
 

 
 

  
Abstract— This paper will discuss the use of a new scheme to 

conduct conformance testing of the Controller Area Network 
(CAN) protocol implemented in a soft core, using Virtual I/O 
and integrated logic analyzers. Virtual I/O is particularly 
helpful in generating bit pattern’s on a CAN bus which are 
accurate to a single CAN bit time, as these patterns are 
generated using the same system clock rather than an external 
clock as is the case of a bench pattern generator. Based around 
simple off-the-shelf development boards, general purpose 
software code and the simple analysis tool Chipscope, the 
proposed method allows developers to verify the bit timing 
properties of a CAN soft core against the relevant ISO 
standards. Finally, we describe the use of a test bed in the 
verification of an open-source CAN soft core implementation. 
 

Index Terms—CAN, Conformance Testing, Chipscope VIO, 
Bit time, Soft Core  
 

I. INTRODUCTION 
Conformance testing is an integral part of any protocol 

development, as it tests the behavior and capabilities of an 
implementation against the requirements set by a standard 
[1]. Controller Area Network (CAN) is a widely used 
protocol for distributed systems [2]. Many different CAN 
controllers (e.g. [3], [4]) are widely available in integrated 
circuit form; as such they cannot be modified, although in 
many cases a flexible implementation will be required for a 
given system implementation. In the context of the current 
paper, a CAN implementation was required for an ongoing 
project [5] which could be modified to add new features 
based, primarily on hardware implementation of CAN-based 
shared clock scheduler [6]. Hence, to make the desired 
changes a soft core solution was required and implemented 
on an FPGA and programmed in Verilog HDL [7].  

FPGA’s provides full internal visibility using integrated 
logic analyzers ILA like Signal Tap [8] and Chipscope pro 
[9]. These tools provide small and efficient cores to debug 
not only I/O but also internal signals, and provide real time 
 

 
1Manuscript received March 23, 2009.  This work is part of the PhD studies 
of Mr. Imran Sheikh and is supported by NWFP University of Engineering & 
Technology, Peshawar, Pakistan.  

I. Sheikh is with ESL, Engineering Department, University of Leicester, 
UK, LE1 7RH.  (tel: +44-116-2522578; e-mail: si52@le.ac.uk).  

M. Short is a lecturer in Embedded Systems at the University of Leicester, 
UK. (tel: +44-116-2525052; e-mail: mjs@le.ac.uk). 

K.F. Athaide is a PhD student at ESL. (e-mail: kfa1@le.ac.uk). 
 

in-system debugging features via JTAG. One other major 
feature which is provided by Chipscope is the capability for 
Virtual Input Output (VIO), which is implemented as a 
customizable core and can stimulate a design using pulse 
trains which can be either synchronous or asynchronous to 
the system clock. 

ISO has developed a standard CAN Conformance testing 
Document [10] and for any device to be declared CAN 
conformant, evidence is required that shows the testing 
procedures outlined in the standard have been performed and 
passed without problem. The ISO document not only 
specifies different types of tests that must be performed for 
conformance testing, but also specifies a required Test Plan 
(TP) architecture [1]. The TP architecture indicates that the 
tester should be divided into two parts. The first component is 
the Lower Tester (LT) which provides the test pattern 
generation and analysis. The second is termed the Upper 
Tester (UT), which is required to contain the software to 
control the CAN Implementation under Test (IUT). The UT 
is normally a host processor or programmable device of some 
kind, and also provides coordination to conduct the tests 
between the LT and the IUT [11]. The UT receives stimulus 
(with details of the test being performed) from the LT, and 
generates messages passed on to the IUT. The IUT then 
processes these messages, and both the UT and LT 
components monitor its behavior for consistency with the 
CAN protocol. If the result is satisfactory, the test is 
considered passed and testing proceeds to the next 
conformance test. It should be noted that the testing 
procedures that are required to be implemented include 
coverage of common error conditions, randomized tests and 
also bit timing tests. Most tests are critical, and the latter 
category – bit timing – contains a number of tests that can be 
difficult to localize, and a suitable means is required to 
capture and display multiple logic signals over an appropriate 
timescale. This typically requires the use of dedicated 
hardware and Logic Analyzers [12]. 

