

Abstract—Macro cells are used more and more in current

designs as they provide the benefit of reusability directly

resulting in a decrease of design time and cost. However, there

lies a gap in the EDA industry for macro-cell placement tools.

This chapter looks at the implementation of a force-directed

macro-cell placement tool that is been developed to target the

gap in industry.

Index Terms—Design Automation, Macro cell, placement,

force directed algorithm, EDA, VLSI

I. INTRODUCTION

The past few years have seen an exponential rise in the

growth rate of the semiconductor industry. The increase in

usage and demand of electronic devices among consumers

has resulted in the need to provide better and faster design

methods. The designers are pushed to their limits in meeting

these demands whilst juggling the constraints of power and

performance of ever shrinking circuits. To help designers

meet their targets, EDA (Electronic Design Automation)

tools are used to help fully or partially automate the design

processes. One of such important backend processes is the

placement component.

The placement problem simply is the problem of finding

the ideal locations for each cell in a circuit achieving as many

or all of the placement objectives. The two main objectives

that every placement tool has to achieve for today’s fixed die

design are,

• overlap free layout

• fit in the given placement area.

Other objectives may include minimization of wirelength,

area, congestion, run time etc. The optimal solution will be

one that satisfies all of the given criteria. Achieving such a

placement solution is far from possible and even the simplest

of cell placement problems are defined to be NP- hard. The

consequence of falling short of a good placement could result

in an unroutable design, a slower and/or larger chip etc. This

will cost time and money to either manually correct the

placement or start the design from the beginning.

In the past, designs mainly carried standard cells that were

of uniform height and width. Macro cells were introduced as

Manuscript received March 23, 2009. This work was supported in

together by the Department of Engineering and Technology, Manchester

Metropolitan University and the Overseas Research Student Awards

Scheme. All three authors are from the Department of Engineering and

Technology, Manchester Metropolitan University, Chester Street,

Manchester M1 5GD UK.

Meththa Samaranayake is a research student within the department

(e-mail:meththa.t.samaranayake@student.mmu.ac.uk).

Helen Ji is the research project supervisor (e-mail: h.ji@mmu.ac.uk).

John Ainscough (e-mail: j.ainscough@mmu.ac.uk).

an answer to the growing complexity of circuits. Macros can

mainly be seen as black boxes that are designed to carry out

specific tasks such as implementation of a logic function (e.g.

an IP block). It can also be on-chip memories that are

common in SoC (System on Chip) designs. Increased use of

Macro cells help designer’s reuse of their designs which in

turn helps reduce design time and cost.

This paper follows up work[1] carried out in the possibility

of using graph-drawing algorithms as the basis of a

Macro-cell placement tool. The implementation of two force

directed algorithms, one authored by Kamada and Kawai[2]

and the other by Fruchterman and Reingold[3] are the main

focus of this work (these will be referred to as KK and FR

respectively within the rest of the chapter). They were chosen

mainly for their ability to handle undirected straight line

drawing graphs, their simplicity in implementation, their

speed as well as the criteria they follow to produce

aesthetically pleasing graphs. In many cases, these criteria

are shared by good placements.

The rest of this paper is organized as below. Section II will

look at the different mixed size and macro-cell placement

tools. Section III discusses the issues that need to be given

consideration when developing a macro-cell placement tool.

The graph drawing algorithms, KK and FR are discussed in

Section IV whilst Section V discusses the implementation

details of the algorithms. The experiments conducted on the

algorithms and their performance results are given in section

VI before concluding in Section VII.

II. PLACEMENT TOOLS

There are many standard cell placement tools available

both academically and commercially. Several of them are

capable of mixed-mode cell placement i.e. designs that

contain both standard cells and macro cells, but there are only

a few placement tools specifically for macro cells. This is in

fact because standard cells govern most of the circuit designs.

