
TransCrypt: an Enterprise Encrypting File
System over NFS

Abhay Khoje, Salih K A and Rajat Moona

Abstract— Many organizations have great deal of confidential
information which is stored on computers. Such information
is desired to be kept securely yet giving a convenience of
accessibility from any part of the world. For data security,
one can use an encrypting file system such as eCryptfs [1],
dmCrypt [2], File Vault [3]. However these encrypting file systems
do not address the problem of accessing files over network
from public computers. In this case the public host, the actual
FileServer host and the network between them are vulnerable
to many attacks. This paper discusses the major problems and
proposes a solution for the same using TransCrypt [4] encrypting
file system. It also describes how the proposed solution can be
implemented on a Linux-based environment.

Index Terms— FileServer (FS), WorkStation (WS), Encrypted
File System (EFS), TransCrypt, SmartCard (SC), Network File
System (NFS).

I. I NTRODUCTION

Many organizations and institutions use centralized storage
devices. As a consequence of this, securing confidential data
against thefts which eventually impose risks of losing impor-
tant personal and organizational data, is of utmost importance.
Such attacks include the attacker getting access to files on
shared storage, modifying the contents of those files etc.
Using strong Cryptographic techniques these attacks can be
avoided by keeping confidential data in an encrypted manner.
Therefore, there is a need for a storage solution which uses
strong cryptographic methods to protect data.

Several solutions have been devised to address this prob-
lem. This include File Vault [3], eCryptfs [1], dm-crypt [2],
Microsoft EFS [5] etc. These encrypting file systems provide
security by encrypting and decrypting user data thereby ad-
dressing the problem of data security in many different ways,
such as per-file encryption, flexible key sharing and inclusion
of superuser in the trust model. Another encrypting file system
TransCrypt [4]was designed to provide a very strong solution
to the problem of securing data in a user transparent manner
by our group.

TransCrypt is an enterprise-class, kernel-space encrypting
file system for the Linux operating system, which incorporates
an advanced key management scheme to provide a high grade
of security, while remaining transparent and easily usable. It

Manuscript submitted on March 24, 2009. This work was supported by
Prabhu Goel Research Centre for Computer and Internet Security, Indian
Institute of Technology Kanpur.
Abhay Khoje is a Master’s student in the Department of Computer Science
and Engineering, IIT Kanpur, India. (email: akhoje@cse.iitk.ac.in).
Salih K A is a Master’s student in the Department of Computer Science and
Engineering, IIT Kanpur, India. (email: kasali@cse.iitk.ac.in).
Rajat Moona is a Professor in the Department of Computer Science and
Engineering, IIT Kanpur, India. (email: moona@cse.iitk.ac.in).

provides per-user access control, per-file encryption and per-
volume managerical control. However it is not designed to
work over network and hence does not address the security
issues when the data is accessed over network from public
computers.

Fig. 1. Model of file access in Public Networks

In this paper, we discuss the problems that arise when secure
data is accessed from public computers over network and
propose a solution for the same usingTransCryptencrypting
file system. We assume the model shown in Fig 1 to develop
our solution. In this scenario, WS, FS and the network
channel between them are vulnerable to many attacks like user
masquerading attack, replay attack, man-in-the-middle attack
and client spoofing. We make use of known cryptographic
methods like mutual authentication, process credentials and
session establishment to counter various attacks.

II. PREVIOUS WORK

TransCrypt [4] is a secure, usable, transparent, efficient
enterprise-class encrypting file system for Linux. It has
stronger trust model and hence stronger security compared to
other existing encrypting file systems. In this system only the
kernel remains under the trust domain of the user. TransCrypt
uses per-file cryptographic keys for flexible file sharing. It
includes a set of simple userspace daemons and support
utilities for administration. It reuses pre-established enterprise
security frameworks such as Public Key Infrastructure for user

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



access control and provides support for data recovery, backups
etc.

In the initial version of TransCrypt [4], the implementation
was tightly coupled with the ext3 file system. TransCrypt mod-
ified on-disk structures to store additional meta-data required
for its functionality. These modifications also included changes
to the userspace e2fsprogs package which contains libraries
and tools to work with ext3 volumes. A tight integration with
ext3 file system made TransCrypt incompatible with other
advanced file systems. The newer version of transcrypt was
re-architectured [6] to employ a layered architecture, with its
layers being file system independent. It used the extended
attributes support provided by the file systems for metadata
storage. With this mechanism, a great deal of flexibility and
code maintainability is achieved.

In addition, the earlier implementation of TransCrypt [4]
also modified the file I/O functionality of the kernel. Hence it
had several performance and maintenance related limitations.
Additionally, TransCrypt implementation used page cache for
its operations. The direct I/O operations where page cache
is bypassed, could not be supported by TransCrypt. For
perfomance reasons, direct I/O operations are extensivelyused
by applications such as database management systems etc. The
new version of TransCrypt [7] uses a layer of cryptography
to achieve modularity and direct I/O support [8]. This support
is based on the device-mapper infrastructure [2] of the Linux
kernel.