Traditionally, CAN controllers and transceivers have 
been implemented at the silicon level, either by dedicated 
IC’s or as on-chip peripherals of embedded devices. Also, the 
implementation of CAN conformance testers has 
traditionally been done using dedicated hardware coupled 
with specially written analysis software; this is a practical 
approach to such testing prior to high-volume IC 
manufacture. However, recent years have seen an increased 
interest in the employment of CAN-enabled devices 
implemented by programmable hardware devices such as 
FPGA’s. As is the case with the project outlines in [5], such 
soft core implementations are often needed in small-volume 

Using Virtual I/O for CAN Bit Timing 
Conformance Tests1 

I. Sheikh, M. Short, and K.F. Athaide.  
  
 
 

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



 

 
 

(or even one-off) batches. In these circumstances, cost and 
availability reasons often dictate that it is not practical for 
developers to use traditional CAN-conformance testing 
equipment.  

To help alleviate this problem, a previous paper proposed 
a low-cost and easily implemented method [33]. The current 
paper will extend this previous approach by proposing a 
VIO-based scheme to include test cases related to CAN 
bit-timing, arguably the most difficult area of 
CAN-conformance testing to perform. This technique allows 
a CAN soft core implementation to be fully tested for 
conformance to the relevant standard without the need for 
expensive or proprietary hardware interfaces and logic 
analyzers. 

The remainder of the paper is organized as follows: In the 
next Section, different implementations of the CAN 
conformance testing before and after the ISO testing standard 
evolved will be described. Section 3 describes the formation 
of the current test bed for CAN conformance testing. Section 
4 presents the case studies involving two of the tests being 
carried out by the proposed approach to CAN conformance. 
Section 5 will present the analytical comparison of the 
proposed approach to other techniques used for conformance 
testing. Section 6 presents initial conclusions. 

II. PREVIOUS WORK IN THIS AREA 
One of the earliest CAN prototype controllers was named 

DBCAN [14]. This implementation was tested using a logic 
analyzer and a pattern generator circuit. As there was no 
standard for conformance testing at the time the prototype 
was developed, a commercial basic (as opposed to full) CAN 
controller was used as benchmark for verification. A major 
disadvantage of this scheme was the use of external interface 
modules to visualize the state of different DBCAN registers, 
and the testing procedure was somewhat limited in the 
number of signal channels that could be simultaneously 
analyzed. Since this is a needed requirement in the case of 
ISO standard conformance testing – the ability to visualize 
the state of large numbers of CAN registers simultaneously is 
a prerequisite – such a setup is limited in this respect.    

A slightly different verification technique was reported 
by [15]. Their technique employed custom design boards 
with 8051 microcontrollers and SJA1000 CAN controllers, 
but this method involved the design of specialized interface 
hardware and boards to assist with the testing plan. 
Specialized verification architecture for testing automotive 
protocols (including CAN) at both the module and chip level 
was proposed by [16].  Again, this work requires a specially 
designed CAN verification component as part of the silicon, 
while the selection and implementation of actual test 
sequences, along with the selection of a suitable means to 
monitoring bus signals, is left open for the tester. 

With respect to soft core CAN implementations, the CAN 
e-Verification (CANeVC) test bench has previously been 
described [17]. This commercial test facility requires a CAN 
specification core to be embedded in the netlist; this core then 
runs specific tests to verify the behavior of the CAN soft 
core. Again, this technique involves a time consuming 
development of a test bench using an expensive 
commercially available verification IP ; additionally, 
compatibility issues often arise when using CAN 
implementations other than the proprietary implementation 

[18], and only a limited number of programmable logic 
devices are supported. Finally, several experimental 
implementations (such as that reported by [19]) to measure 
single parameters - such as CAN bit errors - rather than 
perform complete conformance testing have been described 
in the literature. Such implementations have typically used 
complex and non-trivial means, requiring customized 
hardware and software. In summary then, it can be observed 
that - to date – specialized hardware and / or software has 
been required to assist with CAN testing plans. In the 
following Section, a novel testing approach that relies only 
upon the use of low-cost, standard off-the-shelf hardware and 
software is described. 