Recent changes have seen designs to contain macro-cell

based designs such as memory blocks and IP blocks

(Intellectual Property) and furthermore, the hierarchical

design methodology intended to tackle design complexity has

resulted in macro-dominated designs at the top level. Even

though mixed mode placement tools can handle macro cells,

for designs that contain a majority of macro cells these tools

may not place the cells in the best interest of the macro cells.

Some leading edge mixed-mode placement tools identified

are Capo [4], Dragon [5], FastPlace[6] and APlace[7]. The

Capo tool is based on a combination of simulated annealing

and recursive bisection techniques and handles modules

mainly by the help of the floorplanner Parquet[8]. Capo

placement tool has a secondary method of placing modules

A Force Directed Macro Cell Placement Tool

Meththa Samaranayake, Helen Ji, John Ainscough

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

where it shreds them to smaller sub-cells. These sub cells are

connected by two pin nets ensuring that they are placed close

to one another. The circuit is then considered as a standard

cell placement problem. FastPlace and APlace tools are based

on analytical techniques and incorporates macro-cell

placement in to its normal placement flow. In FastPlace, the

macro-cells are given priority during legalization stage where

overlaps are resolved between macros before standard cells.

Dragon is a hybrid placement tool that combines the use of

simulated annealing with min-cut partitioning. To handle

macro-cells, it has modified the min-cut partitioning

algorithm so that the partitions can be of different sizes. All

these placement tools were designed for standard cells and

later modified to support macro-cells. As a result, they do not

consider macro-cell pin locations and cell-orientation, which

are important factors for placing macros.

A Java based macro-cell placer[9] based on a force

directed placement algorithm has been identified to be

different from traditional force directed algorithms. In this

work, the cell shapes and sizes have been considered when

developing the force equation. A limitation of this tool is that

it does not handle placement on a fixed placement area and

instead treats the chip as a soft cell with a variable size and

aspect ratio. The pads of the chip are also not fixed; therefore

the positions are found with the use of the force directed

algorithm at a later stage.

A macro-cell placement method based on net clustering

and force directed method is proposed in literature [10]. This

approach is unique such that, it treats the nets as the

placement components. In the graphs they draw, the nodes

represent the nets whilst an edge only exists for the nets that

share one or more cells. The forces on the nets determine the

initial locations for the cells. Pin locations are determined

last, suggesting that this placement tool is mainly focused on

soft cell macros. This work reiterates the importance of the

pin locations and cell orientation in macro cell placement.

Another limitation seen is that the tool only handles

connected graphs, again limiting the type of designs that can

be processed.

Looking at both macro-cell placers identified above, a

common disadvantage recognized is that both tools are not

standardized – inputs are not of industry recognized

LEF/DEF format but formats limited to the tool. This has

limited the tools from reading in standard designs currently

available, therefore disabling measuring their quality of

placement. The same is true for outputs where they are not

given out in any standard format so that the placement can be

processed by a routing tool.

III. STANDARD CELLS VS. MACRO-CELLS

Macro-cell placement is not as straightforward as standard

cell placement. In standard cell placement, the cells are of

uniform height and are restricted to rows in which they must

sit in. These restrictions allow the placement tools to be more

precise in choosing locations for the standard cells and to

allocate routing resources. Macro cells on the other hand do

not have such restrictions. They can be of any height, width

and shape (L, T and U shapes though the most common is

rectangular) and are not restricted to a specific location of the

placement area. This is further illustrated in Figure 1. As a

result, choosing a good placement for macro-cells can be

much harder as the permutations of locations they can be

placed-at are unbounded. Similarly, the different shapes of

the cells can bring in unwanted limitations on finding

placements. This can bring negative results such as more

expensive computations and longer runtimes.

As the size of a macro-cell can be a considerable amount of

the total area, sometimes even up to half of the placement

area, this can have a significant impact on the placement of

cells. This is further illustrated in Figure 2 where it is seen

how the size and placement of cell A has made in impact on

cell B. In Figure 2 (b) where cell A is placed in the center of

the placement area, it has become impossible to find a legal

placement for cell B whilst cell C and D have achieved

positions after being rotated. Therefore, it is necessary to give

due consideration to the magnitude of cells and the impact

they can have on other cells.

