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Abstract—K.H. Norwich et al. used Shannon Information 

Theory to derive their Entropy Theory of Perception 
(1975-present). The Entropy Theory produces the Entropy 
Equation, which relates the strength of sensation (represented 
by magnitude estimates) to the intensity of the sensory stimulus. 
At “high” intensities, the relation is approximately logarithmic, 
which Norwich et al. dubbed “the Weber-Fechner Law”. At 
“low” intensities, the relation is approximately a power 
function, dubbed “Stevens’ Law”. Unfortunately, the Entropy 
Equation has three unknowns, so that what constitutes “high” 
and “low” can only be established through curve-fitting. 
Remarkably, the latter was never done. Establishing parameter 
values is especially important because one of the unknowns is a 
power exponent (the “Entropy Exponent”, here denoted y) said 
to be identical in value to “Stevens’ exponent” (here denoted x). 
The identity y=x was crucial to the numerous published 
applications of the Entropy Theory to psychophysical and 
neurophysiological phenomena. Curve-fitting of the Entropy 
Equation to magnitude estimates would therefore establish the 
ranges of the “Weber-Fechner” and “Stevens” laws and reveal 
whether y=x. The present author did the curve-fitting, following 
the custom in the literature: logarithmic forms of the Entropy 
Equation and Stevens’ Law were fitted by least-squares 
regression to logarithm(magnitude-estimate) vs. 
logarithm(stimulus-strength) taken from 64 published curves of 
magnitude estimates. The resulting relation of y to x was 
broadly scattered; 62/64 times, y exceeded x. In theory, the 
fitted Entropy Equation allows calculation of the information 
transmitted in perception. Hence the regressions were re-run 
conditional to an information transmitted of 2.5 bits/stimulus, 
the mean value in the literature. y≈1.7x under the constrained 
regression. Altogether, the purported equality of the Entropy 
Exponent and Stevens’ exponent was not confirmed. Further, 
neither the “Weber-Fechner Law” nor the “Stevens’ Law” 
derived from any fitted Entropy Equation described the entire 
range of the respective magnitude estimation curve, contrary to 
the formal use of those laws. Norwich’s later quantification of 
sensation growth by “physical entropy” makes identical 
mistakes. All of this emphasizes that the Entropy Theory does 
not derive rules of sensory perception from information theory, 
and it is recommended that further attempts to do so should be 
discouraged. 
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I. INTRODUCTION: THE ENTROPY THEORY OF PERCEPTION  
  The Entropy Theory advanced by K.H. Norwich and 

colleagues [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], 
[12], [13], [14] proposes that the neuronal or psychophysical 
response F is proportional to the entropy (the stimulus 
equivocation), called ES or H, defined as follows. The 
information associated with an event of known probability pi 
is –log (pi). Observing the outcome of an event from a set of n 
events of probabilities {pi , i = 1, ..., n} yields the average 
information IS, 
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(after [15]; see [11], [16]). Any base can be chosen for the 
logarithm; usually base 2 is used, giving information in 
binary units (“bits’) per event. For a set of transmitted 
symbols “k”, (1) becomes 
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For simplicity, Norwich et al. always assumed that the 
number of symbols transmitted and received was identical. 
Let pj(k) be the probability of transmission of symbol k, 
given that symbol j has been received. The stimulus 
equivocation ES is 
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The Garner-Hake information transmitted It [17] is 
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Hypothetically, these quantities are computed by the 
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microscopic sensory receptor. The receptor is hypothetically 
in a state of uncertainty about the microscopically mean level 
of a macroscopically constant stimulus [7], [8]. That 
uncertainty is reduced through repeated measurement of the 
stimulus [7], [8]. At the microscopic level, the intensity of 
that stimulus fluctuates, thermodynamically, from instant to 
instant [2], [3], [18]. Those microscopically discrete stimulus 
intensities were replaced for mathematical purposes by an 
intensity continuum having a standard deviation σS. There 
was also a stochastic “reference noise” with variance N2. 
That led to a “variation of a Shannon entropy function” [4, p. 
536]. Using logarithms to base “e” for mathematical 
convenience, and replacing ES by the symbol H (after 

orwich), gave 
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sometimes a power function of the population 
ariance [8]: 
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Now from statistical physics the mean density of a particle 
population is 
v
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and where n is a constant for each kind of particle [10], [18]. 
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formation is It,max= Hmax  - Hmin units of information, thus 