III. TEST BED 

A. Architecture 
Real-time testing of a soft core CAN implementation is an 
extremely complicated procedure; the hardware that was 
employed for this purpose (as described in [5][33][20]) is 
shown in Fig 1. The hardware and software components are 
briefly described below, along with the use of VIO to 
generate the required test patterns. 
 

 
 

Fig 1: Test Bench 
 
1) Hardware 
 
• Two FPGA (XC3S500E programmed with CAN soft core) 

+ ARM7 (LPC2138 as host controller) boards these boards 
are named as SC1 and SC2. The purpose of using two soft 

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



 

 
 

cores is to simultaneous verify their behavior as both CAN 
Transmitters/Receivers, additionally to generate special 
patterns on the CAN bus using VIO plus additional 
modules embedded within the soft core. 

• Two ARM7 microcontroller boards with integrated CAN 
controller and transceivers. These boards are used as 
receivers of CAN messages, for further verification of the 
messages sent by the CAN soft cores. These boards are also 
used to induce error’s on the CAN bus [13]. 

 
2)  Software 

 
• Xilinx ISE [21] for soft core programming, synthesis and 

routing / programming the FPGA. 
• Chipscope Pro is used as the primary analysis tool. The 

VIO core is used to generate and control different bit 
patterns.  

• The Keil uVision 3 IDE [22] with GNUARM tools. This 
free C compiler and toolchain was chosen for programming 
and debugging the Microcontroller boards. 
 

B. Use of Virtual I/O for Test pattern generation 
 
The Virtual Input/output (VIO) core can be used to analyze 

and drive internal FPGA signals in real-time [9]. The VIO 
cores can generate both asynchronous and synchronous 
signals, to be used as both input and output to / from the 
system. In the testing method proposed in this paper, 
synchronous outputs have been used as either a sole source of 
test pattern generator, or used in conjunction with soft 
modules added with the CAN functionality in the soft core, as 
described in [13]. VIO synchronous output has the ability to 
output a static 1, a static 0, or a pulse train of successive 

values [13]. A pulse train is a 16-clock cycle sequence of 1's 
and 0's that is driven out of the core on successive clock 
cycles. The outputs can either be seen directly as the 
synchronous inputs, or a more comprehensive method is to 
use Chipscope ILA. Chipscope can analyze up to 16 internal 
signal ports in a single core, with each port having up to 256 
signals with a capture depth of 16K samples. Different 
logical trigger conditions may also be setup to analyze 
signals for a certain value - as for example setting up a trigger 
to analyze when a CAN error frame is generated, or using 
ILA to capture multiple instances of stuff bits inside a capture 
window [9].  

When using pattern generators, test vectors are first stored 
and are subsequently sent on the CAN bus when required; 
thus, the IUT can be put in different states as and when 
required, allowing its behavior and responses to be analyzed. 
In the proposed test bed, FPGA-based pattern generation has 
been employed, which is economical (as no extra costs are 
added to the test setup) but it is also flexible (it is added as a 
Verilog module to the main CAN core along with a VIO 
Core). This setup allows accurate production of the special 
conditions required to test conformance of CAN bit-timing; 
for example in test case 1 (to be reported in the next Section), 
it is required to delay a sample point by only two time quanta 
(on a recessive to dominant edge) on an IUT working as a 
transmitter [1]. Such precise control of test patterns could not 
be achieved with the previous setup. 