 As well as cell position, cell size has a significant impact

on the position of pins. Unlike in standard cell placement, pin

locations can have a significant impact on wirelength,

routability and congestion of the chip as further illustrated in

Figure 1. To overcome this, the placement tool will need to

handle extra features such as cell mirroring and cell rotation

to consider the best possible cell orientation in order to

minimize the above-mentioned costs and to place the pins in

the best locations possible.

Fixed cells are also an important factor that needs to be

looked at during cell placement. There are times when one or

more components of the design need to be placed in a fixed

position within the placement area. For macro-cells, these

fixed cells will create a blockage on the area on which cells

are to be placed and will need to be given due consideration

during the placement process.

It is seen that there are important differences between

standard cell designs and macro-cell designs and these

differences need to be given appropriate priority during

placement. It further reaffirms the need for macro-cell

placement tools that are separate from standard cell

placement tools. Not doing so will result in poor placements

and increased design costs in terms of wirelength, congestion

and routing resources etc. that is detrimental for both

designers and manufacturers alike.

Figure 1 Example of a standard cell placement (left) and macro-cell

placement (right) It can be seen that in standard cell designs cells are

limited to rows and are of equal height. In contrast, macro-cells can be of

different shapes, sizes and placed anywhere within the placement area. The

macro-cell layout above shows the impact on wirelength by pin placement

and cell-size.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

IV. FORCE DIRECTED GRAPH DRAWING

Graph drawing algorithms are mainly concerned about

nodes lacking any size or shape, whereas for cell placement

cell sizes need to be given due consideration. A recent

published work introduces methods of suc

modifying graph-drawing algorithms to incorporate

dimensions to nodes[11]. This work is mainly aimed towards

general graph drawing algorithms and the criteria they use for

graph drawing include,

• Vertices are not to overlap

• Edges are not to cross vertices

For this work, the first criterion directly applies, as the

objective of the placement tool is to produce a

non-overlapping placement. The second criterion also applies

as it tends to place directly connected cells

could be too conservative if routing is allowed to be

over-the-cell. One of the limitations of this work

the node orientation is fixed and cannot be mirrored or

rotated.

Force directed graph-drawing algorithms generally tend to

be analogous to the classic problem of Hookes law for a

spring system. Most of the current force directed algorithms

follow the footsteps of Eades’ spring embedded algorithm

[12]. Hooke’s law simply stated that the force exerted by an

extended spring is proportional to the length of the spring.

Eades modeled the graph as a system of rings in place of the

nodes and springs for edges. His formula for the forces

exerted by the springs differed Hooke’s law by the former

taking both attraction and repulsion forces in to

consideration. The aim of all the force directed algorithms is

to find zero-force locations for all nodes

equilibrium for that system.

A comparison[13] of several force-directed algorithms has

been carried out where KK and FR algorithms were the two

main contenders. It was identified that KK is successful in

achieving high computation speed, minimizing the

computation time. Even though FR is quick in giving

aesthetically pleasing layouts, it is said to suffer from long

run times when the number of nodes/edges exceeds 60. One

cannot declare a certain algorithm to be the best where each

has its pros and cons and how relevant each algorithm is

depends on the application[13].

