
 

 

 

  

Abstract—Macro cells are used more and more in current 

designs as they provide the benefit of reusability directly 

resulting in a decrease of design time and cost. However, there 

lies a gap in the EDA industry for macro-cell placement tools. 

This chapter looks at the implementation of a force-directed 

macro-cell placement tool that is been developed to target the 

gap in industry.     

 

Index Terms—Design Automation, Macro cell, placement, 

force directed algorithm, EDA, VLSI 

 

I. INTRODUCTION 

The past few years have seen an exponential rise in the 

growth rate of the semiconductor industry. The increase in 

usage and demand of electronic devices among consumers 

has resulted in the need to provide better and faster design 

methods. The designers are pushed to their limits in meeting 

these demands whilst juggling the constraints of power and 

performance of ever shrinking circuits. To help designers 

meet their targets, EDA (Electronic Design Automation) 

tools are used to help fully or partially automate the design 

processes. One of such important backend processes is the 

placement component.  

 

The placement problem simply is the problem of finding 

the ideal locations for each cell in a circuit achieving as many 

or all of the placement objectives. The two main objectives 

that every placement tool has to achieve for today’s fixed die 

design are,  

• overlap free layout 

• fit in the given placement area.  

Other objectives may include minimization of wirelength, 

area, congestion, run time etc. The optimal solution will be 

one that satisfies all of the given criteria. Achieving such a 

placement solution is far from possible and even the simplest 

of cell placement problems are defined to be NP- hard. The 

consequence of falling short of a good placement could result 

in an unroutable design, a slower and/or larger chip etc. This 

will cost time and money to either manually correct the 

placement or start the design from the beginning. 

 

In the past, designs mainly carried standard cells that were 

of uniform height and width. Macro cells were introduced as 
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an answer to the growing complexity of circuits. Macros can 

mainly be seen as black boxes that are designed to carry out 

specific tasks such as implementation of a logic function (e.g. 

an IP block). It can also be on-chip memories that are 

common in SoC (System on Chip) designs. Increased use of 

Macro cells help designer’s reuse of their designs which in 

turn helps reduce design time and cost. 

 

This paper follows up work[1] carried out in the possibility 

of using graph-drawing algorithms as the basis of a 

Macro-cell placement tool. The implementation of two force 

directed algorithms, one authored by Kamada and Kawai[2] 

and the other by Fruchterman and Reingold[3] are the main 

focus of this work (these will be referred to as KK and FR 

respectively within the rest of the chapter). They were chosen 

mainly for their ability to handle undirected straight line 

drawing graphs, their simplicity in implementation, their 

speed as well as the criteria they follow to produce 

aesthetically pleasing graphs. In many cases, these criteria 

are shared by good placements.  

 

The rest of this paper is organized as below. Section II will 

look at the different mixed size and macro-cell placement 

tools. Section III discusses the issues that need to be given 

consideration when developing a macro-cell placement tool. 

The graph drawing algorithms, KK and FR are discussed in 

Section IV whilst Section V discusses the implementation 

details of the algorithms. The experiments conducted on the 

algorithms and their performance results are given in section 

VI before concluding in Section VII. 

II. PLACEMENT TOOLS 

There are many standard cell placement tools available 

both academically and commercially. Several of them are 

capable of mixed-mode cell placement i.e. designs that 

contain both standard cells and macro cells, but there are only 

a few placement tools specifically for macro cells. This is in 

fact because standard cells govern most of the circuit designs. 

Recent changes have seen designs to contain macro-cell 

based designs such as memory blocks and IP blocks 

(Intellectual Property) and furthermore, the hierarchical 

design methodology intended to tackle design complexity has 

resulted in macro-dominated designs at the top level. Even 

though mixed mode placement tools can handle macro cells, 

for designs that contain a majority of macro cells these tools 

may not place the cells in the best interest of the macro cells.  

 

Some leading edge mixed-mode placement tools identified 

are Capo [4], Dragon [5], FastPlace[6] and APlace[7]. The 

Capo tool is based on a combination of simulated annealing 

and recursive bisection techniques and handles modules 

mainly by the help of the floorplanner Parquet[8]. Capo 

placement tool has a secondary method of placing modules 
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where it shreds them to smaller sub-cells. These sub cells are 

connected by two pin nets ensuring that they are placed close 

to one another. The circuit is then considered as a standard 

cell placement problem. FastPlace and APlace tools are based 

on analytical techniques and incorporates macro-cell 

placement in to its normal placement flow. In FastPlace, the 

macro-cells are given priority during legalization stage where 

overlaps are resolved between macros before standard cells. 