This test pattern was easily achieved by modifying the VIO 
Verilog module, without the need to modify the actual 
functionality of the CAN soft core (non-invasive testing). 
The Chipscope VIO was used as an (external synchronous) 5 
bit pulse input “delay_add”, to generate an ‘n’ time quanta 
delay to the sample point. An example Verilog code is given 
below to help illustrate this: 

 
always @ (posedge Clock or posedge Reset) 
begin 
  if (Reset) 
    Delay <= 4'h0; 
  else if (Resynchronization & Phase_Segment1 & (~Transmitting | Transmitting & (Next_Bit_to_Tx | (CAN_Tx & 

(~CAN_Rx)))))   
    Delay <=#Tp (Time_Quanta_Count > {3'h0, SJW})? ({2'h0, SJW} + 1'b1) : (Time_Quant_Count + 1'b1); 
 
/* Extra Code Added to set a delay using VIO*/ 
else if (delay_add[0] & Transmitting & Next_Bit_to_Tx & (~CAN_Tx)) 
Delay <= delay_add; 
 
  else if (go_sync | go_seg1) 
    delay <=#Tp 4'h0; 
end  

  

IV. TEST CASES 
The proposed test facility was employed to test the CAN 
conformance of a custom created CAN soft core. As the 
number of total number of test cases to consider in any single 
CAN conformance test plan is numerous, it is beyond the 
scope of the current paper to present comprehensive test 
results; comprehensive test results are available in the form of 
technical report [20]. However, in this Section we will 
present two test cases that help highlight the main features of 
the proposed facility, specifically with respect to the bit 

timing and error management classes of tests [1]. Both tests 
were carried out successfully, and are described in the 
following two Sections. 
 

A. Non synchronization on Dominant bit transmission 
The purpose of this test is to verify that an IUT transmitting a 
dominant bit doesn’t perform any resynchronization as a 
result of recessive to dominant edge with a positive phase 
error. The requirement of the test is that the IUT working as a 
transmitter should be in a default state and the LT should 
delay each recessive to dominant edge by 2 time quanta [1].

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



 

 
 

 
Fig 2: Chipscope Snapshot for Test Case A. 

 
This test requires two instances of the CAN Soft Core, 

each behaving as a transmitter and receiver. Also the ARM7 
node (OL in Fig 1) is employed to verify the correctness of 
the transmission. The VIO core was setup so that when the 
appropriate user stimulus is provided, a 2 time quanta 
extension is added to the phase segment 1, effectively 
delaying the sample point. In normal circumstances the VIO 
core is sourced using the system clock (which in this case is 
48 MHz). Therefore the DCM module [23] plus an additional 
gated clock was employed to generate a clock signal equal to 
the amount of a single CAN bit time (250 Kbps in this case), 
so any synchronous signal generated by VIO will last for a 
full single CAN bit time. 

This test was executed successfully with the desired 
result; the observation on the transmitter node from the 
Chipscope - shown in Fig 2 – is as follows: 

 
1) The default values of Phase Segment1 are 10 time quanta 

and Phase Segment2 is 5 time quanta, when the ‘Delay’ 
Bus value is Zero.  
 

2) The ‘delay_add’ signal on the VIO console is the 
synchronous input and when a user applies the input 
pulse it generates a delay as shown by the value of 
‘Delay’ bus value at Marker ‘T’ (As Delay=2 was set as 
a Trigger condition).  
 

3) The value of marker ‘O’ (for Time_Quanta_Count) can 
be observed to be 11 (Count starts from 0), which is 2 
more than the normal phase segment1 value.  
 

4) Adding this 2 time quanta delay before the dominant to 
recessive edge results in the edge having a positive phase 
error of 2 time quanta. 
 

5) The Sampled_bit signal represents the CAN_Rx signal 
at the sample point. As can be seen, the Sampled_Bit 
value for recessive to dominant edge happened on the 
‘Sample point’ after Marker ‘O’.  

 
6) The ‘Resynchronization’ signal represents any 

resynchronization events occurring in case of a positive 
(or negative) phase error on an edge. As can be seen, this 
signal remains low thus demonstrating that no 
resynchronization happened (the desired result). 