KK Algorithm[2] is concerned about general undirected,

connected graphs. It has the ability to handle weighted graphs

such that edges with higher weighting are longer than those

with a lower weighting. One advantage in this algorithm is

Figure 2 Affect of cell size on placement (a) with largest cell placed in the

boundary (b) largest cell placed in the centre

RAWING ALGORITHMS

Graph drawing algorithms are mainly concerned about

nodes lacking any size or shape, whereas for cell placement

cell sizes need to be given due consideration. A recent

published work introduces methods of successfully

drawing algorithms to incorporate

. This work is mainly aimed towards

general graph drawing algorithms and the criteria they use for

Edges are not to cross vertices

For this work, the first criterion directly applies, as the

objective of the placement tool is to produce a

overlapping placement. The second criterion also applies

as it tends to place directly connected cells together, but it

could be too conservative if routing is allowed to be

cell. One of the limitations of this work[11] is that

the node orientation is fixed and cannot be mirrored or

algorithms generally tend to

be analogous to the classic problem of Hookes law for a

spring system. Most of the current force directed algorithms

of Eades’ spring embedded algorithm

. Hooke’s law simply stated that the force exerted by an

extended spring is proportional to the length of the spring.

Eades modeled the graph as a system of rings in place of the

d springs for edges. His formula for the forces

exerted by the springs differed Hooke’s law by the former

taking both attraction and repulsion forces in to

The aim of all the force directed algorithms is

nodes – i.e. state of

directed algorithms has

been carried out where KK and FR algorithms were the two

main contenders. It was identified that KK is successful in

ieving high computation speed, minimizing the

computation time. Even though FR is quick in giving

aesthetically pleasing layouts, it is said to suffer from long

run times when the number of nodes/edges exceeds 60. One

be the best where each

has its pros and cons and how relevant each algorithm is

is concerned about general undirected,

connected graphs. It has the ability to handle weighted graphs

such that edges with higher weighting are longer than those

with a lower weighting. One advantage in this algorithm is

that it introduces a “graph theoretic distance”

minimum edge length in order to minimize node overlaps.

The main objective of the algorithm is to find a balanced

formulation of the spring forces within the system.

drawing criteria followed by KK

• reduce number of edge crossings

• distribute the vertices and edges uniformly

Comparing these criteria with those of the macro

placement tool, it can be seen

‘good placement criteria’. Reducing number of edge

crossings results in directly connected cells being placed

close to each other. The second criterion allows the nodes to

be evenly distributed within the placement area as wel

show any symmetry within the layout. This not only is an

advantage for graph drawing where the aesthetics are

improved, but for cell placement, by illustrating the cell

connections in an uncomplicated manner. It is worth

out that symmetry is a very important heuristic for placement.

While most of placement tools have difficulty in

incorporating it into their algorithms, the KK algorithm

handles it neatly.

The main objectives of the FR algorithm are to achieve a

visually pleasing graph with increased speed and simplicity.

Following Eades work, the FR algorithm also makes use of

both attraction and repulsion forces, but takes it one

further by defining that the attraction forces only

calculated for neighboring nodes whilst repulsion f

calculated for all nodes within the graph.

Looking at the criteria followed by FR

graphs, it is seen that two main points are considered.

• vertices connected by an edge should be drawn near

each other

• vertices should not be drawn too close to each other.

The first criteria does apply for the cell placement tool as

the cells connected to one another will need to be close to

each other in order to minimize wirelength. This can be

further enhanced by edge weights to ensure that cells

connected to edges with higher weights are as close as

possible. Unfortunately, the current implementation of the

FR algorithm does not contain support for edge weights. The

second criterion is set quite vaguely and according to

literature [3] it depends on the number of nodes and the

placement area. Literally, this should mean that the nodes do

not overlap each other, which is directly applicable to the

objectives of the placement tool.

FR algorithm uses a method similar to simulated annealing

to control the ‘cooling schedule’ of the

controls the number of sweeps it goes through in optimizing

the layouts. This can be both advantageous and

disadvantageous. It is advantageous such that it helps limit

the displacement prohibiting the algorithm to be trapped in

local minima. It is disadvantageous such that the number of

sweeps is kept at a constant so

check on the quality of placement before ending the

sequence.

Affect of cell size on placement (a) with largest cell placed in the

“graph theoretic distance” which defines a

minimum edge length in order to minimize node overlaps.

