
Securing Cover-File Without Limitation of Hidden
Data Size Using Computation Between

Cryptography and Steganography

A.A.Zaidan, Fazidah.Othman, B.B.Zaidan , R.Z.Raji, Ahmed.K.Hasan, and A.W.Naji

ABSTRACT-- The rapid development of multimedia and internet
allows for wide distribution of digital media data. It becomes much
easier to edit, modify and duplicate digital information. In
additional, digital document is also easy to copy and distribute,
therefore it may face many threats. It became necessary to find an
appropriate protection due to the significance, accuracy and
sensitivity of the information. Nowadays, protection system can be
classified into more specific as hiding information and encryption
information or a combination between them. The strength of the
combination between hiding and encryption science is due to the
non-existence of standard algorithms to be used in (hiding and
encryption) secret messages. Also there is randomness in hiding
methods such as combining several media (covers) with different
methods to pass a secret message. Furthermore, there is no formal
method to be followed to discover a hidden data. In this paper, a
new information hiding system is presented. The aim of the
proposed system is to hide information (data file) in an execution
file (EXE).The new proposed system is able to embed an
information in an execution file and also able to retract the hidden
file from the execution file. Meanwhile, since the cover file might be
used to identify hiding information, the proposed system considers
overcoming this dilemma by using the execution file as a cover file.

(keyword): Cryptography, Steganography, Information Hiding,
Advance Encryption Standard, Portable Executable File.

Aos Alaa Zaidan - Masters Student, Department of Computer Science &
Information Technology, University Malaya, Kuala Lumpur, Malaysia, phone:
+60172452457, Postcode: 50603 and Email: awsalaa@perdana.um.edu.my.

Mrs. Fazidah Othman - Lecturer, Department of Computer Science &
Information Technology, University Malaya, Kuala Lumpur, Malaysia,
fazidah@um.edu.my.

Bilal Bahaa Zaidan - Masters Student, Department of Computer Science
& Information Technology, University Malaya, Kuala Lumpur, Malaysia,
bilal@perdana.um.edu.my.

Raji Zuhair Raji - Masters Student, Department of Computer Science &
Information Technology, University Malaya, Kuala Lumpur, Malaysia,
rhaddawi82@perdana.um.edu.my

Ahmed.K.Hasan - Masters Student, Department of Computer Science &
Information Technology, University Malaya, Kuala Lumpur, Malaysia, Email:
Faahkh@perdana.um.edu.my.

Dr Ahmed Wathik - Lecturer, Department of Electrical & Computer
Engineering, International Islamic University Malaya, Kuala Lumpur,
Malaysia, ahmed@iiu.edu.my.

I. INTRODUCTION
With the emergence and development of computer science and
informatics emerged the urgent need to find ways to avoid
Muggers and computer hackers from stealing or disclosure of
Data and sensitive task information. It was learned that arose
organization (Cryptography) optimal way to achieve this end,
this science has evolved steadily emerged the systems and very
efficient techniques But with the advent of information and
communications networks global information network (Internet)
has become the issue of complexity of the privacy and
unattainable due to achieve this process and to ensure access to
the data required was necessary to be accessible to everyone
online common, and here is the problem of inefficient
organization, vision statements as loose enough to push the
spam or the attacker to believe that important or sensitive data
lies in these random or encrypt text, some techniques comes
using anti-encrypted to attempt to dismember the symbols and
creating content, even if unable to do so, it might tampering or
distorts or used some means available to prevent access to its
goal[1].Elsewhere Governments began losing control of the
encrypted messages exchanged between the institutions,
companies and the possibility of these texts contain encrypted
information may be against the security and the public interest,
and therefore resorted to some governments to prevent the use
of the organization for users of communications networks for
personal purposes[1],[2].From here emerged the urgent need to
find new techniques alternative organization to overcome these
weaknesses, giving rise to conceal information technology
(Information Hiding), which are based on a different principle to
the idea of organization, where they are buried information
(Information Embedding) within other media carrier, and
making them aware (Imperceptible) by hackers and attackers,
and so are the public domain of information to users of the
network, while the content monopoly "on the relevant agencies,
which alone knows how to extract content [3]. One of the latest
techniques that have been used in this area by researchers at the
Mount Sinai School MOUNT SINAI Medical in New York
New York in 2007, as they managed to hide the secret texts in
sentences Strand human DNA (Human DNA) by using a
technique called genetic system coverage (Genomic
Steganography), and by placing signs resolution to be agreed
upon in the nuclei chromosomes and then integrate these with
millions sentences and sent to the other end. To extract the
secret message is soaking get special distinction sentences used
on the other and then placed under the microscope to extract the