 

 
where μ is stimulus strength, e.g. average photon flux, or 
molarity of a solution. Finally, the maximum transmitted
in
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], [6], [16], [19], [20], [21]. 
 

all noise variance N2, then 
μn/mN2 >> 1, and (8) becomes 

 

(10) 

3], [24], [25]. For the opposing case 
f small μ or large N2, 
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II. THE ENTROPY THEORY DERIVATIONS OF THE 
“WEBER-FECHNER LAW” AND “STEVENS’ LAW” 

For large intensities μ or sm
λ
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dubbed the “Weber-Fechner Law” [3], [4], [5], [8], [10], 
[18], [19], [21], [22], [2
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f Stevens’ Law and comparison of the resulting exponents. 
 

III.  T OF THE 
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either ∞ or 0. This limitation always went unmentioned. 

 
which Norwich and co-authors dubbed “Stevens’ Law”. As 
Norwich et al. explain, “It transpires that the exponent, n, is 
precisely the Stevens exponent that appears in the law of 
sensation [equation for Stevens’ law, Norwich et al., 1989, 
Equation 12]” [22, p. 353] and “The parameter, n, has been 
shown in previous work to be equivalent to the power 
function exponent thoroughly examined experimentally by 
Stevens and others” [2, p. 169]. This equivalence is alleged 
throughout the Entropy Theory [3], [4], [5], [6], [8], [9]

3], [16], [18], [21], [22], [23], [24], [25], [26], [27]. 
Returning to (8), the Entropy Theory provides no way of 

obtaining A = λ/mN2 , as generally, λ, m, and N2 are 
unknown. In fact, all of k, A, and n can only be obtained 
through regression of (8) on curves of magnitude estimates 
vs. intensity. Without that regression, the intensity limits 
within which (10) and (11) separately apply are unknown. 
Further, Norwich et al. never actually proved that the Entropy 
Exponent equals the empirical Stevens’ exponent, an 
equivalence that was the basis for many applications of the 
Entropy Theory. The purported equivalence can only be 
established through curve-fitting of the Entropy Equation and 
o

ESTING THE PURPORTED EQUIVALENCE 
ENTROPY AND STEVENS’ EXPONENTS 

The alleged equality of the Entropy exponent and Stevens’ 
exponent was tested here for 64 examples of published 
magnitude estimation curves - more than used in all of 
Norwich et al.’s collected Entropy publications. When 
possible, the actual data points were obtained from the 
original authors. When this was not possible, the published 
plots were digitized. Digitizing error was several percent and 
was estimated to be less than the error originally made in the 
authors’ formatting of their illustrations. The data used was 
chosen for its apparent quality, based on the rigorousness of 
the training of the subjects, the number of repetitions of the 
stimulus, and so on. To avoid too much emphasis on any one 
laboratory or paper or sensory modality, the data were ta

om 21 papers on taste, olfaction, audition, and vision. 
Importantly, only data curves that are gently concave 

downward when plotted in logarithmic-by-logarithmic scales 
can be fitted by the Entropy Equation. Curves that run 
concave upwards, or that follow straight lines in log-log 
scales (power functions), drive one or more of k, A, and n
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A. Unconstrained regressions 
Magnitude estimates and stimulus intensities can both 

cover several orders of magnitude in a given experiment. 
Hence, magnitude estimates have traditionally been 
displayed as a function of stimulus intensity using 
coordinates of log(magnitude estimate) versus log(intensity). 
Equations fitted to the data have first to be transformed for 
logarithmic coordinates; those transformations reduce 
weighting bias in least-squares regression of the equation to 
the data. Here, natural logarithms (base e) were employed, 
producing plotting coordinates of ln F versus ln μ . When the 
power function F=Dμη [28] is appropriately transformed it 
becomes a straight line, ln F = ln D + η ln μ. The Entropy 
Equation transforms to ln F=ln (k/2 ln(1+A(exp(ln μ))n)). 