The main objective of the algorithm is to find a balanced

spring forces within the system. The graph

KK[2] are,

reduce number of edge crossings

distribute the vertices and edges uniformly

Comparing these criteria with those of the macro-cell

n that both are related to the

‘good placement criteria’. Reducing number of edge

crossings results in directly connected cells being placed

close to each other. The second criterion allows the nodes to

be evenly distributed within the placement area as well as

show any symmetry within the layout. This not only is an

advantage for graph drawing where the aesthetics are

improved, but for cell placement, by illustrating the cell

connections in an uncomplicated manner. It is worth pointing

a very important heuristic for placement.

While most of placement tools have difficulty in

incorporating it into their algorithms, the KK algorithm

The main objectives of the FR algorithm are to achieve a

creased speed and simplicity.

Following Eades work, the FR algorithm also makes use of

both attraction and repulsion forces, but takes it one-step

further by defining that the attraction forces only to be

calculated for neighboring nodes whilst repulsion forces are

calculated for all nodes within the graph.

Looking at the criteria followed by FR[3] when drawing

graphs, it is seen that two main points are considered.

ertices connected by an edge should be drawn near

ertices should not be drawn too close to each other.

The first criteria does apply for the cell placement tool as

the cells connected to one another will need to be close to

each other in order to minimize wirelength. This can be

further enhanced by edge weights to ensure that cells

igher weights are as close as

possible. Unfortunately, the current implementation of the

FR algorithm does not contain support for edge weights. The

set quite vaguely and according to

it depends on the number of nodes and the

placement area. Literally, this should mean that the nodes do

her, which is directly applicable to the

objectives of the placement tool.

FR algorithm uses a method similar to simulated annealing

to control the ‘cooling schedule’ of the algorithm, which

controls the number of sweeps it goes through in optimizing

layouts. This can be both advantageous and

disadvantageous. It is advantageous such that it helps limit

the displacement prohibiting the algorithm to be trapped in

local minima. It is disadvantageous such that the number of

sweeps is kept at a constant so that the algorithm does no

check on the quality of placement before ending the

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

The main difference between the FR and KK algorithm is

that the FR algorithm can handle disconnected graphs. Even

though this is not an absolute requirement compared to the

objectives of the placement tool, it does give an advantage as

to the type of designs the algorithm will be able to handle.

Authors of KK[2] points out that even though KK algorithm

does not support disconnected graphs, it can be easily

extended to do so without a significant delay in time as

follows.

“Partition the graph to its connected components giving

each component a region of area proportional to its size, with

each component laid out independently.”

FR algorithm puts this theory into practice in its technique

in handling disconnected graphs. Authors of FR names this

technique as the “grid variant option” where the placement

area is divided into a grid and nodes are given locations

within the grid. Changes are made to the calculation of the

repulsion forces; for each node, the repulsion forces are

calculated from the nodes within the current grid as well as

those in neighboring grids, unlike the basic algorithm which

calculated repulsion forces for all nodes within the graph.

Another difference between the two algorithms is that KK

does not specify a clear placement area for the graph whereas

FR implements support for a customizable placement area.

Whilst for graph drawing this may not be very important, it

does carry greater significance in cell placement where the

cells are expected to be placed within the given placement

area in order for the placement to be legal. It is believed that

limitation on placing components within the placement area

can be imposed upon in later stages when being used in the

placement tool.

V. IMPLEMENTATION DETAILS

Initial work carried out [1] has proved that both KK and

FR are good candidates as a basis for a macro-cell placement

tool. The basic algorithms of both KK and FR were while

sufficient as graph drawing algorithms, lacked the necessary

functionalities to be used as a module placement algorithm.

Both algorithms were modified in-order to implement the

following features. The basic implementation of the two

algorithms were taken from the peer reviewed Boost [14]

library.

A. Non-zero size vertices implementation

Traditional force directed algorithms tend to treat the cells

as points that do not posses any size or shape. The edges do

not connect to any pins but to the nodes that represent the

cells. This method may be acceptable for standard cell design

[9] but in Macro cell placement it can cause inaccuracies of

positions, wirelength, area, congestion etc. due to the cell

dimensions. Recent literature [11, 15, 16] has been found to

carry out work regarding the implementation of different size

nodes for graph drawing.