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

required text [3]. The oldest Authentications on Steganography
taken from the legendary stories Greeks Herodotus and then
back to the fifth century BC, these sources indicate that they felt
they fly head of the Messenger and then write the letter secret in
the head, leaving hair to grow then be sent to the required which
is a re-extraction letter [3],[4]. Authentications and other writing
secret messages on the wood panels and then covered wax and
will be hid those writing panels appear free of anything and they
were killing their animals as rabbit example corner confidential
letter inside it. [4].Other means that the common use since the
first century AD, invisible inks Invisible Inks, which was able to
write a confidential letter with any other non-value-confidential
and usually write between lines, for example those rabbis some
fruit juices Fruit Juices, milk, urine, vinegar, and all these
species become dark and visible when exposed to heat the
written document [4]. Then these kinds of inks evolved with the
evolution of science chemical was used vehicles carrying
chemical characteristics of the same old species with a more
accurate and efficient have been used during the First and
Second World Wars in the military secrecy of
correspondence[3][4] .Other technical been used during World
War II is sending a message hidden within another message is
not relevant, and based on the idea of a nomination letters every
word of the letter counterfeit representation of characters from
the characters letter requested confidentiality. Moreover, there
are numerous ideas for the same method is used to be more than
characters, or take certain words or phrases within the text fake
and leaving the rest. Finally, it should be noted that the senior
researcher in the area of concealment and science-based
organization itself is German Johannes Trithemius ((between
(1462-1526), and the oldest books in the area of coverage
Posted by Gaspari Schotti)) in1665 in the name of
(Steganographyica) and (400) contains a page where all the
ideas included (Trithemius) [2][4].

II. INFORMATION HIDING
With the emergence and development of computer science and
informatics emerged the urgent need to find ways to avoid
Muggers and computer hackers from stealing or disclosure of
data and sensitive task Information. Hidden information in the
cover data is known as the "embedded" data. The "stego" data is
the data containing both the cover signal and the "embedded"
information. Logically, the processing of putting the hidden or
embedded data, into the cover data, is sometimes known as
embedding, while split the embedded information from the
cover is called "extracting"[4].

In spite of the important characteristics achieved by hiding
information system, there are some weaknesses that could be
exploited by the attacker and then steal these hidden statements
or break it. Usually, people would hide their data in a
multimedia files such as, an image or video file. This can be
done using many tools in the market. The concept of hiding data
into multimedia files becomes very popular and no longer secret
to the attacker. Through the knowledge of the attacker, they can
simply find out the file and extract the data out from it. Besides
that, as for the user, there are some limitations in terms of the
size of file that can be hidden into a file. The size of file or data
to be hidden must be about the same size as the cover file. For
example, user need to find an image which size is large enough
to cover a 700Mb size of file, usually a multimedia files. The

most common methods of concealment and simplest is Switches
(Binary Digit) known briefly as (bit), least significant known as
(LSB), where it is altered binary digit characters to the message
characters to be hidden, after conversion of such characters to
byte as well as the American standard code for information
interchange (ASCII)[5].

