imaginary part [7]: 
 

tit ωσωσσ sincos ''
0

'
0

* += ,              (3) 
 
where '

0σ  and ''
0σ  can be expressed as following: 
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δσσ sin0

''
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Representing the ratios of stresses '

0σ  and ''
0σ  to ε0, a 

dynamic or “storage” Young modulus and a “loss” modulus 
can be defined: 
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According to equations (4) and (5), the ratio between the loss 
Young modulus and the dynamic modulus defines the 
material’s damping: 
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It is also convenient to express the harmonic stress and strain 
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in the form of an exponential function: 
 

tie ωσσ ⋅= *
0

* ,                    (9) 
 

tie ωεε ⋅= *
0

* .                  (10) 
 
Now, the complex Young modulus can be written as 
following: 
 

*

*
*

ε

σ
=E .                   (11) 

 
Taking into account the assumptions of linear viscoelasticity 
theory, the following material’s law can be defined [7]: 
 

( ) ( ) *'*'''*** 1 εεεσ ⋅⋅+=⋅⋅+=⋅= diEEiEE .     (12) 
 
For the equation (12), Niederstadt has presented a special 
resonance method suitable for small amplitudes, where the 
specimen was subjected at bending- respective torsion 
oscillations [4]. According to the resonance diagram of a 
glass fibre reinforced lamina, the first three eigenfrequencies 
at bending, fn,b, and first eigenfrequency at torsion, f1,t, have 
been determined. 

To determine the dynamic Young modulus, E’, and the 
dynamic shear modulus, G’, the motion equations for 
bending, w (x,t), and torsion, θ (x,t) were analyzed. In the case 
of a rectangular cross section specimen with one side fixed 
connection, the following equations for bending are [7]: 
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with the eigenvalue equation: 
 

0coscosh1 =⋅+ nn ββ .              (16) 
 
For torsion [7]: 
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The dampings db and dT can be determined from the halve 
value domains ∆f of the resonance peaks. 
 

III. THE SANDWICH COMPOSITE STRUCTURE 

The sandwich structure taken into account to accomplish 
the damping analysis presents two carbon/epoxy skins 
reinforced with a 0.3 kg/m2 twill weave fabric and an 
expanded polystyrene (EPS) 9 mm thick core with a density of 
30 kg/m3 [8], [9]. The final structure’s thickness is 10 mm 
(Fig. 1). 

The carbon-fibre fabric used in this structure is a high 
rigidity one, that presents so called twill weave. The main 
feature of this weave is that the warp and the weft threads are 
crossed in a programmed order and frequency, to obtain a flat 
appearance (Fig. 2). In order to accomplish the damping 
analysis, an equivalence model of the twill weave fabric is 
presented in Fig. 3. The skins were impregnated under 
vacuum with epoxy resin and sticked to the core. 

The data regarding the architecture of the sandwich 
structure are: structure’s thickness: ts = 10 mm; skins plies 
number: N = 2; thickness of each ply: t’1…4 = 0.175 mm; skins 
thickness: tskin = 0.35 mm; core thickness: h = 9 mm; fibres 
disposal angle of each ply: α1, 3 = 90°, α2, 4 = 0°; fibres volume 
fraction of each ply: φ1…4 = 56%. 

The data regarding the structure features: skins 
reinforcement: HM carbon fibres; fabric type: twill weave; 
fibres specific weight: 0.3 kg/m2; matrix type: epoxy resin; 
core type: expanded polystyrene; core density:                        
ρcore = 30 kg/m3; core Young’s modulus: Ecore = 30 MPa;    
core Poisson’s ratio: υcore = 0.35; core shear modulus:         
Gcore = 11 MPa; fibre Young’s modulus in longitudinal 
direction: EF║ = 540 GPa; fibre Young’s modulus in 
transverse direction: EF┴ = 27 GPa; fibre Poisson’s ratio:       
υF = 0.3; fibre shear modulus: GF = 10.38 GPa; matrix 
Young’s modulus: EM = 3.5 GPa; matrix Poisson’s ratio:       
υM = 0.34; matrix shear modulus: GM= 1.42 GPa [10], [11]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The sandwich structure 
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Fig. 2. The architecture of carbon/epoxy twill weave fabric 

skins 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The structure’s equivalence model 
 
Regarding the dynamic behaviour of the structure, we will 
consider the free, linear vibration of a mechanical system, 
which have a damped motion presented in Fig. 4 [12]. Here, R 
is the force given by the damper, c represents the damping 
coefficient and k is the spring constant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Model of a free, linear, damped vibration 
 
According to the model, the fundamental equation of 
dynamics for a rigid body can be expressed as following [12]: 

•••
⋅−⋅−=⋅ xx cxkm .               (20) 

 
Equation (20) can be written under the form: 
 

0=⋅+⋅+
•••

x
m

k
x

m

c
x ,               (21) 

 
or: 
 

02 2 =⋅+⋅+
•••

xpxx α ,              (22) 
 
with the notations: 
 

2;2 p
m

k

m

c
== α .               (23) 