As was mentioned in [1] the simplest method of

representing a cell is to consider the node to be circular. In

order to implement this on to KK and FR algorithms, the

following method suggested in literature [11] was used. All

the modules are assumed rectangular shaped and the width

and height of each cell is used to calculate the radius of the

circular vertex that will represent the module. This

calculation is given in Eq. (1) where f(v) is the radius of the

vertex and r and R are the width and height of the module

respectively[11].



























−









+

+









−









+

=

R

r

R

r

R

r

R

r

R

r

arctansin1

arctansin1

ln.

arctansin1

arctansin1

ln.
2

1
 f(v)

π

 (1)

In order to minimize vertex overlaps, in FR it was possible

to use the vertex size to check if the vertices were overlapping

and therefore adjust the force applied to the vertices.

Overlapping can be easily tested by the condition; if the

distance between two cells (centre-to-centre) is less than the

summation of their radii, the two cells can be said to be

overlapping. Unfortunately, KK does not clearly distinguish

the attraction and repulsive forces; instead, it calculates an

overall force acting on each cell. Therefore, it was not

possible to implement an overlap minimizing method for KK.

B. Fixed node support

Another feature that was lacking within the graph drawing

algorithms was support to handle fixed nodes. This is

especially useful when designers may specify locations for

some of the cells to be fixed or for the placement of the IO

(Input Output) pads, which communicate with the external

world. In force directed algorithms, since there are attraction

and repulsion forces that affects all cells, it was needed to

ensure that the forces emitted by the fixed cells were still

being taken into account whilst the forces felt upon the fixed

cells do not cause the fixed cell to displace as is illustrated in

Figure 3.

The algorithm of FR was altered so that the fixed nodes are

treated equally as movable cells during force calculation.

During displacement calculations, fixed nodes are ignored

and for added measure ignored during positional updating of

the cells as well. This has shown to be a more accurate

method of force calculation for the algorithm when

containing fixed cells.

The KK algorithm was modified to filter out the fixed

nodes during the energy minimization calculations. This was

accomplished in a manner that, whilst minimizing the energy

function for the movable cells, the affect made from fixed

nodes are still felt. Again, this has been proven successful in

implementation.

Figure 3 Affect of forces acting on cells (a) when all cells are movable

and can be repositioned in order to find a position of equilibrium (b)

when a fixed cell is present, the attractive/repulsive forces of movable

cells should not cause a displacement of the fixed cell.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

C. Input/output format

Not all placement tools follow a single format for input and

output. This hinders benchmarking and comparison of

placement tools. It is with this in mind that it was thought best

to use the industry standard formats; the Cadence LEF/DEF

file format. The LEF/DEF format is written in ASCII format

and can be easily understood. The DEF file contains all the

information relevant to the design, constraints, layout and

netlist information whilst the LEF file contains the library

information of all the cells and modules within the design as

well as information regarding layers, vias and core area

information. In order to read in the necessary information for

the placement tool, a parser was developed. The parser reads

data in from the two files, extracts the necessary data and

saves it in to a text file, which can then be read in by the

placement algorithms. It is hoped that in the future, this will

be integrated within the placement algorithm itself so that the

data input will be a one-step process.

Once the algorithms have generated a placement, it will

output the summary in text format and a plot the placement in

order to inspect the results achieved. In future, it is hoped to

output the data into a DEF file such that the final placements

then can be routed which is another important quality of

measurement of the placement.

VI. EXPERIMENTATION AND RESULTS

With the implementation of different features to the

algorithms, they were simulated under different conditions to

identify their strengths and weaknesses. To start, the two

algorithms were subjected to a selection of graphs, some with

known golden topologies. Cells of different dimensions were

used to observe the impact the changes described in this

chapter. The simulations were run on an Intel Pentium IV PC

running at 3.2GHz and with 2 GB of RAM.