 

B. TEC non-increment on 13 bit long Overload Flag 
The purpose of this test is to verify that an IUT acting as a 
transmitter doesn’t change the value of it’s transmit error 
counter (TEC) when receiving a 13 bit long overload flag. 
The test is setup using two instances of CAN soft core, one 
acting as the IUT while the other acts as the LT. The LT 
requests an overload frame, and generates 13 dominant bits 
of overload flag. The overload request is generated using a 
VIO synchronous input and then a 13 bit dominant value on 
the CAN_Tx signal. Snapshots for this test case are given at 
both LT (Fig 3) and the IUT node (Fig 4). The system clock 
for this test case is 12 MHz. A VIO console is shown in Fig 3, 
with a synchronous input overload_request; this signal 
requests the overload frame (which can only be requested by 
the receiver) between two data frames sent by a transmitter. 
 
1) The signal ‘Overload_Request’ is also shown on the ILA 

screenshot, after which an overload frame is sent after 
the data frame is successfully received (as can be seen as 
the Overload_Frame signal is set high at this point). 
 

2) The Overload Frame lasts for 13 bit times, as can be seen 
by the number of Sample_points between marker ‘X’ 
(start of overload flag) and marker ‘O’ (end of overload 
frame).  

 
Considering now the IUT snapshot: 
 
1) Before marker ‘O’ it can be observed that a normal data 

frame is being transmitted, illustrated by the different 
transmission states denoted by ‘Transmit_State_xxxx’.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



 

 
 

 
 

Fig 3: Chipscope Snapshot for LT of Test Case B. 
 
 

 
Fig 2: Chipscope Snapshot for IUT of Test Case B.

 
2) At marker ‘O’ (end of ‘Transmit_State_End_of_Frame’) 

an ‘Overload_Frame’ signal can be observed; the 
CAN_Rx therefore remains low between marker ’T’ 
(start of Overload_Frame) to marker ‘O’ (end of 
dominant overload flag). 
 

3) The time difference between markers ‘O’ and ‘X’ is 
‘672’; since each CAN bit time is given as 
12Mhz/250Kbps= 48 clock cycles, this gives a 
corresponding time of 14 CAN bit times. 
 

4) The value of the Transmit Error Counter was ‘6’ before 
the completion of Data frame and subsequently changes 
to ‘5’ after a successful completion of a data frame, as 
illustrated by the Transmit_State_End_Of_Frame signal. 
 

5) After receiving 13 dominant bits of overload frame, the 
Error_Frame signal remains low and the Transmit Error 
Counter doesn’t change; this is the desired result as the 
IUT has not considered a 13 bit dominant overload flag 
as an error.  

V. COMPARATIVE STUDY 
This Section presents a cost and flexibility comparison 
between conventional CAN conformance testing hardware 
and software with the approached that has been discussed in 
this paper. The first observation is that the current facility 
does not require expensive CAN PC interface cards (e.g. 
[24], [25]) which are normally required for CAN 
conformance testing [26]. These cards are used to capture 
CAN bus data to analyze the internal status of different 
registers and to log the events; these cards not only required 
the hardware but also specialized software [27]  along with 
interface cables which can also add to the cost and 
complexity of the setup. The proposed implementation 
allows the internal state of the CAN IUT to be directly 
analyzed using Chipscope, and also by using the Keil 
uVision 3 IDE. In addition, there are several key advantages 
of the proposed test bed using Chipscope over hardware logic 
analyzer systems and pattern generators: 
 
1) Standard bench analyzers do not generally show enough 

signals for CAN conformance as illustrated in section 
IV. Logic analyzer systems are available which can 
show the required number of signals simultaneously, 
(e.g. [28], [29]) cost around 10 times more than the 

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



 

 
 

Integrated Logic analyzer. Although standard bench 
analyzers can typically show Mega samples, Chipscope 
is limited to a Sample width of 16K; however as 
mentioned this problem can be overcome by using a 
digital clock manager [23] and can hence capture enough 
samples to encompass 3 to 4 complete CAN messages in 
a single trigger. 
 