We cannot use this method here because switching binary digit
might lead to an increase or decrease the value of letter by (1);
this leads to the advance of this letter with the neighbor letter, for
example the letter (C) in English represent in binary (100 0011)
with replacement the Least Significant bit the binary value
become (100 0010) which is represent (B) in English, that will
make the carrier text become a meaningless, which denies the
goal of hiding technique[5].Therefore researchers come out with
other technique which exploits spaces between strings and
words in the carrier text. Methods of concealment in the text is
weak, inefficient, not suitable for the application and the main
disadvantage include; need large text to hide small message that
leads to an increase in the size of the cover (hiding data in wave
module)(8-bit)[4],[5]. It was pointed out that this pattern is
represented by each audio sample size (1 byte/sample) and
common here that the process of concealment in last significant
bit each model where the switch imperceptibly by authorizing
human. In the 8-bit audio file representation means that each
model will be represent eight size, meaning that there is (256)
audio level can be represented at the highest in this type is
between (0-255).In this kind of representation researcher hide
data in the first bit that less important to detect this concealment,
that is to conceal ratio (12.5% from the size of the file).The size
of the output of the hidden data file is larger comparing to the
encoded data. In its most efficient possible case, it may reach
double the size of encoded data or a bet less . In some situations
output file may reach eight times larger than the encoded data,
as well as certain files of media images and text, files may reach
fifty times larger when they are encoded. Its known that
executable file; size varies depending on application, some files
size 2 Mega bytes such as images, and other files more than 650
mega bytes like operating system (Windows, UNIX, etc.)[5].
this disparity in the size of the files gives flexibility to user to use
it as a cover file to hide data regardless of the data size. Over all
we tried to find a way to overcome this problem and using
Executable file (EXE File) as a cover for information to be
hidden which solved the problem of the size.

III. ADVANCE ENCRYPTION STANDARD
AES may, as all algorithms, be used in different ways to perform
encryption. Different methods are suitable for different
situations. It is vital that the correct method is applied in the
correct manner to each and every situation, or the result may
well be insecure even if AES as such is secure. It is very easy to
implement a system using AES as its encryption algorithm, but
much more skill and experience are required to do it in the right
way for a given situation. To describe exactly how to apply AES
for varying purposes is very much out of scope for this short
introduction [5].

A. Strong keys.
Encryption with AES is based on a secret key with 128, 192 or
256 bits. But if the key is easy to guess it doesn’t matter if AES
is secure, so it is as critically vital to use good and strong keys as
it is to apply AES properly. Creating good and strong keys is a
surprisingly difficult problem and requires careful design when
done with a computer. The challenge is that computers are
notoriously deterministic, but what is required of a good and
strong key is the opposite – unpredictability and randomness.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Keys derived into a fixed length suitable for the encryption
algorithm from passwords or pass phrases typed by a human
will seldom correspond to 128 bits much less 256. To even
approach 128- bit equivalence in a pass phrase, at least 10
typical passwords of the kind frequently used in day-to-day
work are needed. Weak keys can be somewhat strengthened by
special techniques by adding computationally intensive steps
which increase the amount of computation necessary to break it
[5].The risks of incorrect usage, implementation and weak keys
are in no way unique for AES; these are shared by all encryption
algorithms. Provided that the implementation is correct, the
security provided reduces to a relatively simple question about
how many bits the chosen key, password or pass phrase really
corresponds to. Unfortunately this estimate is somewhat difficult
to calculate, when the key is not generated by a true random
generator [5], [3].

B. The Round Transformations [5][6].
There are four transformations:

• Add Round Key
Add Round Key is an XOR between the state and the round key.
This transformation is its own inverse.

• Sub Bytes
Sub Bytes is a substitution of each byte in the block independent
of the position in the state. This is an S-box. It is bisection on all
possible byte values and therefore invertible (the inverse S-box
can easily be constructed from the S-box). This is the non-linear
transformation. The S-box used is proved to be optimal with
regards to non-linearity. The S-box is based on arithmetic in GF
(2^8).

• Shift Rows
Shift Rows is a cyclic shift of the bytes in the rows in the state
and is clearly invertible (by a shift in the opposite direction by
the same amount).

