
 
 

 

  
   Abstract—The field of data mining provides techniques for 
new knowledge discovery—finding patterns in the data set 
such as classifiers and association rules that may be useful to 
the data miner. Privacy preserving data mining seeks to allow 
users to share data while ensuring individual and corporate 
privacy concerns are addressed. Recently algorithms have 
been introduced to maintain privacy even when all but two 
parties collude. This paper builds upon previous algorithms, 
putting cycle-partitioned secure sum into the mathematical 
framework of edge-disjoint Hamiltonian cycles.     
 

I. INTRODUCTION 
   Data is collected every day by a varied and diverse array of 
individuals—from governments to grocery stores, from game 
enthusiasts to research scientists. The field of data mining 
provides techniques for new knowledge discovery—finding 
patterns in the data set such as classifiers and association 
rules that may be useful to the data miner. For example, one 
could mine a set of retail transactions from a store to generate 
a set of association rules based upon the pattern of the sales. 
In particular, one association rule might reveal that the 
purchase of office chairs is often associated with the purchase 
of fancy staplers. 
 
   Association rules are governed chiefly by two statistical 
parameters: support and confidence. Support is a measure of 
how frequently a given set of items appears in the database 
(DB). Confidence, on the other hand, is a conditional 
probability; that is, given a set of items, what is the likelihood 
another disjoint set of items will be in the same itemset. 
 
   While we are able to discover interesting new association 
rules by mining a single site, we may discover new rules or 
learn the true value of our local rules if we can mine our data 
with a set of peers. Distributed data mining (DDM) offers the 
data miner a larger data set with the possibility of stronger 
and, perhaps, novel association rule findings. One good 
review is given in [6].   It should be apparent to the reader that 
when working with DDM algorithms efficiency concerns are 
paramount because the algorithm must scale with the number 
of different sites or nodes. Communication and coordination 
of information are only two very important problems to 
DDM. However, DDM comes at the cost of having to work 
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with a diverse set of one’s peers whose honesty, friendliness, 
and corporate affiliation may not favor the open collaboration 
of one’s private data. While it is useful to mine data with 
one’s peers, it may be disadvantageous to divulge private 
information to those peers  if they are also your competitors. 
Privacy-preserving data mining (PPDM) seeks to address just 
such an issue. 
 
   The rest of this paper is organized as follows: Section II 
provides a motivation for our work by presenting the 
well-known secure sum problem, and the idea of collusion 
resistance in commuting such a sum. In section III, we extend 
secure sum and provide a mathematical framework. 
Concluding remarks are presented in Section IV. 

II. SECURE SUM AND COLLISION RESISTANCE 
   One interesting piece of research suggests relying more on 
the anonymity of values to achieve a measure of security, that 
is, if a data miner cannot figure out which value belongs to 
whom, a level of privacy is therefore afforded when 
combined with cryptographic techniques [2]. [1] present a 
number of useful algorithmic primitives for PPDM,  
including secure set union, secure size of intersection, and 
secure sum. The goal of SS is simple: let the value of each 
site’s individual input be masked while the global sum of all 
inputs is universally known. In other words, the individual 
site’s privacy is preserved.  
 
   Suppose one wished to compute the global (aggregate) 
support count for some arbitrary item in the database—as is 
done in algorithms finding association rules—such that each 
individual site’s support count is revealed to no other parties. 
Assume also a circuit network topology. First, the initiating 
site, S1, in the network circuit of data miners will calculate a 
random number R and add it to its local support count, V1, for 
the item in question. Next, S1 will send R + V1 to the next site, 
S2, who will add its local support count, V2, to the sum it 
received before sending on the final summation R + V1 + V2 to 
the next site in the circuit. The next site will repeat this 
process until the circuit closes. When circuit does close, the 
initiating node, S1, will receive the sum of all local supports 
plus the R value. Since S1 knows R, the global support can 
then be easily calculated by subtracting out the R value. 
Effectively, the R value masks any site from knowing the 
exact value of the summation of support counts of all the 
previous sites in the network circuit. In particular, the R value 
protects S1 from divulging its support count to S2 at the 
beginning of the circuit. An example of SecureSum is shown 
in Figure 1 for three participating sites.  
 
