
 
 

 

  
Abstract—- Recurrent neural network (RNN) exhibits better 

performance in nonlinear channel equalization problem. In this 
present work a hybrid model of recurrent neural equalizer 
configuration has been proposed where a discrete cosine 
transform (DCT) block is embedded within the framework of a 
conventional RNN structure. The RNN module needs training 
and involves updation of the connection weights using the 
standard RTRL algorithm, which necessitates the 
determination of errors at the nodes of the RNN module. To 
circumvent this difficulty, an adhoc solution has been suggested 
to back propagate the output error through this heterogeneous 
configuration. Performance analysis of the proposed Recurrent 
Transform Cascaded (RTCS) equalizer for standard 
communication channel models show encouraging results. 
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I. INTRODUCTION 
  Channel equalization is powerful techniques for 

compensating inters symbol interference in a dispersive 
communication channel, the nonlinearities introduced by the 
modulation/demodulation process and the noise generated in 
the system. However, linear equalizers do not perform well 
on channels with deep spectral nulls or with nonlinear 
distortions. Researchers have shown that nonlinear 
equalizers based nonlinear theory exhibit better performance 
than linear equalizers in applications where the channel 
nonlinear distortions exist [1], [2]. When the channel itself 
has nonlinear characteristics or nonlinear channel distortions 
are too severe to ignore, even the Decision Feedback 
Equalizer cannot recover the corrupted signals effectively. 
Since neural networks (NN) [3] can perform complex 
mapping between its input and output space, and are capable 
of forming complex decision regions with nonlinear decision 
boundaries, many types of NNs have successfully applied in 
channel nonlinear equalization problem [2].The use of NN’s 
is justified by noting that in most cases, the boundaries of the 
optimal decision regions are highly nonlinear, thus requiring 
the use of nonlinear classifiers, even with linear channels. 
Among the techniques based NN, recurrent neural network 
(RNN) [4][5]  proposed to solve the nonlinear channel 
equalization problem, RNN have shown better performance 
than feed forward neural networks, because that RNN 
approximate infinite impulse response (IIR) filters while feed 
forward neural networks approximate FIR filters, which 
makes them attractive in the presence of channels with deep 

 
 

spectral nulls. In addition, RNN is more attractive for their 
small size [6]. Results from the simulations show that the 
RNE with simple size can yield a significant improvement in 
performance relative to the equalizers with linear filter, and 
outperform MLP equalizers of larger computational 
complexity in no minimum phase, partial response, and 
nonlinear channel equalizations cases. Complex versions of 
the RNE based on a real time current learning (RTRL) 
algorithm are developed to process complex signals [7]. 
Although various algorithms and hybrid structures [8] have 
improved the  performance  of  the  RNE,  the computational 
burdens would become greater. In summary, the heavy 
computational load and low convergence speed have limited 
the practical applications of RNE.   

        In this paper, a hybrid configuration has been proposed 
where a Discrete Cosine Transform (DCT) block  is 
embedded within the framework of a conventional RNE 
structure. A signal vector is mapped from a given domain to 
another when fed to a transform block, because basically the 
transform block performs a fixed filtering operation. The 
basic difference between the transform block and the neural 
block is that while adaptive weights are associated with the 
later, fixed weights are inherent in the former. Hence, this 
cascaded network representing a heterogeneous 
configuration has been proposed to solve the conventional 
RNE problem keeping the complexity of the weight 
adaptation less. It is obvious that the transform block does not 
require any weight adaptation, but the RNN module needs 
updation of the connection weights using the standard RTRL 
algorithm, which necessitates the determination of errors at 
the nodes of the RNN module. To circumvent this difficulty, 
an adhoc solution has been suggested. The primary objective 
of the proposed work is to design cascaded RNE on reduced 
structural framework with faster convergence keeping in 
mind real-time implementation issue. 