• Mix Columns
Each column in the state is considered a polynomial with the
byte values as coefficients. The columns are transformed
independently by multiplication with a special polynomial c(x).
c(x) has an inverse d(x) that is used to reverse the multiplication
by c (x).

C. The Rounds
A round transformation is composed of four different
transformations.

Figure 1. Four Different Transformations.

The final round is like a regular round, but without the mix
columns transformation:

Figure 2. Final Round.

The Round keys are made by expanding the encryption key into
an array holding the Round Keys one after another. The
expansion works on words of four bytes. Nk is a constant
defined as the number of four bytes words in the key. The
encryption key is filled into the first Nk words and the rest of the
key material is defined recursively from preceding words. The
word in position i, W[i], except the first word of a Round Key, is
defined as the XOR between the preceding word, W[i-1], and
W[i-Nk]. The first word of each Round Key, W[i] (where i mod
Nk == 0), is defined as the XOR of a transformation on the
preceding word, T (W [i - 1]) and W [i - Nk]. The
transformation T on a word, w, is w rotated to the left by one
byte, XOR’ed by a round constant and with each byte
substituted by the S-box.

IV. PORTABLE EXECUTABLE FILE
The proposed system uses a portable executable file (PE-File) as
a cover to embed an executable program as an example for the
proposed system.
This section is divided into four parts:
⋅ Executable file types.
⋅ Concept related with PE-file.
⋅ Techniques related with PE-file.
⋅ PE-file Layout.

A. Executable File Types
The number of different executable file types is as many and
varied as the number of different image and sound file formats.
Every operating system seems to have several executable file
types unique to it. These types are [6]:

• EXE (DOS"MZ")
DOS-MZ was introduced with MS-DOS (not DOS v1 though)
as a companion to the simplified DOS COM file format. DOS-
MZ was designed to be run in real mode and having a relocation
table of SEGMENT: OFFSET pairing. A very simple format
that can be run at any offset, it does not distinguish between
TEXT, DATA and BSS.The maximum file size of (code + data
+ bss) is one-mega bytes in size. Operating systems that use are:
DOS, Win*, Linux DOS.

• EXE (win 3.xx "NE"):
The WIN-NE executable formatted designed for windows 3.x is
the "NE" new-executable. Again, a 16-bit format, it alleviates
the maximum size restrictions that the DOZ-MZ has.
Operating system that uses it is: windows 3.xx.

• EXE (OS/2 "LE"):
The "LE" linear executable format was designed for IBM's OS/2
operating system by Microsoft. Supporting both 16 and 32-bit
segments Operating systems that are used in: OS/2, DOS.

• EXE (win 9x/NT "PE"):
With windows 95/NT a new executable file type is required,

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

thus was born the "PE" portable executable. Unlike its
predecessors, the WIN-PE is a true 32-bit file format, supporting
reloadable code. It does distinguish between TEXT, DATA, and
BSS. It is in fact, a bastardized version of the common object
file format (COFF) format. Operating systems that use it are:
windows 95/98/NT/2000/ME/CE/XP.

• ELF:
The ELF, Executable Linkable Format was designed by SUN
for use in their UNIX clone. A very versatile file format, it was
later picked up by many other operating systems for use as both
executable files and as shared library files.
It does distinguish between TEXT, DATA and BSS.
TEXT: the actual executable code area.
DATA: "initialized" data, (Global Variables).
BSS : "un- initialized" data, (Local Variables).

B. Concepts Related With PE
The addition of the Microsoft® windows NT™ operating
system to the family of windows™ operating systems brought
many changes to the development environment and more than a
few changes to applications themselves. One of the more
significant changes is the introduction of the Portable
Executable (PE) file format. The name "Portable Executable"
refers to the fact that the format is not architecture specific
[18].In other words, the term "Portable Executable" was chosen
because the intent was to have a common file format for all
versions of Windows, on all supported CPUs [6].