 
The differential equation (22) is linear, homogeneous with 
constant coefficients. The characteristic equation: 
 

02 22 =++ prr α ,                (24) 
 
presents the roots: 
 

22 pr −±−= αα .               (25) 

 
In the case that α < p, the roots are complex. With the notation 
α2 – p2 = - β2, the general solution of the differential equation 
(22) can be under the form [12]: 
 

( )tCtCex t ββα sincos 21 += − .           (26) 
 
Since the expression from brackets can be put under the form 
a·cos(βt – φ), the equation (26) can be written in the following 
manner: 
 

( )ϕβα −⋅= − teax t cos .              (27) 
 
Equation (27) represents a vibration modulated in amplitude 
and the motion is shown in Fig. 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Diagram of a vibration modulated in amplitude 
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In the followings, we will consider exclusive linear damping 
mechanisms, linear elastic behaviour of the reinforcement and 
marked linear viscoelasticity of the matrix [13]–[15]. 

We consider that the specimen can be placed in one side 
fixed connection and subjected at bending oscillations 
(normal conditions: 23°C, 50% relative air humidity), see the 
scheme presented in Fig. 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Testing scheme of the sandwich composite structure 

 
In order to show the influence of the adhesive layer between 
core and skins in the damping behaviour of the composite 
structure, the following model can be used (Fig. 7). 
 

 
Fig. 7. Damping model of the adhesive layer 

 

IV. MICROMECHANICS OF LAMINA’S DAMPING 

A lamina reinforced with continuous, parallel fibres 
embedded in matrix is considered. To describe the 
viscoelastic features of an orthotropic lamina, two 
coordinates axes systems will be considered (Fig. 8): the 
global coordinates system (x-y-z) and the local coordinates 
system (║- ┴ - z). 

For the analysis of micromechanical lamina behavior, the 

prism model described by Tsai has been used [16]. So, the 
dynamic modulus along the fibres direction can be computed 
from the mixture rule as following: 

 
( )ϕϕ −⋅+⋅= 1'''

MIIFII EEE .            (28) 

 
Perpendicular to fibres direction, the dynamic modulus 
presented by Niederstadt, as a function of fibres and matrix 
dynamic moduli as well as the fibres and matrix dampings, 
can be used [7]: 
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Fig. 8. The coordinates axes of a lamina 
 
For the damping of unidirectional reinforced lamina, the 
computing relations given by Saravanos and Chamis can be 
used, starting from the cylinder model presented by Tsai     
[16]–[18]:  
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The index F describes the fibres, index M is used for matrix, φ 
represents the fibres volume fraction and υM is the Poisson 
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ratio for matrix. 
The viscoelastic material’s law according to the concept of 

complex moduli, for an orthotropic lamina, can be written as 
following: 
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Expressing the complex stresses as a function of complex 
strains, we obtain: 
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For the fibre reinforced polymer matrix composites, assuming 
that the dampings d2 << 1, the complex compliances and 
rigidities for an unidirectional reinforced lamina are: 
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For d2 << 1, according to equations (35) and (36), the 
dynamic compliances can be written in the form: 
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and the dynamic rigidities can be written as following [7]: 
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According to Niederstadt, the dampings 
ijc

d  and 
ijr

d  are [7]: 
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V. RESULTS 

The input data taken into account in the damping analysis 
are presented in table 1. The micromechanical calculus of the 
lamina’s damping is presented in table 2 and the compliances, 
rigidities and dampings are shown in table 3. 

The dampings of unidirectional reinforced laminae are very 
different along and transverse to the fibres direction. The 
maximum value of the damping seems to be at 45° against the 
fibres direction. 

In the future researches the whole sandwich structure will 
be experimentally tested to obtain more useful data for the 
damping analysis of this structure with many applications. 

 
Table 1. Input data 

'
ME  (GPa) 2.6 

Mυ  (-) 0.34 

Md  (%) 1.4 
'
IIFE  (GPa) 226 

'
FE ⊥  (GPa) 16 
'
#FG  (GPa) 43 

IIFd  (%) 0.13 
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Table 2. Micromechanical calculus of the lamina’s damping 
'
IIE  (GPa) 127.7 

⊥'E  (GPa) 5.89 

IId  (%) 0.141 

⊥d  (%) 0.833 

#d  (%) 1.929 

'
MG  (GPa) 0.97 

 
Table 3. Lamina’s compliances, rigidities, dampings 

'
IIc  [GPa-1] 0.00783 
'
IIc ⊥  [GPa-1] - 0.04923 
'c⊥  [GPa-1] 0.16977 

#c  [GPa-1] 0.18939 

cIId  [%] 0.141 

⊥cIId  [%] - 0.833 

#cd  [%] - 1.929 

'
IIr  [GPa] 128.19 
'
IIr ⊥  [GPa] 1.71 
'r⊥  [GPa] 5.91 
'
#r  [GPa] 5.28 

rIId  [%] 0.143 

⊥rIId  [%] 0.835 

#rd  [%] 1.929 
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