III. I SSUES

The default authentication mechanism of NFS [9] isUID
based, when user accesses files over network. On the other
hand, TransCrypt authenticates the user by sending a chal-
lenge, the response to which is computed by the user’s private
key store (PKS). The TransCrypt authentication mechanism is
much more stronger than the UID based authentication as it
usesasymmetric key cryptography. However TransCrypt is not
designed to work over the network. Current implementation of
TransCrypt looks for user’s PKS only on the FS and not on
WS where the user has logged in and hence sends the user
authentication messages to FS instead of WS. The TransCrypt
design is also vulnerable to many other attacks while accessing
files over network from a workstation (WS). This section
discusses the major attacks in detail.

A. Masquerading attack

A masquerading attack takes place when an entity poses
itself as another entity. This is the attack in which a privileged
user can acquire the identity of another user (e.g. using ‘su-’)
and can access the files of a genuine TransCrypt user. The NFS
suffers from this problem due to its UID based authentication.

This attack is illustrated in Fig 2. Let us assume that user
usr1 is logged in on machineWS1 with its smart card on
machineWS1. At the same time userusr2can get maliciously
access to files ofuser usr1if it has superuser credentials on
a machineWS2. For this,usr2 logs in to machineWS2and
acquires the identity ofusr1 (using ‘su - usr1’). In order to
get access to files of usr1, usr2 would send an access request

to FS host as usr1. FS host uses the TransCrypt access control
mechanism to get access to the operations with private key of
usr1 (earlier registered at WS1) and thus provides access to
usr2.

Fig. 2. Masquerading attack over Network

B. Man-in-the-middle attack

In this attack, an attacker actively monitors the traffic,
captures and controls the communication transparently be-
tween two entities. For example, an attacker can re-route a
data exchange. When computers are communicating at low
levels of the network layer, the computers might not be able
to determine with whom they are exchanging data. Attacker
makes independent connections with two entities and relays
messages between them. The attacker makes them to believe
that they are talking directly to each other over a private
connection when in fact the entire conversation is seen and
controlled by the attacker.

Fig. 3. Man In the Middle attack

Consider Fig 3, where userusr1 on machineWS1wants to
access its files fromFS over the network. Meanwhile, user
usr2 on machineWS2 may eavesdrop on the conversation.
To get started,usr1 sends the file identifier and his user ID
to FS over the network. The userusr2 is able to intercept
it, thereby initiating a man-in-the-middle attack.usr2 sends
a forged message toFS claiming to originate fromusr1 at
WS2. FS, believing this message to originate fromusr1 at
WS2, sends the response to WS2. Nowusr2depending on his
desire, can send altered data toWS1. Whenusr1 receives the
message, it believes the response to come from the genuine

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



FS. In this case a malicious user got access to a genuine user’s
file and is even able to alter his data.

C. Replay Attack

Replay attack involves the re-use of captured data at a later
time than originally intended, in order to repeat some action of
benefit to the attacker. In our scenario, the attacker can capture
the packets containing file handle information (of a genuine
user) and can replay it later to get access to those files.

IV. OUR APPROACH

Current implementation of TransCrypt looks for user’s PKS
only on the FS and not on WS where user is logged in. This
can be solved by registering user’s PKS with the FS kernel.
FS kernel will store this location and during subsequent file
operations, authentication messages will be sent to the user’s
registered PKS location.

This section describes an approach to solve the attacks when
users access files over network from a workstation using NFS.

A. User masquerading attack

NFS is prone to user masquerading attack. Hence processes
of the attacker session can have the UID same as that of the
genuine user (usr). UID based authentication is not sufficient
to protect TransCrypt volume from this attack. FS kernel must
have mechanisms to differentiate between the genuine session
and a masqueraded session in order to mitigate this attack. To
differentiate between these two sessions, we need to establish
some unique credentials between the user login process and the
FS kernel. During any file access, these credentials will also
be sent to the FS. FS kernel will verify these credentials and
give access to only those operations coming from a genuine
user. Since the masqueraded sessions won’t have the correct
credentials, it won’t get access to the files.

B. Man-in-the-middle attack

This attack is solved by establishing a session key between
the WS and the FS. All further communication between the
hosts will go encrypted with this symmetric key along with
message integrity code. The attacker cannot have this session
key and hence cannot interpret the messages or modify them
without being noticed.

C. Replay Attack

This attack is solved by sending the file operation responses
to the genuine user, encrypted with a freshly generated session
key. Only the genuine user will have the correct credential and
the session key. These keys (session key and credential) are
established at log in time to maintain the freshness so that
replay attacks are avoided.