2) Additional probes with wide numbers of I/O pins are 
required to interface with the logic analyzers; Chipscope 
can carry a large number of these signals using a single 
JTAG cable. 
 

3) In addition to accessing all I/O signals, Chipscope also 
allows internal wires and signals to be traced [31]. This 
is particularly useful for CAN conformance testing, as 
specific triggering conditions for precise bit timing 
conditions can be set up, as we have demonstrated with 
the test cases in this paper. 
 

4) Virtual I/O is a real time tool especially suited to pattern 
generation, and doesn’t require any physical interfaces 
or ports. Hence, it not only saves resources but doesn’t 
have the physical impairments of an external signal. The 
ability to insert VIO cores into a design allows users to 
interactively verify the design quickly and effectively, 
greatly reducing the time spent in verification. 

 

VI. CONCLUSION 
This paper has presented an approach to utilize virtual I/O’s 
and Integrated Logic Analyzers to perform CAN 
conformance testing of soft cores, in accordance with ISO 
standards. It has been shown that the facility is capable of 
performing the full range of testing required, with VIO being 
especially suited to the complicated tests required for CAN 
bit timing conformance. In conclusion, a facility such as this 
may be assembled and used for a fraction of the cost of a 
‘regular’ test facility for CAN conformance. Further details 
of how each individual test may be implemented when using 
such a facility such as this has been described in [20].  

As a final note, the authors observe that a facility such as 
that described in this paper is not restricted to the CAN 
protocol, and – with suitable modifications – can be used to 
test conformance of many alternate network protocols, for 
example TTCAN [32]. 

REFERENCES 
[1] ISO/IEC. “Information Technology- OSI - Conformance testing 

Methodology and frame work- Part 1: General concepts,”ISO/IEC IS 
9646-1, 1994. 

[2] ISO. International Standard 11898 – Road  vehicles - Interchange of 
digital information - Controller Area Network (CAN) for high-speed 
Communication, November 1993. 

[3] Philips Semiconductor, SJA1000 Stand-alone CAN controller, Data 
Sheet, January 2000. 

[4] Microchip's MCP2515 stand-alone CAN Controller with  SPI Interface 
[5]  I. Sheikh, M. Short, and M. Pont, 2008. “Hardware Implementation of 

a Shared Clock Protocol for CAN: A Pilot Study, “In proceedings of 
4th UK Embedded Forum, Southampton, September, 2008. 

[6] D. Ayavoo, M. J. Pont, M.  Short, and S. Parker, “Two novel 
shared-clock scheduling algorithms for use with CAN-based 
distributed systems", Microprocessors and Microsystems, 31(5): 
326-334, 2007. 

[7] IEEE standard 1364, “Standard for Verilog Hardware Description 
Language,” 2001  

[8] Altera Inc., “Design Debugging Using the Signal Tap II Embedded 
Logic Analyzer,” December, 2004. 

[9] Xilinx Inc: 2005, Chipscope Pro – Software and Cores User guide. 1.  
[10] Road Vehicles- Controller Area Network (CAN)- Conformance Test 

Plan,  ISO 16845:2000. 
[11] E. Carmes, C. Junier,and F.Aussedat, “CAN Conformance: 

Methodology and Tools,” Keynote speech, CAN in Automation 
Proceedings of 3rd  iCC 1996, Paris, October 1996 

[12] W. Lawrenz, P. Kinowski, and G. Kircher, “CAN Conformance 
Testing-The Developing ISO Standard and Necessary Extensions,” In 
Proceedings of International Truck and Bus Meeting and Exposition 
Indianapolis, Indiana, November 16-18, 1998. 

[13] H. Tan, R. F. DeMara, A. J. Thakkar, A. Ejnioui, and J. D. Sattler. 
“Complexity and Performance Evaluation of Two Partial 
Reconfiguration Interfaces on FPGAs: a Case Study,” In Proceedings 
of the ERSA, 2006. 