Fitting Stevens’ Law to the data using logarithmic 
coordinates is typical of the literature. Hence fitted Stevens 
exponents already exist in the literature, to which the present 
fitted Stevens exponents could be compared. The present 
fitted Stevens exponents were found to differ by at most 10% 
from the published ones, confirming that the present study 
successfully emulated traditional curve-fitting methods. 

B. Constrained regressions 
If desired, the Entropy Equation regression can be stopped 

when information transmitted (given by (9)) reaches 2.5 
bits/stimulus, the literature average for absolute 
identifications. This sum-of-squares-of-residuals (SSR) thus 
assumes an unnaturally high value, such that the resulting 
“constrained” Entropy Equation always fits less well (i.e. 
produces a higher SSR) than the “unconstrained” entropy 
function. 

C. Entropy Exponent vs. Stevens’ exponent: results 
Figs. 1 and 2 show the regression-derived Entropy 

Exponents, for convenience called “y”, plotted vs. the 
corresponding Stevens’ exponents, for convenience called 
“x”. The unconstrained regressions (Fig. 1) result in a broad 
scatter of {x,y} pairs, with only 2 of 64 Entropy exponents 
being smaller than the corresponding  Stevens’ exponents. 
The constrained regressions (Fig. 2) result in a streamlined 
relation of y to x; an unweighted regression of the equation 
y=Cx yielded y=1.7x. All but 2 points fall between the lines 
y=2.5x+0.2 and y=1.44x-0.2. Another figure, Fig.3, was 
made only for 1 kHz tones, the stimulus for which the most 
data was used in Figs. 1 and 2. For those cases in which the 
Entropy Exponent was approximately equal both with and 
without constraint, y ≈ 1.42x. 

D. Origin of the observed discrepancy 
To understand the origin of the discrepancy observed 

between n and η, the reader must inspect the Taylor series 
(11) in z = λμn/mN2. For the taste of sucrose, k=15.94, 
A=19.31 and n=1.77 (data of [29]). For μ =0.12 moles/litre, 
Aμn =0.453, ½(Aμn)2=0.103, and 1/3(Aμn)3=0.031, i.e. 
higher-order terms in the series expansion in (11) cannot be 
ignored. For the next higher stimulus, μ =0.24 M, giving 
Aμn=1.54. Thus Aμn >1 and a series in Aμn is not justified; 
the low-intensity approximation to F (11) applies, at best, 
only to  

 
 

 

 
 
 
Fig. 1. The Entropy exponent plotted vs. Stevens’ exponent. The 
Entropy exponent was obtained by unconstrained regressions (see 
text) on 64 sets of published magnitude estimates from audition, 
taste, olfaction, and vision. Four of the data points are based on 
papers of S.S. Stevens. The line y=x indicates equality of the two 
kinds of exponents. Data sources: [34] NaCl (Fig. 1), MgCl (Fig. 1), 
Na2SO4 (Fig. 1); [35] white noise (geometric means of magnitude 
estimates: series 1-3); [36] amyl acetate (Table 1: high standard, 
medium standard, low standard); [31] N-butanol (ratio scaling); 
[37] 1 kHz tone (Figs. 2, 3, 6, 7, 8, and 10); [38] 0.1 kHz tone (Fig. 
2, crosses; Fig. 2, circles), 0.250 kHz tone (Fig. 3, geometric means 
of circles); [39] N-butanol (group means, median magnitude 
estimates); [40] Table 1: heptane, benzene, octane; [41] sucrose 
(group data, geometric means: Table 2, Table 3); [30] 1 kHz tone 
(subjects #8, 9, 10, 11, 12, 13); [42] white light (Fig. 3, top curve); 
[43] 1 kHz tone (curves 1-7); [29] sucrose (“after normalization” 
geometric means of plotted points); [44] NaCl (Table 1: subjects 
MK, LK, and KK); [32] white light (monocular group data, medians 
of magnitude estimates), blue light, red light, green light; [45] NaCl 
(subjects HT, GY, and BGN); [46] 0.550 kHz tone (subject AWS), 
0.765 kHz tone (subjects EWB, RSM); [47] white noise (Fig. 2: 
binaural, magnitude production; binaural, magnitude estimation; 
monaural, magnitude production; monaural, magnitude estimation); 
[48] 1 kHz tone (Fig. 1, circles; Fig. 1, squares), white noise (Fig. 7, 
circles and crosses); [49] white light (monocular group data, 
geometric means, means of circles and squares; and Fig. 4, top 
curve); [50] binaural 1 kHz tone (cross-modality-matching, high 
range day 2; low range day 2). 
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Fig. 2 The Entropy Exponent plotted vs. Stevens’ exponent, from 
constrained regressions; information transmitted is constrained to 
2.5 bits/stimulus (same magnitude estimates as used in Fig. 1). The 
lines y=2.5x+0.2 and y=1.44x-0.2 bracket most of the points. 
 