Dragon is a hybrid placement tool that combines the use of 

simulated annealing with min-cut partitioning. To handle 

macro-cells, it has modified the min-cut partitioning 

algorithm so that the partitions can be of different sizes. All 

these placement tools were designed for standard cells and 

later modified to support macro-cells. As a result, they do not 

consider macro-cell pin locations and cell-orientation, which 

are important factors for placing macros. 

 

A Java based macro-cell placer[9] based on a force 

directed placement algorithm has been identified to be 

different from traditional force directed algorithms. In this 

work, the cell shapes and sizes have been considered when 

developing the force equation. A limitation of this tool is that 

it does not handle placement on a fixed placement area and 

instead treats the chip as a soft cell with a variable size and 

aspect ratio. The pads of the chip are also not fixed; therefore 

the positions are found with the use of the force directed 

algorithm at a later stage.  

 

A macro-cell placement method based on net clustering 

and force directed method is proposed in literature [10]. This 

approach is unique such that, it treats the nets as the 

placement components. In the graphs they draw, the nodes 

represent the nets whilst an edge only exists for the nets that 

share one or more cells. The forces on the nets determine the 

initial locations for the cells. Pin locations are determined 

last, suggesting that this placement tool is mainly focused on 

soft cell macros. This work reiterates the importance of the 

pin locations and cell orientation in macro cell placement. 

Another limitation seen is that the tool only handles 

connected graphs, again limiting the type of designs that can 

be processed. 

 

Looking at both macro-cell placers identified above, a 

common disadvantage recognized is that both tools are not 

standardized – inputs are not of industry recognized 

LEF/DEF format but formats limited to the tool. This has 

limited the tools from reading in standard designs currently 

available, therefore disabling measuring their quality of 

placement. The same is true for outputs where they are not 

given out in any standard format so that the placement can be 

processed by a routing tool.  

III. STANDARD CELLS VS. MACRO-CELLS  

Macro-cell placement is not as straightforward as standard 

cell placement. In standard cell placement, the cells are of 

uniform height and are restricted to rows in which they must 

sit in. These restrictions allow the placement tools to be more 

precise in choosing locations for the standard cells and to 

allocate routing resources. Macro cells on the other hand do 

not have such restrictions. They can be of any height, width 

and shape (L, T and U shapes though the most common is 

rectangular) and are not restricted to a specific location of the 

placement area. This is further illustrated in Figure 1. As a 

result, choosing a good placement for macro-cells can be 

much harder as the permutations of locations they can be 

placed-at are unbounded. Similarly, the different shapes of 

the cells can bring in unwanted limitations on finding 

placements. This can bring negative results such as more 

expensive computations and longer runtimes. 

 

As the size of a macro-cell can be a considerable amount of 

the total area, sometimes even up to half of the placement 

area, this can have a significant impact on the placement of 

cells. This is further illustrated in Figure 2 where it is seen 

how the size and placement of cell A has made in impact on 

cell B. In Figure 2 (b) where cell A is placed in the center of 

the placement area, it has become impossible to find a legal 

placement for cell B whilst cell C and D have achieved 

positions after being rotated. Therefore, it is necessary to give 

due consideration to the magnitude of cells and the impact 

they can have on other cells. 

 

 As well as cell position, cell size has a significant impact 

on the position of pins. Unlike in standard cell placement, pin 

locations can have a significant impact on wirelength, 

routability and congestion of the chip as further illustrated in 

Figure 1. To overcome this, the placement tool will need to 

handle extra features such as cell mirroring and cell rotation 

to consider the best possible cell orientation in order to 

minimize the above-mentioned costs and to place the pins in 

the best locations possible. 

 

Fixed cells are also an important factor that needs to be 

looked at during cell placement. There are times when one or 

more components of the design need to be placed in a fixed 

position within the placement area. For macro-cells, these 

fixed cells will create a blockage on the area on which cells 

are to be placed and will need to be given due consideration 

during the placement process. 

 

It is seen that there are important differences between 

standard cell designs and macro-cell designs and these 

differences need to be given appropriate priority during 

placement. It further reaffirms the need for macro-cell 

placement tools that are separate from standard cell 

placement tools. Not doing so will result in poor placements 

and increased design costs in terms of wirelength, congestion 

and routing resources etc. that is detrimental for both 

designers and manufacturers alike. 

