

 Abstract—The field of data mining provides techniques for
new knowledge discovery—finding patterns in the data set
such as classifiers and association rules that may be useful to
the data miner. Privacy preserving data mining seeks to allow
users to share data while ensuring individual and corporate
privacy concerns are addressed. Recently algorithms have
been introduced to maintain privacy even when all but two
parties collude. This paper builds upon previous algorithms,
putting cycle-partitioned secure sum into the mathematical
framework of edge-disjoint Hamiltonian cycles.

I. INTRODUCTION
 Data is collected every day by a varied and diverse array of
individuals—from governments to grocery stores, from game
enthusiasts to research scientists. The field of data mining
provides techniques for new knowledge discovery—finding
patterns in the data set such as classifiers and association
rules that may be useful to the data miner. For example, one
could mine a set of retail transactions from a store to generate
a set of association rules based upon the pattern of the sales.
In particular, one association rule might reveal that the
purchase of office chairs is often associated with the purchase
of fancy staplers.

 Association rules are governed chiefly by two statistical
parameters: support and confidence. Support is a measure of
how frequently a given set of items appears in the database
(DB). Confidence, on the other hand, is a conditional
probability; that is, given a set of items, what is the likelihood
another disjoint set of items will be in the same itemset.

 While we are able to discover interesting new association
rules by mining a single site, we may discover new rules or
learn the true value of our local rules if we can mine our data
with a set of peers. Distributed data mining (DDM) offers the
data miner a larger data set with the possibility of stronger
and, perhaps, novel association rule findings. One good
review is given in [6]. It should be apparent to the reader that
when working with DDM algorithms efficiency concerns are
paramount because the algorithm must scale with the number
of different sites or nodes. Communication and coordination
of information are only two very important problems to
DDM. However, DDM comes at the cost of having to work

Manuscript received March 1, 2009.
Authors address:
(+) University of Toledo, Health Science Campus, 3000 Arlington Avenue,
Toledo, Ohio 43614. sammysheep@gmail.com

 (*) Department of Computer Science, Bowling Green State University,
Bowling Green, OH 43403; kresman@cs.bgsu.edu; dunning@cs.bgsu.edu.

with a diverse set of one’s peers whose honesty, friendliness,
and corporate affiliation may not favor the open collaboration
of one’s private data. While it is useful to mine data with
one’s peers, it may be disadvantageous to divulge private
information to those peers if they are also your competitors.
Privacy-preserving data mining (PPDM) seeks to address just
such an issue.

 The rest of this paper is organized as follows: Section II
provides a motivation for our work by presenting the
well-known secure sum problem, and the idea of collusion
resistance in commuting such a sum. In section III, we extend
secure sum and provide a mathematical framework.
Concluding remarks are presented in Section IV.

II. SECURE SUM AND COLLISION RESISTANCE
 One interesting piece of research suggests relying more on
the anonymity of values to achieve a measure of security, that
is, if a data miner cannot figure out which value belongs to
whom, a level of privacy is therefore afforded when
combined with cryptographic techniques [2]. [1] present a
number of useful algorithmic primitives for PPDM,
including secure set union, secure size of intersection, and
secure sum. The goal of SS is simple: let the value of each
site’s individual input be masked while the global sum of all
inputs is universally known. In other words, the individual
site’s privacy is preserved.

 Suppose one wished to compute the global (aggregate)
support count for some arbitrary item in the database—as is
done in algorithms finding association rules—such that each
individual site’s support count is revealed to no other parties.
Assume also a circuit network topology. First, the initiating
site, S1, in the network circuit of data miners will calculate a
random number R and add it to its local support count, V1, for
the item in question. Next, S1 will send R + V1 to the next site,
S2, who will add its local support count, V2, to the sum it
received before sending on the final summation R + V1 + V2 to
the next site in the circuit. The next site will repeat this
process until the circuit closes. When circuit does close, the
initiating node, S1, will receive the sum of all local supports
plus the R value. Since S1 knows R, the global support can
then be easily calculated by subtracting out the R value.
Effectively, the R value masks any site from knowing the
exact value of the summation of support counts of all the
previous sites in the network circuit. In particular, the R value
protects S1 from divulging its support count to S2 at the
beginning of the circuit. An example of SecureSum is shown
in Figure 1 for three participating sites.