       The organization of this paper is as follows. In Section 
II,   cascaded RNE equalizer based on the hybrid technique as 
well as the modified version of the RTRL algorithm used to 
train it are described in detail. In Section III, the 
performances of the proposed equalizer through various 
simulations for linear and nonlinear channels are illustrated. 
Finally, Section IV summaries this research works. 

II. PROPOSED CASCADED NEURAL EQUALIZER 
Here, a real-valued discrete cosine transform followed by 

normalization block is cascaded with an RNN module at the 
output end as given in Figure 1. Power normalization 
technique [9] is applied to the transformed signals and the 
final output of the proposed structure is evaluated as a 
weighted sum of all normalised signals. In order to update the 
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connection weights of this cascaded framework, a novel idea 
has  been developed based on propagation of the output error 
through the network in the light of the conventional BP 
algorithm.  

 
The transform block does not require any weight adaptation as 

it consists of fixed weights, but the RNN module needs updation 
of the connection weights using the standard RTRL algorithm, 
which necessitates the determination of errors at the nodes of the 
RNN module. But this estimate cannot be accomplished 
directly by using BP algorithm due to positioning of the 
transform block close to the output end, so problem is 
encountered here in propagating the final output error back 
into the network. To circumvent this difficulty, an adhoc 
solution has been evolved and error estimation at the input 
end of the transform block is done from the knowledge of the 
error at its output by considering its inverse transform. The 
mathematical expressions governing this concept is 
described in subsequent section 
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2.1 Training algorithm of neural structure 
 
The proposed structure shown in Figure 1 consists of nr 

processing units in the RNN module with nx external inputs 
and a transform block. A step by step procedure has been 
adopted to update the weights of the neural network as 
mentioned below. Sensitivity parameters { }j

klp of all RNN 
nodes are initialized to zero. The input signal to the proposed 
equalizer structure is represented by a m x 1 vector 

[ ]( ) ( ), ( 1),...  ..., ( 1) Tn r n r n r n m= − − +x . 

Input signal vector to the RNN module is defined as    u(n), 
lth element of which is 
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The output of jth neuron of the RNN module at time index n 
is given by 
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Where the net internal activity is described by 
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where W denotes nr by (nx + nr) weight matrix of the 
RNN module. Sigmoid activation functions (F) with slope 
parameter φ for neurons of the RNN module have been 
considered. Input signal vector to the transform block can be 
expressed as z(n), whose jth element is denoted as, 

zj(n) = yj(n),         j = nr                                                    (4) 
         Here all the processing units of the RNN module act 

as visible units giving externally reachable outputs. The jth 
element of the output from the transform block (DCT) is 
defined as   

{ }( ) ( ) ( )j jjz n DCT z n z n= =T T                                        (5) 

The T pq
th element of the N X N transform matrix T is 

defined as 

Tpq =
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The transformed signal ( )jz nT are then normalized by the 

square root of their power B j(n), which  can be estimated by 
filtering the ( )jz nT   with  an exponentially decaying 

window of scaling parameterγ ∈ [ 0,1]  as derived in the 
literature[102] and shown below. The jth element of the 
normalized signal becomes 

( )jz nN =
( )

( )  
j

 j

z n

n ε+B
T                                      (7)          

and  
B j (n)  =γ  B j (n-1)+ (1 - γ ) 2

jzT (n)                  (8) 

The scaling parameterγ ∈ [ 0,1]. The small constant ε  is 
introduced to avoid numerical instabilities when signal 
power B j(n) is close to zero. 

The final output of the hybrid structure at time index n, 
yo(n) is expressed as the weighted sum of all normalized 
signals from the transform blocks. 

1
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where  g denotes  the weight matrix at the output end of the 
proposed network. 

• The error at the equalizer output at time index n is en by,  
e(n)= do(n) – yo(n)                                                           (10) 
 
With the knowledge of the output error, the errors at all the 

nodes of RNN module can be evaluated in order to facilitate 
the updation of weights using RTRL algorithm. But this is 
not possible directly as already explained before and hence a 
technique has been employed to tackle the situation. 