  
Figure 1 Example of a standard cell placement (left) and macro-cell 

placement (right) It can be seen that in standard cell designs cells are 

limited to rows and are of equal height. In contrast, macro-cells can be of 

different shapes, sizes and placed anywhere within the placement area. The 

macro-cell layout above shows the impact on wirelength by pin placement 

and cell-size.  
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IV. FORCE DIRECTED GRAPH DRAWING 

Graph drawing algorithms are mainly concerned about 

nodes lacking any size or shape, whereas for cell placement 

cell sizes need to be given due consideration. A recent 

published work introduces methods of suc

modifying graph-drawing algorithms to incorporate 

dimensions to nodes[11]. This work is mainly aimed towards 

general graph drawing algorithms and the criteria they use for 

graph drawing include,  

• Vertices are not to overlap  

• Edges are not to cross vertices 

For this work, the first criterion directly applies, as the 

objective of the placement tool is to produce a 

non-overlapping placement. The second criterion also applies 

as it tends to place directly connected cells 

could be too conservative if routing is allowed to be 

over-the-cell. One of the limitations of this work

the node orientation is fixed and cannot be mirrored or 

rotated.  

 

Force directed graph-drawing algorithms generally tend to 

be analogous to the classic problem of Hookes law for a 

spring system. Most of the current force directed algorithms 

follow the footsteps of Eades’ spring embedded algorithm

[12]. Hooke’s law simply stated that the force exerted by an 

extended spring is proportional to the length of the spring. 

Eades modeled the graph as a system of rings in place of the 

nodes and springs for edges. His formula for the forces 

exerted by the springs differed Hooke’s law by the former 

taking both attraction and repulsion forces in to 

consideration. The aim of all the force directed algorithms is 

to find zero-force locations for all nodes 

equilibrium for that system. 

 

A comparison[13] of several force-directed algorithms has 

been carried out where KK and FR algorithms were the two 

main contenders. It was identified that KK is successful in 

achieving high computation speed, minimizing the 

computation time. Even though FR is quick in giving 

aesthetically pleasing layouts, it is said to suffer from long 

run times when the number of nodes/edges exceeds 60. One 

cannot declare a certain algorithm to be the best where each 

has its pros and cons and how relevant each algorithm is 

depends on the application[13].  

 

KK Algorithm[2] is concerned about general undirected, 

connected graphs. It has the ability to handle weighted graphs 

such that edges with higher weighting are longer than those

with a lower weighting. One advantage in this algorithm is 

Figure 2 Affect of cell size on placement (a) with largest cell placed in the 

boundary (b) largest cell placed in the centre 
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has its pros and cons and how relevant each algorithm is 

is concerned about general undirected, 

connected graphs. It has the ability to handle weighted graphs 

such that edges with higher weighting are longer than those 

with a lower weighting. One advantage in this algorithm is 

that it introduces a “graph theoretic distance”

minimum edge length in order to minimize node overlaps. 

The main objective of the algorithm is to find a balanced 

formulation of the spring forces within the system. 

drawing criteria followed by KK

• reduce number of edge crossings 

• distribute the vertices and edges uniformly 

 

Comparing these criteria with those of the macro

placement tool, it can be seen

‘good placement criteria’. Reducing number of edge 

crossings results in directly connected cells being placed 

close to each other. The second criterion allows the nodes to 

be evenly distributed within the placement area as wel

show any symmetry within the layout. This not only is an 

advantage for graph drawing where the aesthetics are 

improved, but for cell placement, by illustrating the cell 

connections in an uncomplicated manner. It is worth

out that symmetry is a very important heuristic for placement. 

While most of placement tools have difficulty in 

incorporating it into their algorithms, the KK algorithm 

handles it neatly. 

 

The main objectives of the FR algorithm are to achieve a 

visually pleasing graph with increased speed and simplicity. 

Following Eades work, the FR algorithm also makes use of 

both attraction and repulsion forces, but takes it one

further by defining that the attraction forces only

calculated for neighboring nodes whilst repulsion f

calculated for all nodes within the graph.

 

Looking at the criteria followed by FR

graphs, it is seen that two main points are considered. 

• vertices connected by an edge should be drawn near 

each other  

• vertices should not be drawn too close to each other. 