   SS is important because it allows one to transmit data 
securely without the high computation cost of encryption 
methods. However, in its current form, Secure Sum is highly 
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vulnerable to collusion. For example, consider sites S1, S2, S3 
as above. To find V2, observe that V2 = (V2 + V1 + R) − (V1 + 
R). Indeed, for any arbitrary Si, Vi can be found if Si−1 and Si+1 
collude.  
   Collusion resistance, in terms of SS, means keeping the 
values generated at any individual node secret, such that if 
other nodes share information together or collude, the secret 
values cannot be determined.  
 
   Consider a simple analogy for collusion resistance. Bob, 
Eve, Ray, and Alice each contribute anonymously to their 
mother’s birthday party. Their father thanked them each for 
the $35 it cost all of them to put on the party. Eve is jealous of 
Alice and would like to know if she gave more to the party 
than her sister, so she convinces Ray to collude with her and 
to tell her how much he gave. Ray agrees. Eve gave $15 and 
Ray gave $10, so Eve knows Bob and Alice gave $10 = $35 
− ($15 + $10). Therefore she correctly concludes she gave 
more than Alice. However, Eve would also like to rub it in, so 
she asks Bob to tell her how much he gave too. Bob refuses, 
leaving Eve without any method to compute Alice’s exact 
contribution to the party. So we learn from this story that the 
key to collusion resistance involves increasing the number of 
people (or nodes) required to compute the private data values 
of the remaining persons or nodes. 
 
   Vaidya and Clifton [7] lay the foundation for a 
cycle-partitioned secure sum algorithm by noting how any 
node in a secure sum can divide its value into random 
“shares” (we use the word “partition”) such that each share is 
passed along a different secure sum circuit or cycle. 
Collusion protection is then achieved when no node has the 
same neighboring nodes twice for each cycle. This 
observation is carried out in a collusion resistant PPDM 
algorithm implicitly based on two edge disjoint Hamiltonian 
cycles [8]. Here each node divides its count value into two 
random partitions and performs a SS operation for each 
partition—making sure its neighbors in the algorithm are all 
different. 
 
   The work from [8] was then extended by Urabe et al [4] to 
work with D “routes” where each route is equivalent to 
edge-disjoint Hamiltonian cycles—meaning each count 
value is divided up into D random partitions at each site and 
passed along the SS cycle. 
 
   Another unique method to providing collusion resistance 
by creating shares but without the need for edge-disjoint 
Hamiltonian cycles was given in [5]. This last method also 
relies on SS and on the need for a fully-connected network 
but sends data to nodes in a tree-like pattern for each round of 
the algorithm. 
 
   In the next Section, we present our own version of a 
cycle-partitioned secure sum algorithm, similar to (Urabe et 
al [4] but provide a mathematical proof for its collusion 
resistance based on edge-disjoint Hamiltonian cycles.  

III. CYCLE-PARTITIONED SECURE SUM 
   A cycle-partitioned secure sum (CPSS) algorithm is similar 
to SS in that values are added sequentially along a cycle that 
starts and ends with an initiating site or node, N1. At the 

beginning of the cycle, N1 adds  random number to its count 
value before sending it to the next node in the cycle. N1 must 
also subtract that random number at the end of the cycle to 
obtain the global sum (the sum of all count values for any 
particular itemset). 
 
   CPSS differs from secure sum in that instead of just using 
one cycle for summing, the nodes are arranged into C 
different edge-disjoint Hamiltonian cycles. At each node, the 
count value is then divided into C random, non-zero, integer 
partitions–one partition for each edge-disjoint Hamiltonian 
cycle. Each partition is then sent to the next node in the 
appropriate cycle. 
 