At first the error e(n) is back propagated through various 
connection paths. Then the error at the jth output of 
normalization block is computed as given by 

( ) ( ). ( )jj
e n e n g n=N , 1 ≤  j ≤ nr                                    (11) 
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The error terms at the output of the transform block 
( )j nδT  can be calculated using the following approach.         

The power normalization can be considered as a process, 
whose operation is quite similar to the nonlinear 
transformation produced by sigmoid activation function of a 
neuron.  This concept helps to calculate the error terms (i.e., 
local gradients) at the output of the transform block using the 
following equation 
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(12) 
Further, to propagate the error back through the transform 

block and to estimate the error magnitudes at the input side of 
the transform block, Inverse Discrete Cosine Transform 
(IDCT) is applied. This provides an estimate of the error at 
the input end of the transform block and the error at the jth 
processing unit of the RNN module at time index n is given 
by 

{ }( ) ( )
jrnn node jerr n IDCT nδ− = T                                      (13) 

Application of RTRL algorithm involves primarily the 
evaluation of sensitivity parameter, a triply indexed set of 
variables { }j

klp  defined as[06]. 
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Where, {1,2,......, }= nrA  and  {1,2,......,= nfB }   

The sensitivity parameters{ }j
klp  are updated as follows 
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  1≤  j ≤  nr, 1 ≤ k ≤ nr   and   1 ≤ l ≤ (nr + nx)               (14) 
Where F ′ {cj(n)} is given in Equation (5.50)  and ∂kj is 

defined in Equation (11).  
While the incremental weight change Δgj(n) is calculated 

using BP algorithm, RTRL algorithm  computes the 
incremental weight change Δwkl(n). 

      Δgj(n) =θ .e(n).zN j(n),              1 ≤ j ≤ nr                 (15) 

1
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  1 ≤ k ≤ nr and 1 ≤ l ≤ ( nr+nx)                                                               
(16) 

Where λ and θ  are the learning-rate parameters of the 
RNN module and the output layer respectively. The 
connection weights are updated as given below. 

 
gj(n + 1) =gj(n) + Δgj(n)                                                (17) 
wkl(n+1) = wkl(n) + Δwkl(n)                                            (18) 
 
The recursion process of updating weights of the cascaded 

network continues till a predefined condition is achieved as 
have been mentioned earlier.                 

III. SIMULATION RESULTS AND DISCUSSION 
An exhaustive computer simulation study has been 

undertaken for evaluating the performance of all the 

proposed neural equalizer structures based on FNN 
topologies for a variety of linear and non-linear real 
communication channels models. The simulation model of an 
adaptive equalizer considered is illustrated in Figure 2.  In the 
simulation study the channel under investigation is excited 
with a 2-PAM signal, where the symbols are extracted from 
uniformly distributed bipolar random numbers {-1,1}. The 
channel output is then contaminated by an AWGN (Additive 
White Gaussian Noise). The pseudo-random input and noise 
sequences are generated with different seeds for the random 
number generators. For mathematical convenience, the 
received signal power is normalized to unity. Thus the 
received signal to noise ratio (SNR) is simply the reciprocal 
of the noise variance at the input of the equalizer. The power 
of additive noise has been taken as 0.01, representing a SNR 
of 20dB. 

s(n)

(n)N

r(n) y(n)

e(n)

(n-d)s

(n-d)s
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Figure.2. Simulation   model of   Channel Equalizer 

in Training Phase 
Equalization of different types of channel models (both 

linear and non-linear type) are attempted in order to establish 
the efficacy of the proposed equalizer structures based on 
RNN topology and to prove their robustness. It has been 
already reported in the literatures [6][7],  that a two-unit, one 
input, one output RNN is a non-linear IIR model which is 
sufficient to model many communication channels. 
Considering this aspect, all the proposed cascaded equalizers 
in RNN framework are compared with a conventional RNN 
equalizer (CRNN) with two recurrent units and one external 
input sample from the channel output. Further the TDRNN 
structure has two nodes in RNN module followed by a 2 x 2 
DCT block with power normalization and a summing unit at 
the output end. For a comparative study and analysis purpose the 
number of training samples presented to the proposed equalizer 
considered here are restricted to 200 samples only as it is 
observed that their performances are quite satisfactory. The BER 
performance comparison of the proposed equalizer structures 
based on RNN topology has been carried out  after  all the 
structures  has undergone a training phase(200 samples) The 
weight vectors of the equalizers are frozen after the training 
stage is over and then the performance test is continued. The 
BER performances for each SNR are evaluated, based on 107 

more received symbols (test samples) and averaged over 20 
independent realizations. 