 SS is important because it allows one to transmit data
securely without the high computation cost of encryption
methods. However, in its current form, Secure Sum is highly

Data Mining and Collusion Resistance

Samuel Shepard+, Ray Kresman*, Larry Dunning*

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

vulnerable to collusion. For example, consider sites S1, S2, S3
as above. To find V2, observe that V2 = (V2 + V1 + R) − (V1 +
R). Indeed, for any arbitrary Si, Vi can be found if Si−1 and Si+1
collude.
 Collusion resistance, in terms of SS, means keeping the
values generated at any individual node secret, such that if
other nodes share information together or collude, the secret
values cannot be determined.

 Consider a simple analogy for collusion resistance. Bob,
Eve, Ray, and Alice each contribute anonymously to their
mother’s birthday party. Their father thanked them each for
the $35 it cost all of them to put on the party. Eve is jealous of
Alice and would like to know if she gave more to the party
than her sister, so she convinces Ray to collude with her and
to tell her how much he gave. Ray agrees. Eve gave $15 and
Ray gave $10, so Eve knows Bob and Alice gave $10 = $35
− ($15 + $10). Therefore she correctly concludes she gave
more than Alice. However, Eve would also like to rub it in, so
she asks Bob to tell her how much he gave too. Bob refuses,
leaving Eve without any method to compute Alice’s exact
contribution to the party. So we learn from this story that the
key to collusion resistance involves increasing the number of
people (or nodes) required to compute the private data values
of the remaining persons or nodes.

 Vaidya and Clifton [7] lay the foundation for a
cycle-partitioned secure sum algorithm by noting how any
node in a secure sum can divide its value into random
“shares” (we use the word “partition”) such that each share is
passed along a different secure sum circuit or cycle.
Collusion protection is then achieved when no node has the
same neighboring nodes twice for each cycle. This
observation is carried out in a collusion resistant PPDM
algorithm implicitly based on two edge disjoint Hamiltonian
cycles [8]. Here each node divides its count value into two
random partitions and performs a SS operation for each
partition—making sure its neighbors in the algorithm are all
different.

 The work from [8] was then extended by Urabe et al [4] to
work with D “routes” where each route is equivalent to
edge-disjoint Hamiltonian cycles—meaning each count
value is divided up into D random partitions at each site and
passed along the SS cycle.

 Another unique method to providing collusion resistance
by creating shares but without the need for edge-disjoint
Hamiltonian cycles was given in [5]. This last method also
relies on SS and on the need for a fully-connected network
but sends data to nodes in a tree-like pattern for each round of
the algorithm.

 In the next Section, we present our own version of a
cycle-partitioned secure sum algorithm, similar to (Urabe et
al [4] but provide a mathematical proof for its collusion
resistance based on edge-disjoint Hamiltonian cycles.

III. CYCLE-PARTITIONED SECURE SUM
 A cycle-partitioned secure sum (CPSS) algorithm is similar
to SS in that values are added sequentially along a cycle that
starts and ends with an initiating site or node, N1. At the

beginning of the cycle, N1 adds random number to its count
value before sending it to the next node in the cycle. N1 must
also subtract that random number at the end of the cycle to
obtain the global sum (the sum of all count values for any
particular itemset).

 CPSS differs from secure sum in that instead of just using
one cycle for summing, the nodes are arranged into C
different edge-disjoint Hamiltonian cycles. At each node, the
count value is then divided into C random, non-zero, integer
partitions–one partition for each edge-disjoint Hamiltonian
cycle. Each partition is then sent to the next node in the
appropriate cycle.

 In the same fashion, the initiating node adds its count value
to a random number R and then randomly partitions this value
to send along each cycle. When N1 receives the subtotals
from each circuit or cycle at the end of the computation, the
subtotals are added together and the random number R is
subtracted out to obtain the global sum. The pseudo code for
CPSS is given in Appendix I - Algorithm 1. Appendix I also
defines the function RandomlyPartition - Algorithm 2, which
is needed by Algorithm 1 of Appendix I.

 Figure 2 shows an example running of CPSS, Algorithm 1,
for M = 5 nodes. Notice that for each node in this example
there are a total of four adjacent nodes: two receiving and
sending.