The PE files formats drawn primarily from the Common Object
File Format (COFF) specification that is common to UNIX®
operating systems. Yet, to remain compatible with previous
versions of the MS-DOS® and windows operating systems, the
PE file format also retains the old familiar MZ header from MS-
DOS.The PE file format for Windows NT introduced a
completely new structure to developers familiar with the
windows and MS-DOS environments. Yet developers familiar
with the UNIX environment will find that the PE file format is
similar to, if not based on, the COFF specification [7].

The entire format consists of an MS-DOS MZ header, followed
by a real-mode stub program, the PE file signature, the PE file
header, the PE optional header, all of the section headers, and
finally, all of the section bodies [6][7].

C. Techniques Related with PE
Before looking inside the PE file, we should know special
techniques some of which are [5],[6],[7]:

• General view of PE files sections
A PE file section represents code or data of some sort. While
code is just code, there are multiple types of data. Besides
read/write program data (such as global variables), other types
of data in sections include application program interface (API)
import and export tables, resources, and relocations. Each
section has its own set of in-memory attributes, including
whether the section contains code, whether it's read-only or
read/write, and whether the data in the section is shared
between all processes using the executable file. Sections have
two alignment values, one within the desk file and the other in
memory [8].

The PE file header specifies both of these values, which can
differ. Each section starts at an offset that's some multiple of the
alignment value. For instance, in the PE file, a typical alignment
would be 0x200. Thus, every section begins at a file offset that's
a multiple of 0x200. Once mapped into memory, sections
always start on at least a page boundary. That is, when a PE
section is mapped into memory, the first byte of each section
corresponds to a memory page. On x86 CPUs, pages are 4KB
aligned, while on the Intel Architecture IA-64, they're 8KB
aligned.

• Relative Virtual Addresses (RVA)
In an executable file, there are many places where an in-memory
address needs to be specified. For instance, the address of a
global variable is needed when referencing it. PE files can load
just about anywhere in the process address space. While they do
have a preferred load address, you can't rely on the executable
file actually loading there. For this reason, it's important to have
some way of specifying addresses that are independent of where
the executable file loads[8]. To avoid having hard coded
memory addresses in PE files, RVAs are used. An RVA is
simply an offset in memory, relative to where the PE file was
loaded. For instance, consider an .EXE file loaded at address
0x400000, with its code section at address 0x401000. The RVA
of the code section would be:

(Target address) 0x401000 – (load address) 0x400000 = (RAV) (1)

To convert an RVA to an actual address, simply reverse the
process: add the RVA to the actual load address to find the
actual memory address. Incidentally, the actual memory address
is called a Virtual Address (VA) in PE parlance. Another way
to think of a VA is that it's an RVA with the preferred load
address added in.

• Importing Functions
When we use code or data from another DLL, we're importing
it. When any PE files loads, one of the jobs of the windows
loader is to locate all the imported functions and data and make
those addressees available to the file being loaded.

D. PE File Layout
There are two unused spaces in PE file layout [8], and these
unused spaces are suggested to hide a watermark. The size of
the second unused space is different from one file to another
.The most important reason behind the idea of this system is that
the programmers always need to create a back door for all of
their developed applications, as a solution to many problems
such that forgetting the password.

This idea leads the customers to feel that all programmers have
the ability to hack their system any time. At the end of this
discussion all customers always are used to employ trusted
programmers to build their own application. Programmers want
their application to be safe any where without the need to build
ethic relations with their customers. In this system a solution is
suggested for this problem [8].

The solution is to hide the password in the executable file of the
same system and then other application to be retracted by the
customer himself. Steganography needs to know all files format
to find a way for hiding information in those files. This

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

technique is difficult because there are always large numbers of
the file format and some of them have no way to hide
information in them.

• First region (MS-DOS 2.0 Compatible.EXE

Header).

• Second region (Unused).

• Third region (OEM Identifier, OEM

Information, Offset to PE Header).

• Fourth region (MS-DOS 2.0 Stub Program &

Relocation).

• Fifth region (Unused).

• Sixth region (PE Header).

• Seventh region (Section Headers).