 

The first criteria does apply for the cell placement tool as 

the cells connected to one another will need to be close to 

each other in order to minimize wirelength. This can be 

further enhanced by edge weights to ensure that cells 

connected to edges with higher weights are as close as 

possible. Unfortunately, the current implementation of the 

FR algorithm does not contain support for edge weights. The 

second criterion is set quite vaguely and according to 

literature [3] it depends on the number of nodes and the 

placement area. Literally, this should mean that the nodes do 

not overlap each other, which is directly applicable to the 

objectives of the placement tool.

 

FR algorithm uses a method similar to simulated annealing 

to control the ‘cooling schedule’ of the 

controls the number of sweeps it goes through in optimizing 

the layouts. This can be both advantageous and 

disadvantageous. It is advantageous such that it helps limit 

the displacement prohibiting the algorithm to be trapped in 

local minima. It is disadvantageous such that the number of 

sweeps is kept at a constant so 

check on the quality of placement before ending the 

sequence.   

 

 
Affect of cell size on placement (a) with largest cell placed in the 
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advantage for graph drawing where the aesthetics are 

improved, but for cell placement, by illustrating the cell 

connections in an uncomplicated manner. It is worth pointing 

a very important heuristic for placement. 

While most of placement tools have difficulty in 

incorporating it into their algorithms, the KK algorithm 

The main objectives of the FR algorithm are to achieve a 

creased speed and simplicity. 

Following Eades work, the FR algorithm also makes use of 

both attraction and repulsion forces, but takes it one-step 

further by defining that the attraction forces only to be 

calculated for neighboring nodes whilst repulsion forces are 

calculated for all nodes within the graph. 

Looking at the criteria followed by FR[3] when drawing 

graphs, it is seen that two main points are considered.  

ertices connected by an edge should be drawn near 

ertices should not be drawn too close to each other.  

The first criteria does apply for the cell placement tool as 

the cells connected to one another will need to be close to 

each other in order to minimize wirelength. This can be 

further enhanced by edge weights to ensure that cells 

igher weights are as close as 

possible. Unfortunately, the current implementation of the 

FR algorithm does not contain support for edge weights. The 

set quite vaguely and according to 

it depends on the number of nodes and the 

placement area. Literally, this should mean that the nodes do 

her, which is directly applicable to the 

objectives of the placement tool. 

FR algorithm uses a method similar to simulated annealing 

to control the ‘cooling schedule’ of the algorithm, which 

controls the number of sweeps it goes through in optimizing 

layouts. This can be both advantageous and 

disadvantageous. It is advantageous such that it helps limit 

the displacement prohibiting the algorithm to be trapped in 

local minima. It is disadvantageous such that the number of 

sweeps is kept at a constant so that the algorithm does no 

check on the quality of placement before ending the 
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The main difference between the FR and KK algorithm is 

that the FR algorithm can handle disconnected graphs. Even 

though this is not an absolute requirement compared to the 

objectives of the placement tool, it does give an advantage as 

to the type of designs the algorithm will be able to handle. 

Authors of KK[2] points out that even though KK algorithm 

does not support disconnected graphs, it can be easily 

extended to do so without a significant delay in time as 

follows. 

“Partition the graph to its connected components giving 

each component a region of area proportional to its size, with 

each component laid out independently.” 

FR algorithm puts this theory into practice in its technique 

in handling disconnected graphs. Authors of FR names this 

technique as the “grid variant option” where the placement 

area is divided into a grid and nodes are given locations 

within the grid. Changes are made to the calculation of the 

repulsion forces; for each node, the repulsion forces are 

calculated from the nodes within the current grid as well as 

those in neighboring grids, unlike the basic algorithm which 

calculated repulsion forces for all nodes within the graph.  

 

Another difference between the two algorithms is that KK 

does not specify a clear placement area for the graph whereas 

FR implements support for a customizable placement area. 

Whilst for graph drawing this may not be very important, it 

does carry greater significance in cell placement where the 

cells are expected to be placed within the given placement 

area in order for the placement to be legal. It is believed that 

limitation on placing components within the placement area 

can be imposed upon in later stages when being used in the 

placement tool.  

V. IMPLEMENTATION DETAILS 

Initial work carried out [1] has proved that both KK and 

FR are good candidates as a basis for a macro-cell placement 

tool. The basic algorithms of both KK and FR were while 

sufficient as graph drawing algorithms, lacked the necessary 

functionalities to be used as a module placement algorithm. 

Both algorithms were modified in-order to implement the 

following features. The basic implementation of the two 

algorithms were taken from the peer reviewed Boost [14] 

library. 