 Suppose we wished to compute the count value (V2) of
node 2 from Figure 2 by collusion. In order to compute V2 =
7, observe that it requires the two incoming nodes and the
two receiving nodes to collude. That is, it requires N3 and N5
on the receiving end and N1 and N4 on the sending end
respectively: 7 = (5 + 13) − (2 + 9). Thus, we observe from
this example that 4 nodes were required to compute the
remaining node’s count value. It is clear then that we need a
good definition to describe what it exactly means to be
collusion resistant. We adopt the following formal definition
to describe collusion resistance for CPSS.

 Definition 1. CPSS is K-collusion resistant if no K nodes or
fewer working together in a set can compute the count value
of any node not belonging to the K-node set.

 Using the above definition, we will show that CPSS confers
K-collusion resistance proportional to the number of
edge-disjoint Hamiltonian cycles in the network.

 Theorem 1 [3]. Given any network with C edge-disjoint
Hamiltonian cycles and M nodes such that M > 4, CPSS is
K-collusion resistant with K = 2 · C − 1.

 Proof of this theorem is given in Appendix II. The proof
relies on the following observations: There are C
edge-disjoint Hamiltonian cycles. Each node, Nk, partitions
its value Vk into C non-zero, integers to send on each of these
C cycles. The source node, in addition, splits the random
number R, into C partitions, and sends one through each of
the C cycles. As seen in Appendix II, since each cycle is
edge-disjoint and contains N1, (see equation (6) of Appendix
II) implies that C unique nodes other than N1 are needed to

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

compute R. This fact is used in computing V1, the value that
node N1 generated. Full details are given in Appendix II.

IV. CONCLUDING REMARKS
 In this paper we described an algorithm for mining data that
is resistant to collusion by participating sites. We also
provided a mathematical proof of the algorithm. In a
forthcoming paper, we will add a feature – anonymous ID –
that allows a node to opt out from the computation in an
anonymous manner. Opt-out by a node is desirable when its
contribution is more sensitive – much larger or much smaller
than everyone else; in that case the global sum may be
garbled without revealing the identity of the node(s) that
opted out.

REFERENCES
[1] Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., & Zhu, M. Y.

(2002). Tools for privacy preserving distributed data mining.
SIGKDD Explor. Newsl., 4(2), 28–34.

[2] Ishai, Y., Kushilevitz, E., Ostrovsky, R., & Sahai, A. (2006).

Cryptography from anonymity. In Focs ’06: Proceedings of the
47th IEEE symposium on foundations of computer science
(focs’06) (pp. 239–248). Washington, DC, USA: IEEE
Computer Society.

[3] Shepard, S (2007). Anonymous Opt-Out And Secure

Computation In Data Mining. pp. 54. Master’s Thesis.
Department of Computer Science, Bowling Green State
University, OH.

[4] Urabe, S., Wang, J., & Takata, T. (2004, November). A

collusion-resistant approach to distributed privacy preserving
data mining. In T. Gonzalez (Ed.), Parallel and distributed
computing and systems (Vol. 436, p. 626-631). MIT
Cambridge, USA: ACTA Press

[5] Urabe, S., Wang, J., Kodama, E., & Takata, T. (2007,

February). A high collusion-resistant approach to distributed
privacy-preserving data mining. In H. Burkhart (Ed.), Parallel
and distributed computing and networks (p. 326-331). Austria:
ACTA Press.

[6] Verykios, V. S., Bertino, E., Fovino, I. N., Provenza, L. P.,

Saygin, Y., & Theodoridis, Y. (2004). State-of-the- art in
privacy preserving data mining. SIGMOD Rec., 33(1), 50–57.

[7] Vaidya, J., & Clifton, C. (2004, November/December).

Privacy-preserving data mining: Why, how, and when. IEEE
Security and Privacy, 2(6), 19–27.

[8] Wang, J., Fukasawa, T., Urabe, S., Takata, T., & Miyazaki, M.

(2006). Mining frequent patterns securely in distributed
system. IEICE - Trans. Inf. Syst., E89-D(11), 2739–2747.

Figure 1: Secure Sum, N = 3

Figure 2: Cycle-partitioned Secure Sum, M = 5

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Algorithm 1 CPSS: Cycle-Partitioned Secure

Sum
Require: Given M nodes and C edge-disjoint

Hamiltonian cycles.