• Eighth region (Image Pages):

• Import info
• Export info
• Fix-up info
• Recourse info
• Debug info

• Ninth region (Base of Image Header).

• Tenth region MS-DOS 2.0 Section (For MS-

DOS Compatibility Only).

V. SYSTEM OVERVIEW

The most important reason behind the idea of this system is that
the programmers always need to create a back door for all of
their developed applications, as a solution to many problems
such that forgetting the password. This idea leads the customers
to feel that all programmers have the ability to hack their system
any time. At the end of this discussion all customers always are
used to employ trusted programmers to build their own
application.

Programmers want their application to be safe anywhere without
the need to build ethic relations with their customers. In this
system a solution is suggested for this problem. The solution is
to hide the password in the executable file of the same system
and then other application to be retracted by the customer
himself. Steganography needs to know all files format to find a
way for hiding information in those files. This technique is
difficult because there are always large numbers of the file
format and some of them have no way to hide information in
them.

A. System Concept
Concept of this system can be summarized as hiding the
password or any information beyond the end of an executable
file so there is no function or routine (open-file, read, write, and
close-file) in the operating system to extract it. This operation
can be performed in two alternative methods:

• Building the file handling procedure independently of the

operating system file handling routines. In this case we need
canceling the existing file handling routines and developing
a new function which can perform our need, with the same
names. This way needs the customer to install the system
application manually as shown in Figure 3.

• Developing the file handling functions depending on the
existing file handling routines. This way can be performed
remotely as shown in Figure 4. The advantage of the first
method is it doesn't need any additional functions, which can
be identified by the analysts.

The disadvantage of this method is it needs to be installed
(can not be operated remotely). The advantage of the second
method is it can be executed remotely and suitable for
networks and the internet applications. So we choose this
concept to implementation in this paper.

 Figure 3. First Method of the System Concept

 Figure 4. Second Method of the System Concept

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

B. System Features
This system has the following features:
• The cover file can be executed normally after hiding

operation Because the hidden information already hide
after the end of file and thus cannot be manipulated as the
EXE file, therefore, the cover file still natural, working
normally and not effected, such as if the cover is EXE files
(WINDOWES XP SETUP) after hiding operation it'll
continued working, In other words, the EXE file can be
installed of windows.

• There is no limitation on the hidden file size where you can
hide any file of any size regardless of the size of hidden
information by structure on the property of the EXE file, so
that the EXE cannot identify the size of the EXE file, so
can using type of EXE file such as JDK whose contain
number of different size (72MB, 77MB or 65MB), other
world disparity in the size of the executable files, so can
hide any size inside it without guessing the real size of the
information hidden by the attacker. Furthermore, when hide
after the end of EXE file, there is no limitation of the size
files which must be hiding after the end of EXE file, open
space of any size.

• It's very difficult to extract the hidden information it's

difficult to find out the information hiding , that is because
of three reasons:
o The information hiding was encrypted before hiding

of the information by AES method; this method
very strong, 128-bit key would be in theory being in
range of a military budget within 30-40 years. An
illustration of the current status for AES is given by
the following example, where we assume an
attacker with the capability to build or purchase a
system that tries keys at the rate of one billion keys
per second. This is at least 1 000 times faster than
the fastest personal computer in 2004. Under this
assumption, the attacker will need about 10 000 000
000 000 000 000 000 years to try all possible keys
for the weakest version.

o The attacker impossible guessing the information
hiding inside the EXE file because of couldn't
guessing the real size of (EXE file and information
hiding).

o The information hiding should be decrypted after
retract of the information.

• The hidden information can be of any type of multimedia
files (Text, Audio, Video or Image) of any size without
limitation and also can hidden all type of multimedia files
in the same time inside the same cover, so can put (Text,
Image, Video and Audio) in one folder and compressed
them and then choose the compressed folder as a
information hiding, in that way can hidden all in the same
time.