A. Non-zero size vertices implementation 

Traditional force directed algorithms tend to treat the cells 

as points that do not posses any size or shape. The edges do 

not connect to any pins but to the nodes that represent the 

cells. This method may be acceptable for standard cell design 

[9] but in Macro cell placement it can cause inaccuracies of 

positions, wirelength, area, congestion etc. due to the cell 

dimensions. Recent literature [11, 15, 16] has been found to 

carry out work regarding the implementation of different size 

nodes for graph drawing.  

 

As was mentioned in [1] the simplest method of 

representing a cell is to consider the node to be circular. In 

order to implement this on to KK and FR algorithms, the 

following method suggested in literature [11] was used. All 

the modules are assumed rectangular shaped and the width 

and height of each cell is used to calculate the radius of the 

circular vertex that will represent the module. This 

calculation is given in Eq. (1) where f(v) is the radius of the 

vertex and r and R are the width and height of the module 

respectively[11]. 
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In order to minimize vertex overlaps, in FR it was possible 

to use the vertex size to check if the vertices were overlapping 

and therefore adjust the force applied to the vertices. 

Overlapping can be easily tested by the condition; if the 

distance between two cells (centre-to-centre) is less than the 

summation of their radii, the two cells can be said to be 

overlapping. Unfortunately, KK does not clearly distinguish 

the attraction and repulsive forces; instead, it calculates an 

overall force acting on each cell. Therefore, it was not 

possible to implement an overlap minimizing method for KK. 

 

B. Fixed node support 

Another feature that was lacking within the graph drawing 

algorithms was support to handle fixed nodes. This is 

especially useful when designers may specify locations for 

some of the cells to be fixed or for the placement of the IO 

(Input Output) pads, which communicate with the external 

world. In force directed algorithms, since there are attraction 

and repulsion forces that affects all cells, it was needed to 

ensure that the forces emitted by the fixed cells were still 

being taken into account whilst the forces felt upon the fixed 

cells do not cause the fixed cell to displace as is illustrated in 

Figure 3.   

 

The algorithm of FR was altered so that the fixed nodes are 

treated equally as movable cells during force calculation. 

During displacement calculations, fixed nodes are ignored 

and for added measure ignored during positional updating of 

the cells as well. This has shown to be a more accurate 

method of force calculation for the algorithm when 

containing fixed cells.  

 

The KK algorithm was modified to filter out the fixed 

nodes during the energy minimization calculations. This was 

accomplished in a manner that, whilst minimizing the energy 

function for the movable cells, the affect made from fixed 

nodes are still felt. Again, this has been proven successful in 

implementation. 

 

 

Figure 3 Affect of forces acting on cells (a) when all cells are movable  

and can be repositioned in order to find a position of equilibrium (b) 

when a fixed cell is present, the attractive/repulsive forces of movable 

cells should not cause a displacement of the fixed cell. 
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C. Input/output format 

Not all placement tools follow a single format for input and 

output. This hinders benchmarking and comparison of 

placement tools. It is with this in mind that it was thought best 

to use the industry standard formats; the Cadence LEF/DEF 

file format. The LEF/DEF format is written in ASCII format 

and can be easily understood. The DEF file contains all the 

information relevant to the design, constraints, layout and 

netlist information whilst the LEF file contains the library 

information of all the cells and modules within the design as 

well as information regarding layers, vias and core area 

information. In order to read in the necessary information for 

the placement tool, a parser was developed. The parser reads 

data in from the two files, extracts the necessary data and 

saves it in to a text file, which can then be read in by the 

placement algorithms. It is hoped that in the future, this will 

be integrated within the placement algorithm itself so that the 

data input will be a one-step process. 

 

Once the algorithms have generated a placement, it will 

output the summary in text format and a plot the placement in 

order to inspect the results achieved. In future, it is hoped to 

output the data into a DEF file such that the final placements 

then can be routed which is another important quality of 

measurement of the placement.  

VI. EXPERIMENTATION AND RESULTS 

With the implementation of different features to the 

algorithms, they were simulated under different conditions to 

identify their strengths and weaknesses. To start, the two 

algorithms were subjected to a selection of graphs, some with 

known golden topologies. Cells of different dimensions were 

used to observe the impact the changes described in this 

chapter. The simulations were run on an Intel Pentium IV PC 

running at 3.2GHz and with 2 GB of RAM.  