Ensure:
∑M
k=1 Vk = GlobalSum

{For N1, the initiating node.}

1: R⇐ NewRandomNumber()

2: RandomlyPartition(V1 + R,C) {
∑C
i=1 V

(i)
1 =

V1 +R, 0 6= V (i)
1 ∈ Z}

3: for i = 1 to C do

4: Send V (i)
1 to the next node in cycle i.

5: end for

{For each node, partition & add to subtotals in

each cycle.}

6: for k = 2 to M do

7: RandomlyPartition(Vk, C) {
∑C
i=1 V

(i)
k =

Vk, 0 6= V (i)
k ∈ Z}

8: for i = 1 to C do

9: V
(i)
k ⇐ V (i)

k + V (i)
received

10: Send V (i)
k to the next node in cycle i.

11: end for

12: end for

{N1 receives C values.}

13: GlobalSum =
∑C
i=1 V

(i)
received −R

14: Broadcast GlobalSum to each other node.

We also define the function RandomlyPartition
in Algorithm 2, which is needed by Algorithm
1. Suppose, for example, that we have C = 5
cycles and wish to randomly partition the count
value of A = 7 at some fixed node to send along
each cycle. First we generate 4 random num-
bers: 16,−2, 3,−15. We also call these random
numbers “random partitions.” Next, we see that
7−(16+−2+3+−15) = 7−2 = 5, so the fifth ran-
dom partition is 5. Finally, we may observe that our
five random numbers (16,−2, 3,−15, 5) do in fact
partition our count value: 16 +−2 + 3 +−15 + 5 =
7 = A.

Algorithm 2 RandomlyPartition(A, C)
Require: Given integer value A.
Ensure:

∑C
i=1Ai = A.

1: Sum⇐ 0
2: for i = 1 to C − 1 do
3: Ai ⇐ NewRandomNumber() {0 6=
NewRandomNumber() ∈ Z}

4: Sum⇐ Sum+Ai
5: end for
6: AC ⇐ A− Sum

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Theorem 1. Given any network with C edge-
disjoint Hamiltonian cycles and M nodes such that
M > 4, CPSS is K-collusion resistant with K =
2C − 1.

Proof. Given a graph with M ≥ 5 nodes decom-
posed into C ≥ 2 edge-disjoint Hamiltonian cycles,
and given any fixed node Nk with value Vk, where
1 ≤ k ≤ M , show that no set of 2C − 1 nodes can
compute Vk when Nk is not in the set. In other
words, a minimum of 2C nodes different from Nk
are required to compute Vk.

We denote our edge-disjoint Hamiltonian cycles
as H(i) with 1 ≤ i ≤ C. For any fixed i, let
(E(i)
p)Mp=1 be the sequence of edges for that cycle,

and let (H(i)
q)Mq=1 be the sequence of nodes in that

cycle i. The random number generated by N1 we
designate as R with random partitions R(i) such
that R =

∑C
i=1R

(i).

Recall that for any fixed k, Nk partitions its value
Vk into C non-zero, integers to send on each cycle
H(i), such that

∑C
i=1 V

(i)
k = Vk. In order to define

the computability of these values, we use the weight
function w. The weight function for a given edge is
equal to the running total of values on that cycle as
computed by the source node of the specified edge:

w(E(i)
j) = R(i) +

j∑
p=1
V

(i)
hp

, where each hp = H(i)
p .

(1)

The substitution of hp = H(i)
p is given for sim-

plicity. Furthermore, notice that
∑M
p=1 V

(i)
hp

=∑M
p=1 V

(i)
p for any fixed i and that w(E(i)

1) =
V1 +R(i) for all i. Using (1), we can compute V (i)

k

for any fixed k such that 2 ≤ k ≤ M (the compu-

tation for V1 is to follow):

V
(i)
k = w(E(i)

z)− w(E(i)
z−1) 2 ≤ z ≤M

(2)

= R(i) +
z∑
p=1
V

(i)
hp
− (R(i) +

z−1∑
p=1
V

(i)
hp

) (3)

= V (i)
k +

z−1∑
p=1
V

(i)
hp
−
z−1∑
p=1
V

(i)
hp

= V (i)
k V

(i)
k = V (i)

hz

(4)