C. The Proposed System Structure
To protect the hidden information from retraction the system
encrypts the information by the built-in encryption algorithm
provided by the VB.net. The block flow of hiding operation can
be performed as shown in Figure 5. The block flow of retraction
operation can be performed as shown in Figure 6. The following
algorithm is the hiding operation procedure:

1. The following algorithm is the hiding operation

procedure:

Procedure: Hide operation.
Input: Hidden file name, cover file name.
Output: Stego-File.
• Begin.
• Opens the cover file (EXE file).
• Assign a pointer to the end of file.
• Write the file name after the end of file (EXE file).
• Assign a pointer to (EXE file) after hidden file name.
• Encrypt the hidden file.
• Write the encrypt contact to the file cover (EXE file).
• End.

2. The following algorithm is retraction operation
procedure:

 Procedure: Retract operation.
 Input: Stego-File.
 Output: hidden information.
• Begin(1)
• Select the cover file.
• Get the end of file.
• If end of file pointer exist.
• Begin (2) read the name of hidden file.
• Read the hiding data.
• Decrypt the data using the file name as a key.
• Create a file using hiding file name.
• Write in to the create file the decrypt data.
• End (2).
 Else
• Display a message (no hiding file) .
• End (1).

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

 Figure 5. Block Flow of Hiding Operation.

 Figure 6. Block Flow of Retraction Operation

VI. CONCLUSION

The .EXE files are one of the most important files in operating
systems and in most systems designed by developers
(programmers/software engineers), and then hiding information
in these file is the basic goal for this paper, because most users
of any system cannot alter or modify the content of these files.
We get the following conclusions:
• PE files structure is very complex because they depend on

multi headers and addressing, and then insertion of data to
PE files without full understanding of their structure may
damage them, so the choice is to hide the information
beyond the structure of these files, so the approach of the
proposed system is to prevent the hidden information to
observation of these systems.

• One of the important conclusions in implementation of the
proposed system is the solving of the problems that are
related to the size of cover file, so the hiding method makes
the relation between the cover and the message
independent.

• The encryption of the message increases the degree of
security of hiding technique which is used in the proposed
system.

• The proposed hiding technique is flexible and very useful
in hiding any type of data for files (message) because there
are no limitations or restrictions on the type of the message
(image, sound, text and video).

ACKNOWLEDGEMENT
Thanks in advance for the entire worker in this project, and
the people who support in any way, also I want to thank
IIUM, UM for the support which came from them.

 REFERENCES
[1] Avedissian, L.Z," Image in Image Steganography System”,

Ph.D.Thesis, Informatics Institute for Postgraduate Studies (IIIPS),
University of Technology, Baghdad, Iraq, 2008.

[2] C. J. S. B,” Modulation and Information Hiding in Images”,
of Lecture Notes in Computer Science, University of
Technology, Malaya, Vol. 1174, pp.207-226, 2007.

[3] Clelland, C.T.R, V.P & Bancroft, “ Hiding Messages in
DNAMicroDots ” , International Symposium on Industrial
Electronics (ISIE) , University of Indonesia , Indonesia, Vol.
1, pp.315-327, 2007.

[4] Davern, P.S, M.G, “Steganography It History and Its
Application to Computer Based Data Files”, School of
Computer Application (SCA), Dublin City University.
Working Paper. Studies (WPS), Baghdad, Iraq, 2007.

[5] Dorothy, E.R, D.K, “Cryptography and Data Security”, IEEE
International Symposium on Canada Electronics (ISKE),
University of Canada, Canada, Vol.6, pp.119-122, 2006,

[6] Johnson, N. F. S. D, Z., “Information Hiding: Steganography and
Watermarking-Attacks and Countermeasures”, Center for Secure
Information Systems (CSIS), Boston/Dordrecht/London, George
Mason University, 2006.

[7] Katzenbeisser, S. P., A. P, “Information Hiding Techniques for
Steganography and Digital watermarking”, available from: Artech
house pub, 2005.

[8] Katzenbeisser S. & Petitcolas, F. A., “Information Hiding
Techniques for Steganography and Digital Watermarking”,
Artech House, USA, 2001.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