 

Table 1 compares the results obtained through this 

exercise. The runtime and HPWL (Half-perimeter 

wirelength) are the cost factors looked at during the 

experimentation to evaluate the performance of the 

algorithms. The results shown for the FR are those obtained 

for the grid option, which allows the use of disconnected 

graphs. Another important change made to FR was to set the 

optimal distance between the cells to be as small as possible. 

In KK the ideal edge length values was defined as zero to 

ensure shortest possible wirelengths. 

 

Both algorithms were successful in achieving visually 

pleasing layouts within the first iteration for all the below 

mentioned designs. Looking at the results in Table 1 it is seen 

that for majority of the graphs, the runtimes and wirelength 

values achieved are similar to one another between the two 

algorithms.  

 

For the more dense graphs, it was seen that KK would take 

longer runtimes than FR, which is especially true for graph7, 

graph9 and graph11. Looking at the runtime and wirelength 

results alone does not allow us to compare the results in full. 

Therefore, to have a better understanding of the quality of the 

layouts it is also needed to compare the placements visually. 

A selection of the placement results have been presented in 

Figure 4  for this purpose.  

 

As was expected [1], the use of circles to represent the cells 

does not take the long rectangles into sufficient consideration 

resulting in overlaps between the rectangles. It is believed 

that this can be overcome by representing the nodes as 

ellipses and not circles, which will have a better relationship 

of the rectangular shape. However, what was not expected 

were overlaps between the circles themselves which is shown 

by the grayed areas in Figure 4. In FR, even though there are 

sufficient repulsive forces to keep the circles apart, due to the 

number of sweeps being a constant figure, some overlaps or 

less-than-ideal cell locations may get bypassed. In KK, no 

obvious repulsion force exists to ensure that the cells are kept 

apart. The minimum edge length value acting on its own in 

the calculation of the energy minimization equations has 

found to be insufficient in eliminating overlaps within 

designs.  

 

One of the objectives of the KK algorithm is to achieve 

uniform edge lengths. With the introduction of cell 

dimensions, it was seen that the edge lengths varied 

according to the forces acting upon the vertices. This is 

clearly seen in Figure 4. For designs with similar size cells in 

Figure 4(c), KK achieves equal edge length values and 

retains the symmetry of the design. For varied cell sizes, it is 

sometimes seen that smaller size cells are engulfed by the 

larger cells due to the increased attraction force. This is 

believed by be the main reason why there are less overlaps in 

the placements achieved by FR than those of KK. It is 

believed the introduction of a separate repulsion force will 

balance the forces in a much more efficient manner.  

 

Overall, both algorithms have achieved good results with 

the implementation of cell sizes. They both have been able to 

retain the underlying topologies of the designs successfully 

which generating placements within a short amount of time. 

In future, larger graphs (increased number of nodes and 

edges) will be experimented upon to identify the limitations 

of the tools. 

Table 1 Comparison of runtime (ms) and wirelength (unit length) results 

for KK and FR 

 #edges # cells Runtime (ms) HPWL 

KK FR KK FR 

G1 5 6 0 15 360 369 

G2 7 5 15 15 390 364 

G3 10 8 15 16 509 522 

G4 18 10 46 15 1281 1163 

G5 18 16 78 31 1072 1011 

Graph1 10 5 0 0 429 446 

Graph2 6 4 15 0 231 235 

Graph3 15 6 15 15 619 624 

Graph4 1 2 15 15 23 32 

Graph5 7 6 15 0 321 366 

Graph6 18 10 16 15 887 819 

Graph7 60 36 343 140 975 751 

Graph8 20 12 46 46 763 787 

Graph9 33 26 296 78 980 999 

Graph10 7 6 31 15 157 147 

Graph11 47 26 219 93 479 459 
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VII. FUTURE WORK AND CONCLUSION 

In this work, a method of using graph-drawing algorithms 

as a building block for a macro cell placement has been 

proposed. Future work will focus on optimizing those added 

features, especially in handling different sized cells by 

exploring the possibility of representing the nodes with 

ellipses rather than circles. This should eliminate any 

remaining overlaps and help generate more accurate 

attraction/repulsion forces within the graph algorithms. Other 

work will include establishing techniques to use pin locations 

to optimize wirelength by means of rotating and/or mirroring 

of cells. The experiments carried out so far have given 

positive results in achieving good layouts even with the 

presence of cell dimensions. 
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Figure 4 Comparison of placements achieved by FR(top) and KK(bottom) algorithms. (a) Graph5 (b) Graph6 (c) Graph7 (d) Graph10. The overlaps 

between the graph nodes have been higlighted. 
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