In general, for any two consecutive edges in a
Hamiltonian cycle, say D1 and D2, we have D1 =
{a, b} and D2 = {b, c} such that a, b, c are each
unique nodes in the cycle. Suppose then for any
fixed i and fixed k ≥ 2 that Nk = E(i)

k ∩E
(i)
k−1 (two

consecutive edges in cycle i), then the Hamiltonic-
ity of our cycle implies that there exist two unique
nodes different fromNk in E(i)

k ∪E
(i)
k−1. These nodes

may collude together to compute V (i)
k as shown in

(2)-(4). However, to compute Vk for any fixed k ≥ 2
we need:

Vk =
C∑
i=1
V

(i)
k (5)

So to compute Vk for any fixed k ≥ 2 it requires
C partitions of Vk, each partition computable by
exactly two unique nodes other than Nk. Since our
choice of H(i) was arbitrary and any two cycles are
edge-disjoint, we see that the two nodes computing
each V (i)

k are each distinct. To see this is true, pick
a node not Nk to be adjacent to Nk in two different
cycles, then we have the same edge in two cycles,
violating our edge-disjointedness. Hence, for any
arbitrary k ≥ 2, 2C unique nodes other than Nk are
required to compute Vk. Moreover, since each V (i)

k

was non-zero, not less than 2C nodes are needed,
and therefore, 2C − 1 nodes, of which Nk is not a
part, cannot compute Vk.
Next, for k = 1, we have a similar situation, only

that the random number R is first added to V1 be-
fore it is partitioned and sent to the next node in
each cycle. So to find R, we rely on the fact that

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

each node is sent the GlobalSum at the end of the
computation:

R =
C∑
i=1
w(E(i)

M) −GlobalSum (6)

=
C∑
i=1

(R(i) +
M∑
p=1
V

(i)
hp

) −GlobalSum (from 1)

(7)

=
C∑
i=1
R(i) +

C∑
i=1

M∑
p=1
V (i)
p −

M∑
k=1
Vk (8)

= R+
M∑
p=1

C∑
i=1
V (i)
p −

M∑
k=1
Vk (9)

= R+
M∑
p=1
Vp −

M∑
k=1
Vk = R (10)

The edge E(i)
M , for any fixed i with 1 ≤ i ≤ C,

contains node N1 and another, different node (by
the definition of a Hamiltonian cycle). Since each
cycle is edge-disjoint and contains N1, then (6) im-
plies that C unique nodes other than N1 are needed
to compute R. Now we use knowledge of R to com-
pute V1:

V1 =
C∑
i=1
w(E(i)

1) −R (11)

=
C∑
i=1

(R(i) +
1∑
p=1
V (i)
p) −R (12)

=
C∑
i=1
R(i) +

C∑
i=1
V

(i)
1 −R (13)

= R+ V1 −R = V1 (14)

It is clear that E(i)
1 , for any fixed i with 1 ≤ i ≤

C, contains node N1 and a different node (by the
definition of a Hamiltonian cycle). Because cycles
are edge-disjoint and each edge contains N1, then
the nodes not N1 are each unique from N1 and each
other. From (11) we see that there are C such nodes
other than N1 needed to finish the computation of
V1.

To show that the set of C nodes different from
N1 found in (6) and the other set of C nodes dif-
ferent from N1 found in (11) are all distinct, notice
that N1 = E(i)

1 ∩ E(i)
M and that the definition of

Hamiltonian cycle implies that, for any fixed i with
1 ≤ i ≤ C, there exist two unique nodes not N1

in E(i)
1 ∪ E(i)

M . Since cycles are edge-disjoint and
because the first and last edge of every cycle each
contains N1, every node not N1 must be unique.
Hence a total of 2C nodes are needed to compute
V1. Since each V (i)

1 is non-zero, not less than 2C
nodes are required for this computation, that is,
2C − 1 nodes not N1 cannot compute V1.
Thus, we have shown that for a node Nk with

value Vk, for any fixed k with 1 ≤ k ≤ M , a mini-
mum of 2C nodes not Nk are required to compute
Vk, that is, 2C − 1 nodes not Nk cannot compute
Vk. So by the arbitrariness of k and the definition
of K-collusion resistance, CPSS has a collusion re-
sistance of K = 2C − 1.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

	paperOnlyRayKresman
	AppendixI
	AppendixII