   In the same fashion, the initiating node adds its count value 
to a random number R and then randomly partitions this value 
to send along each cycle. When N1 receives the subtotals 
from each circuit or cycle at the end of the computation, the 
subtotals are added together and the random number R is 
subtracted out to obtain the global sum. The pseudo code for 
CPSS is given in Appendix I - Algorithm 1. Appendix I also 
defines the function RandomlyPartition - Algorithm 2, which 
is needed by Algorithm 1 of Appendix I.  
 
   Figure 2 shows an example running of CPSS, Algorithm 1, 
for M = 5 nodes. Notice that for each node in this example 
there are a total of four adjacent nodes: two receiving and 
sending. 
 
   Suppose we wished to compute the count value (V2) of 
node 2 from Figure 2 by collusion. In order to compute V2 = 
7, observe that it requires the two incoming nodes and the 
two receiving nodes to collude. That is, it requires N3 and N5 
on the receiving end and N1 and N4 on the sending end 
respectively: 7 = (5 + 13) − (2 + 9). Thus, we observe from 
this example that 4 nodes were required to compute the 
remaining node’s count value. It is clear then that we need a 
good definition to describe what it exactly means to be 
collusion resistant. We adopt the following formal definition 
to describe collusion resistance for CPSS. 
 
   Definition 1. CPSS is K-collusion resistant if no K nodes or 
fewer working together in a set can compute the count value 
of any node not belonging to the K-node set. 
 
   Using the above definition, we will show that CPSS confers 
K-collusion resistance proportional to the number of 
edge-disjoint Hamiltonian cycles in the network. 
 
   Theorem 1 [3]. Given any network with C edge-disjoint 
Hamiltonian cycles and M nodes such that M > 4, CPSS is 
K-collusion resistant with K = 2 · C  − 1. 
 
   Proof of this theorem is given in Appendix II.  The proof 
relies on the following observations: There are C 
edge-disjoint Hamiltonian cycles. Each node, Nk, partitions 
its value Vk into C non-zero, integers to send on each of these 
C cycles. The source node, in addition, splits the random 
number R, into C partitions, and sends one through each of 
the C cycles.  As seen in Appendix II, since each cycle is 
edge-disjoint and contains N1, (see equation (6) of Appendix 
II) implies that C unique nodes other than N1 are needed to 
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compute R. This fact is used in computing V1, the value that 
node N1 generated. Full details are given in Appendix II. 

IV. CONCLUDING REMARKS 
   In this paper we described an algorithm for mining data that 
is resistant to collusion by participating sites. We also 
provided a mathematical proof of the algorithm. In a 
forthcoming paper, we will add a feature – anonymous ID – 
that allows a node to opt out from the computation in an 
anonymous manner.  Opt-out by a node is desirable when its 
contribution is more sensitive – much larger or much smaller 
than everyone else; in that case the global sum may be 
garbled without revealing the identity of the node(s) that 
opted out. 
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Figure 1: Secure Sum, N = 3 

 

 
Figure 2: Cycle-partitioned Secure Sum, M = 5 
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Algorithm 1 CPSS: Cycle-Partitioned Secure

Sum
Require: Given M nodes and C edge-disjoint

Hamiltonian cycles.

Ensure:
∑M
k=1 Vk = GlobalSum

{For N1, the initiating node.}

1: R⇐ NewRandomNumber()

2: RandomlyPartition(V1 + R,C) {
∑C
i=1 V

(i)
1 =

V1 +R, 0 6= V (i)
1 ∈ Z}

3: for i = 1 to C do

4: Send V (i)
1 to the next node in cycle i.

5: end for

{For each node, partition & add to subtotals in

each cycle.}

6: for k = 2 to M do

7: RandomlyPartition(Vk, C) {
∑C
i=1 V

(i)
k =

Vk, 0 6= V (i)
k ∈ Z}

8: for i = 1 to C do

9: V
(i)
k ⇐ V (i)

k + V (i)
received

10: Send V (i)
k to the next node in cycle i.