Table 1 compares the results obtained through this

exercise. The runtime and HPWL (Half-perimeter

wirelength) are the cost factors looked at during the

experimentation to evaluate the performance of the

algorithms. The results shown for the FR are those obtained

for the grid option, which allows the use of disconnected

graphs. Another important change made to FR was to set the

optimal distance between the cells to be as small as possible.

In KK the ideal edge length values was defined as zero to

ensure shortest possible wirelengths.

Both algorithms were successful in achieving visually

pleasing layouts within the first iteration for all the below

mentioned designs. Looking at the results in Table 1 it is seen

that for majority of the graphs, the runtimes and wirelength

values achieved are similar to one another between the two

algorithms.

For the more dense graphs, it was seen that KK would take

longer runtimes than FR, which is especially true for graph7,

graph9 and graph11. Looking at the runtime and wirelength

results alone does not allow us to compare the results in full.

Therefore, to have a better understanding of the quality of the

layouts it is also needed to compare the placements visually.

A selection of the placement results have been presented in

Figure 4 for this purpose.

As was expected [1], the use of circles to represent the cells

does not take the long rectangles into sufficient consideration

resulting in overlaps between the rectangles. It is believed

that this can be overcome by representing the nodes as

ellipses and not circles, which will have a better relationship

of the rectangular shape. However, what was not expected

were overlaps between the circles themselves which is shown

by the grayed areas in Figure 4. In FR, even though there are

sufficient repulsive forces to keep the circles apart, due to the

number of sweeps being a constant figure, some overlaps or

less-than-ideal cell locations may get bypassed. In KK, no

obvious repulsion force exists to ensure that the cells are kept

apart. The minimum edge length value acting on its own in

the calculation of the energy minimization equations has

found to be insufficient in eliminating overlaps within

designs.

One of the objectives of the KK algorithm is to achieve

uniform edge lengths. With the introduction of cell

dimensions, it was seen that the edge lengths varied

according to the forces acting upon the vertices. This is

clearly seen in Figure 4. For designs with similar size cells in

Figure 4(c), KK achieves equal edge length values and

retains the symmetry of the design. For varied cell sizes, it is

sometimes seen that smaller size cells are engulfed by the

larger cells due to the increased attraction force. This is

believed by be the main reason why there are less overlaps in

the placements achieved by FR than those of KK. It is

believed the introduction of a separate repulsion force will

balance the forces in a much more efficient manner.

Overall, both algorithms have achieved good results with

the implementation of cell sizes. They both have been able to

retain the underlying topologies of the designs successfully

which generating placements within a short amount of time.

In future, larger graphs (increased number of nodes and

edges) will be experimented upon to identify the limitations

of the tools.

Table 1 Comparison of runtime (ms) and wirelength (unit length) results

for KK and FR

 #edges # cells Runtime (ms) HPWL

KK FR KK FR

G1 5 6 0 15 360 369

G2 7 5 15 15 390 364

G3 10 8 15 16 509 522

G4 18 10 46 15 1281 1163

G5 18 16 78 31 1072 1011

Graph1 10 5 0 0 429 446

Graph2 6 4 15 0 231 235

Graph3 15 6 15 15 619 624

Graph4 1 2 15 15 23 32

Graph5 7 6 15 0 321 366

Graph6 18 10 16 15 887 819

Graph7 60 36 343 140 975 751

Graph8 20 12 46 46 763 787

Graph9 33 26 296 78 980 999

Graph10 7 6 31 15 157 147

Graph11 47 26 219 93 479 459

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

VII. FUTURE WORK AND CONCLUSION

In this work, a method of using graph-drawing algorithms

as a building block for a macro cell placement has been

proposed. Future work will focus on optimizing those added

features, especially in handling different sized cells by

exploring the possibility of representing the nodes with

ellipses rather than circles. This should eliminate any

remaining overlaps and help generate more accurate

attraction/repulsion forces within the graph algorithms. Other

work will include establishing techniques to use pin locations

to optimize wirelength by means of rotating and/or mirroring

of cells. The experiments carried out so far have given

positive results in achieving good layouts even with the

presence of cell dimensions.