 
the first two intensities. Similarly, the logarithmic range 
starts where Aμn  is sufficiently greater than unity that the “1" 
in (8) can be safely ignored. For Moskowitz [29], only the 
last 2 points are within the logarithmic range. Fig. 4 (top) 
shows the data, the entropy function, and its different 
regimes. 

Similar results appear for the other senses. Fig. 4 (bottom) 
shows the Entropy Equation fit for the loudness of a 1 kHz 
tone (data of [30]). The power function applies only to the 
first 3 of 20 points, and only the last 3 points are within the 
logarithmic range. Fig. 5 (top) shows the Entropy Equation 
fit for the odor of n-butanol (data of [31, Fig. 6]). The last 3 
points of 9 are not in the power range, and there is, in fact, no 
logarithmic range at all. Fig. 5 (bottom) shows the Entropy 
Equation fit for the brightness of green light (white light 
through Wratten filter; data of [32, Fig. 1]). Only the first 2 of 
10 points are in the power range, and only the last 5 points are 
within the logarithmic range. All the cases of Figs. 1 and 2 
have been evaluated; all follow such patterns. 

 
 
 

 
 
 
Fig. 3. The Entropy Exponent plotted vs. Stevens’ exponent, from 
both unconstrained and constrained  regressions, for the same data 
for 1 kHz tones as used in Fig. 1. For some data, the information 
transmitted was approximately equal in both the constrained and 
unconstrained regressions (line y=1.42 x). 
 

IV.  DISCUSSION AND CONCLUSIONS 
Commonly, Stevens’ Law refers to a power function fitted 
over a large portion of the entire accessible perceptual range 
[33], not a range of lower stimulus intensities. Stevens’ Law 
is not predicted by the Entropy Theory; it has been shown 
here that rarely will the exponent of Stevens’ Law equal that 
of the Entropy Equation for regressions made on the same 
data. Similarly, the Weber-Fechner Law refers to a 
logarithmic equation fitted over a large portion of the entire 
accessible perceptual range [33], not a range of moderate or 
higher stimulus intensities. Hence the Weber-Fechner Law is 
not predicted by the Entropy Theory. 

The eventual derivation of (11) from σS
2=λμn  is circular 

logic. A power function is brought into F only through the 
assumption of (6), σS

2=λμn [2], [3], [6], [10], [18], [19]. There 
is no derivational link between n and Stevens’ Law, or 
between Stevens’ exponent and any theorized microscopic 
stimulus variance σS

2. The Stevens’ and Weber-Fechner 
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Laws only exist as “laws” when applied to a broad intensity 
range, viz their original use; to refer to them as limiting cases 
of anything, as done by Norwich et al., is simply wrong. All 
of this emphasizes that the Entropy Theory does not derive 
rules of sensory perception from information theory, and it is 
recommended that further attempts to do so should be 
discouraged. 
 

 

 
 
 
Fig. 4. (Top)  The (unconstrained) fit of the Entropy Equation to the 
subjective intensity of a sucrose solution [29]. (Bottom) The 
(unconstrained) fit of the Entropy Equation to the loudness of a 1 
kHz tone (subject #9, [30]). 
 
 
 
 

 
 
 

 
 
 
Fig. 5. (Top) The (unconstrained) fit of the Entropy Equation to the 
odorousness of N-butanol [31]. (Bottom) The (unconstrained) fit of 
the Entropy Equation to the subjective brightness of green light 
[32]. 
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