[14] A. Kirschbaum, F.M. Renner, A.  Wilmes, M. Glesner,  
“Rapid-prototyping of a CAN-Bus controller: a case study,” In 
proceedings of Rapid System Prototyping, Seventh IEEE International 
Workshop on , vol., no., pp.146-151, 19-21 Jun 1996. 

[15] K. Nimsub, K. Dawi, C. Kyuhyung, K. Jinsang, and C. Wonkyung, 
“Design and Verification of a CAN Controller for Custom ASIC,” 
CAN in Automation Proceedings of 10th iCC 2005.    

[16] G. Zarri, F. Colucci, F. Dupuis, R. Mariani, M. Pasquariello, G. Risaliti,  
and C. Tibaldi, “On the verification of automotive protocols,” In 
Proceedings of Design, Automation and Test in Europe, 2006.  vol.2, 
no., March 2006, pp.6-10.  

[17] CAN 2.0 eVC, 2005. Yogitech SPA 
[18] A. Di Blasi, F.Colucci, and R. Mariani,”Y-CAN Platform: A Re-usable 

Platform for Design, Verification and Validation of CAN-Based 
Systems On a Chip,”  ETS- 2003 Symposium, May2003 

[19] J. Ferreira, A. Oliveira, and J. Fonesca, “An Experiment to Assess Bit 
Error Rate in CAN,” In Proceedings of 3rd International Workshop of 
Real-time Networks (RTN 2004), Catania, Italy. 

[20] I. Sheikh, and M. Short, “CAN Conformance Testing-A New 
approach,” tech-report ESL-09-01, ESL, Engineering Department, 
University of Leicester, February, 2009. 

[21]   ISE Foundation, Xilinx, Inc, 2008. http://www.xilinx.com/ise 
[22] uVision IDE Tool, Keil, 2008. http://www.keil.com/uvision. 
[23] XAPP462, Application Note, “Using Digital Clock Managers (DCMs) 

in Spartan-3 FPGAs, “Xilinx Inc, 2003. 
[24] . NI USB-8473, “1 Port, High Speed CAN, USB Interface,” National 

Instruments, 2008. 
[25] CAN/CANopen/DeviceNet Interface boards. Softing AG, 2007.  

http://www.softing.com/home/en/pdf/ia/product-info/can-bus/D_IA_4
1E_0711_CAN_Interface_Z.pdf. 

[26] W. Lawrenz, P. Kinowski, and G. Kircher,  ”CAN Conformance 
Testing - State of the Art and Test Experience,” In Proceedings of 5th 
International CAN Conference iCC’98, San Jose, California, 
November 1998. 

[27] Lab VIEW, National Instruments, 2009.  
http://www.ni.com/labview86/.  

[28] TLA 5000B Logic Analyzers, Tektronics, Inc, 2009.  
http://www.tek.com/products/logic_analyzers/tla5000/ 

[29] 16900 Series Logic Analysis System Mainframes. Agilent 
Technologies,2008.  
http://cp.literature.agilent.com/litweb/pdf/59890421EN.pdf. 

[30] Deep Storage with Xilinx Chipscope Pro and Agilent Technologies 
FPGA Trace Port Analyzer., Agilent Technologies, 2003. 
http://cp.literature.agilent.com/litweb/pdf/5988-7352EN.pdf. 

[31] T. Lee, Y. Fan, S. Yen, C. Tsai, and R. Hsiao, “An Integrated 
Functional Verification Tool for FPGA Systems,” Second 
International Conference on Innovative Computing, Information and 
Control, ICICIC '07,  pp.203-203 5-7 Sept. 2007. 

[32] T. F.hrer, B Müller, W Dieterle, F Hartwich,”Time-triggered 
Communication on CAN (Time-triggered CAN TTCAN)” Proceedings 
of iCC 2000, Amsterdam, The Netherlands, 2000. 

[33] I. Sheikh, M. Short, “A Low Cost and Flexible Approach to CAN 
Conformance Testing,” Accepted for ICINCO 2009, 6th International 
Conference on Informatics in Control, Automation and Robotics, 
Milan, Italy, 2-5th July, 2009. 

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