REFERENCES

[1] Samaranayake, M., Ji, H., and Ainscough, J.: 'Force directed graph

drawing algorithms for Macro cell placement'. World Congress on

Engineering, London, UK, 2-4 July, 2008, pp. 222-227.

[2] Kamada, T. and Kawai, S., "An algorithm for drawing general

undirected graphs," Information Processing Letters, vol. 31, p. 15,

1989.

[3] Fruchterman, T. M. J. and Reingold, E. M., "Graph Drawing by

Force-directed Placement," Software- Practice and Experience, vol.

21, pp. 1129-1164, November 1991.

[4] Adya, S. N., Chaturvedi, S., Roy, J. A., Papa, D. A., and Markov, I. L.:

'Unification of partitioning, placement and floorplanning'. Int. Conf. of

Computer Aided Design, November 2004, pp. 550-557.

[5] Taghavi, T., Yang, X., Choi, B. K., Wang, M., and Sarrafzadeh, M.:

'Dragon2005: Large Scale Mixed-Sized Placement Tool'. Int. Symp. on

Physical Design, April, 2005, pp. 245-247.

[6] Viswanathan, N., Pan, M., and Chu, C.: 'FastPlace 3.0: A Fast

Multilevel Quadratic Placement Algorithm with Placement Congestion

Control'. Asia and South Pacific Design Automation Conf, 23-26 Jan

2007, pp. 135-140.

[7] Kahng, A. B., Reda, S., and Wang, Q.: 'APlace: A General Analytic

Placement Framework'. Int. Sym. of Physical Design, California, USA,

April 2005, pp. 233-235.

[8] Adya, S. N. and Markov, I. L., "Fixed-outline floorplanning: enabling

hierarchical design," IEEE Trans. on Very Large Scale Integration

(VLSI) Systems, , vol. 11, pp. 1120-1135, December 2003.

[9] Mo, F., Tabbara, A., and Brayton, R. K.: 'A Force-Directed Macro-Cell

Placer'. Int. Conf. on Computer-aided design, San Jose, USA,

November 2000, pp. 177-180.

[10] Alupoaei, S. and Katkoori, S., "Net-based force-directed macrocell

placement for wirelength optimization," IEEE Trans. on Very Large

Scale Integration (VLSI) Systems, vol. 10, pp. 824-835, December

2002.

[11] Harel, D. and Koren, Y.: 'Drawing graphs with non-uniform vertices'.

Proc. of Working Conference on Advanced Visual Interfaces, pp.

157–166.

[12] Eades, P.: 'A heuristic for graph drawing'. Congressus Numerantium,

pp. 149-160.

[13] Brandenburg, F. J., Himsholt, M., and Rohrer, C.: 'An Experimental

Comparison of Force-Directed and Randomized Graph Drawing

Algorithms'. Symposium on Graph Drawing, 20 - 22 September 1995,

pp. 76 - 87

[14] Boost, http://www.boost.org/, accessed Sep 2007

[15] Wang, X. and Miyamoto, I., "Generating customized layouts," in

Graph Drawing. vol. 1027, F. J. Brandenburg, Ed.: Springer Berlin,

1996, pp. 504-515.

[16] Gansner, E. and North, S., "Improved Force-Directed Layouts," in

Graph Drawing. vol. 1547, S. H. Whitesides, Ed.: Springer Berlin,

1998, pp. 364-373.

Figure 4 Comparison of placements achieved by FR(top) and KK(bottom) algorithms. (a) Graph5 (b) Graph6 (c) Graph7 (d) Graph10. The overlaps

between the graph nodes have been higlighted.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