All the proposed equalizers in RNN domain require fewer 
samples in training phase for satisfactory BER performance. 
Simulation results demonstrate this advantages offered by 
these structures. Figure 5.18 shows the effect of change of 
length of training sequence on the BER performance 
obtained using the conventional RNN equalizer. It is shown 
for channels  H1(z) and H8(z) that increasing the length of 
learning phase from 200 to 1000 samples, the CRNN 
equalizer still could not achieve the BER performance level 
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of the HKFRCS equalizer. For the RTCS structure, the 
number of processing units remains the same as the CRNN 
equalizer.  After the input signal is preprocessed in the RNN 
module, it is fed to the DCT transform block for further 
processing. As expected, such a proposed structure performs 
better than a CRNN due to the further signal de-correlation in 
the transform block followed by power normalization. 
Another three tap channel characterized by  

  
H1(z)=0.407 - 0.815 z –1- 0.407 z –2                           (19) 
 
RTCS equalizer show distinct SNR gains of about 4.4 dB 

at a prefixed BER level of 10-4 over a pure RNN equalizer 
which is quite encouraging. 

 

 
Figure 3   BER performance of the proposed hybrid equalizers for 

channel H1(z) 

Of processing units remains the same as the CRNN 
equalizer.  After the input signal is preprocessed in the RNN 
module, it is fed to the DCT transform block for further 
processing. As expected, such a proposed structure performs 
better than a CRNN due to the further signal de-correlation in 
the transform block followed by power normalization. 
Another three tap channel characterized by  

  
H1(z)=0.407 - 0.815 z –1- 0.407 z –2                           (19) 
 
RTCS equalizer show distinct SNR gains of about 4.4 dB 

at a prefixed BER level of 10-4  over a pure RNN equalizer 
which is quite encouraging. 

In order to prove the robustness and consistency in 
performance of all the proposed neural structures, 
equalization of nonlinear channels is simulated. Such 
nonlinear channels are frequently encountered in several 
places like the telephone channel, in data transmission over 
digital satellite links, especially when the signal amplifiers 
operate in their high gain limits and in mobile communication 
where the signal may become non-linear because of 
atmospheric nonlinearities. These typical channels 
encountered in real scenario and commonly referred to in 
technical literatures [4] are described by following transfer 
functions. 

H2(z)= (1+ 0.5 z -1) - 0.9 (1+ 0.5 z -1 )3                            [20]                          

 

For this example the proposed RTCS equalizers result 
significant 2dB gain in SNR level at a prefixed BER of 10-4 

over the CRNN equalizer which clearly justifies their 
application for such type of channel. 
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Figure  4  BER  performance  of  the   proposed    hybrid  equalizers 

for  channel  H2(z) 

IV. CONCLUSION 
A real-valued transform is a powerful signal decorrelator 

which performs whitening of the signal by causing the Eigen 
value spread of an auto-correlation matrix to reduce. The 
proposed neural equalizers with hybrid structures have 
outperformed their conventional counterparts to a large limit 
and require less number of samples in training phase 
simultaneously As BER   performance   is a significant 
measure of channel equalizer and proposed hybrid neural 
structure has an edge over conventional ones and close to the 
theoretically optimal Bayesian equalizers. Further a reduced 
structure with low computational complexity can be utilized. 
These hybrids ANN architecture has opened up new 
directions in designing efficient adaptive nonlinear equalizers 
and can be implemented in DSP processors for real - time 
applications. 
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