11: end for

12: end for

{N1 receives C values.}

13: GlobalSum =
∑C
i=1 V

(i)
received −R

14: Broadcast GlobalSum to each other node.

We also define the function RandomlyPartition
in Algorithm 2, which is needed by Algorithm
1. Suppose, for example, that we have C = 5
cycles and wish to randomly partition the count
value of A = 7 at some fixed node to send along
each cycle. First we generate 4 random num-
bers: 16,−2, 3,−15. We also call these random
numbers “random partitions.” Next, we see that
7−(16+−2+3+−15) = 7−2 = 5, so the fifth ran-
dom partition is 5. Finally, we may observe that our
five random numbers (16,−2, 3,−15, 5) do in fact
partition our count value: 16 +−2 + 3 +−15 + 5 =
7 = A.

Algorithm 2 RandomlyPartition(A, C)
Require: Given integer value A.
Ensure:

∑C
i=1Ai = A.

1: Sum⇐ 0
2: for i = 1 to C − 1 do
3: Ai ⇐ NewRandomNumber() {0 6=
NewRandomNumber() ∈ Z}

4: Sum⇐ Sum+Ai
5: end for
6: AC ⇐ A− Sum
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Theorem 1. Given any network with C edge-
disjoint Hamiltonian cycles and M nodes such that
M > 4, CPSS is K-collusion resistant with K =
2C − 1.

Proof. Given a graph with M ≥ 5 nodes decom-
posed into C ≥ 2 edge-disjoint Hamiltonian cycles,
and given any fixed node Nk with value Vk, where
1 ≤ k ≤ M , show that no set of 2C − 1 nodes can
compute Vk when Nk is not in the set. In other
words, a minimum of 2C nodes different from Nk
are required to compute Vk.

We denote our edge-disjoint Hamiltonian cycles
as H(i) with 1 ≤ i ≤ C. For any fixed i, let
(E(i)
p )Mp=1 be the sequence of edges for that cycle,

and let (H(i)
q )Mq=1 be the sequence of nodes in that

cycle i. The random number generated by N1 we
designate as R with random partitions R(i) such
that R =

∑C
i=1R

(i).

Recall that for any fixed k, Nk partitions its value
Vk into C non-zero, integers to send on each cycle
H(i), such that

∑C
i=1 V

(i)
k = Vk. In order to define

the computability of these values, we use the weight
function w. The weight function for a given edge is
equal to the running total of values on that cycle as
computed by the source node of the specified edge:

w(E(i)
j ) = R(i) +

j∑
p=1
V

(i)
hp

, where each hp = H(i)
p .

(1)

The substitution of hp = H(i)
p is given for sim-

plicity. Furthermore, notice that
∑M
p=1 V

(i)
hp

=∑M
p=1 V

(i)
p for any fixed i and that w(E(i)

1 ) =
V1 +R(i) for all i. Using (1), we can compute V (i)

k

for any fixed k such that 2 ≤ k ≤ M (the compu-

tation for V1 is to follow):

V
(i)
k = w(E(i)

z )− w(E(i)
z−1) 2 ≤ z ≤M

(2)

= R(i) +
z∑
p=1
V

(i)
hp
− (R(i) +

z−1∑
p=1
V

(i)
hp

) (3)

= V (i)
k +

z−1∑
p=1
V

(i)
hp
−
z−1∑
p=1
V

(i)
hp

= V (i)
k V

(i)
k = V (i)

hz

(4)

In general, for any two consecutive edges in a
Hamiltonian cycle, say D1 and D2, we have D1 =
{a, b} and D2 = {b, c} such that a, b, c are each
unique nodes in the cycle. Suppose then for any
fixed i and fixed k ≥ 2 that Nk = E(i)

k ∩E
(i)
k−1 (two

consecutive edges in cycle i), then the Hamiltonic-
ity of our cycle implies that there exist two unique
nodes different fromNk in E(i)

k ∪E
(i)
k−1. These nodes

may collude together to compute V (i)
k as shown in

(2)-(4). However, to compute Vk for any fixed k ≥ 2
we need:

Vk =
C∑
i=1
V

(i)
k (5)

So to compute Vk for any fixed k ≥ 2 it requires
C partitions of Vk, each partition computable by
exactly two unique nodes other than Nk. Since our
choice of H(i) was arbitrary and any two cycles are
edge-disjoint, we see that the two nodes computing
each V (i)

k are each distinct. To see this is true, pick
a node not Nk to be adjacent to Nk in two different
cycles, then we have the same edge in two cycles,
violating our edge-disjointedness. Hence, for any
arbitrary k ≥ 2, 2C unique nodes other than Nk are
required to compute Vk. Moreover, since each V (i)

k

was non-zero, not less than 2C nodes are needed,
and therefore, 2C − 1 nodes, of which Nk is not a
part, cannot compute Vk.
Next, for k = 1, we have a similar situation, only

that the random number R is first added to V1 be-
fore it is partitioned and sent to the next node in
each cycle. So to find R, we rely on the fact that
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each node is sent the GlobalSum at the end of the
computation:

R =
C∑
i=1
w(E(i)

M ) −GlobalSum (6)

=
C∑
i=1

(R(i) +
M∑
p=1
V

(i)
hp

) −GlobalSum (from 1)

(7)

=
C∑
i=1
R(i) +

C∑
i=1

M∑
p=1
V (i)
p −

M∑
k=1
Vk (8)

= R+
M∑
p=1

C∑
i=1
V (i)
p −

M∑
k=1
Vk (9)

= R+
M∑
p=1
Vp −

M∑
k=1
Vk = R (10)

The edge E(i)
M , for any fixed i with 1 ≤ i ≤ C,

contains node N1 and another, different node (by
the definition of a Hamiltonian cycle). Since each
cycle is edge-disjoint and contains N1, then (6) im-
plies that C unique nodes other than N1 are needed
to compute R. Now we use knowledge of R to com-
pute V1:

V1 =
C∑
i=1
w(E(i)

1 ) −R (11)

=
C∑
i=1

(R(i) +
1∑
p=1
V (i)
p ) −R (12)

=
C∑
i=1
R(i) +

C∑
i=1
V

(i)
1 −R (13)

= R+ V1 −R = V1 (14)

It is clear that E(i)
1 , for any fixed i with 1 ≤ i ≤

C, contains node N1 and a different node (by the
definition of a Hamiltonian cycle). Because cycles
are edge-disjoint and each edge contains N1, then
the nodes not N1 are each unique from N1 and each
other. From (11) we see that there are C such nodes
other than N1 needed to finish the computation of
V1.

To show that the set of C nodes different from
N1 found in (6) and the other set of C nodes dif-
ferent from N1 found in (11) are all distinct, notice
that N1 = E(i)

1 ∩ E(i)
M and that the definition of

Hamiltonian cycle implies that, for any fixed i with
1 ≤ i ≤ C, there exist two unique nodes not N1

in E(i)
1 ∪ E(i)

M . Since cycles are edge-disjoint and
because the first and last edge of every cycle each
contains N1, every node not N1 must be unique.
Hence a total of 2C nodes are needed to compute
V1. Since each V (i)

1 is non-zero, not less than 2C
nodes are required for this computation, that is,
2C − 1 nodes not N1 cannot compute V1.
Thus, we have shown that for a node Nk with

value Vk, for any fixed k with 1 ≤ k ≤ M , a mini-
mum of 2C nodes not Nk are required to compute
Vk, that is, 2C − 1 nodes not Nk cannot compute
Vk. So by the arbitrariness of k and the definition
of K-collusion resistance, CPSS has a collusion re-
sistance of K = 2C − 1.
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