V. PROTOCOLS

This section describes theTrust Modelwhich we assumed
in developing the protocol,the Negotiation protocolwhich
establishes the common cryptographic parameters (between
FS and WS) andthe secure protocolwhich enables transcrypt
work over network. Secure Protocol registers the user PKS,
perfoms mutual authentication and establishes session key
between FS and WS kernel.

A. Trust Model

There are two main entities in our model, namely Work
Station and FileServer. Trust model assumed for these entities
are described below.

1) WorkStation

• Super user on WS is partially trusted not to substi-
tute the kernel image with a malicious version over
a system reboot.

• WS login program is trusted to assign randomly
generated credentials provided by the FS to correct
login session only and not to any malicious user’s
login session.

• WS kernel is trusted, not to assign credentials to
processes created by malicious user and to send the
correct credentials when user is accessing transcrypt
volumes.

2) FileServer

• FS kernel is trusted not to leak file encryption keys
and the file system keys used in TransCrypt.

• Super user on FS is partially trusted not to substitute
the kernel image with a malicious version over a
system reboot.

B. Negotiation Protocol

Our solution is based on strong cryptographic methods to
support mutual authentication and establishment of session
keys between FS and user’s PKS. It makes TransCrypt robust
enough to work over network. For this protocol to work,
the PKS and FS should agree upon the PKI algorithms and
the lengths of cryptographic challenges prior to the start of
communication.
PKS can be any secure device such as SmartCard, Mobile
Phone, USB tokens etc., which supports public key infras-
tructure (PKI). We assume that SmartCard is the PKS in our
environment, since it is one of the most secure tool to keep
secret keys. Fig 4 explains the negotiation protocol in detail.

When a SmartCard (SC) connects to the reader, the WS
sends aHELO message with a list of supported parameters
such as challenge lengths and set of algorithm identifiers
for various cryptographic algorithms to the FS. Algorithm
identifier consists of algorithm name and other parameters like
key length, cipher specification etc. When FS gets theHELO
message, it selects the most suitable algorithm and parameters
from among those that it received from the client and sends a
WELCOMEmessage (which contains the chosen parameters)
to the SC.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



Fig. 4. Negotiation Protocol

C. Secure Protocol

The secure protocol enables transcrypt to work over NFS.
It consists of mainly two steps.

1) PKS Registration:Location of the user’s PKS is con-
veyed to Transcrypt for sending the authentication messages
when user accesses the transcrypt volumes. This is done by
registering user’s PKS location to the FS kernel. FS kernel
stores this location (known as SCURI for Smart Card Uniform
Resource Identifier) and sends authentication messages forfile
access to the corresponding user’s PKS.
The FS host needs the identification of the user logged on
the WS before giving access to the files. On NFS, this
identification is provided by a common UID. However this
is not possible in our case since the WS host is not under
the same administrative control. For the purpose of user’s
identification we use the certificate of the user that is provided
by the user’s SC. The certificate is first verified and the user’s
name is extracted from the certificate by the FS host. The login
program on the WS host facilitates this process by reading
the certificate from the SC and sending the user’s name along
with the UID at WS host and a uniform resource identifier to
locate the user’s SC (SCURI) to the FS. The FS locates the
certificate from its repository by matching the certificate name
and verifies the validity of the certificate.

2) Authenticate and establish a session between WS kernel
and FS kernel: To the counter various attacks mentioned
earlier, the FS and WS need to authenticate each other and
establish session keys for encryption and message integrity
before any file operations commence. The session keys are
generated using equal contributions of key material from two
sides.
The entire process is shown in Fig 5. In the figureE

P

U
, E

P

FS

,EP

WS
denotes Public Key encryption using the public key of

user U, file server FS and work station WS respectively.

1) FS kernel sends a random challenge (r_fs) and its
contribution of the session key (k_fs) to the WS login
process encrypted with the public key of the user.

2) WS login process forwards the message to the user’s
SC.

3) The SC decrypts the message using the private key of
the user. It sends back the response to the FS challenge
(r_fs), a random challenge (r_sc) and its contribution of
the session key (k_sc) to the WS login process encrypted
with the public key of the FS.

4) WS login process forwards the message to the FS.
5) FS kernel decrypts the message using its private key. It

verifies the challenge response and if it is succeessful,
user is authenticated to FS, else the protocol is aborted.
After authentication, the FS kernel generates a random
and unique credential (SID) for this particular user
session. It then sends back the credential (SID) and
the SC challenge response (r_sc) to WS login process
encrypted with the public key of the user. FS kernel
now computes the session key (SK_fs_ws) using the
key materials (k_fs and k_sc) and maintains the state
information, (UID, SCURI, SID, SK_fs_ws) in a table
for future use.

6) WS login process forwards the same packet to the SC.
7) SC having the private key of the user decrypts the

message. It verifies the challenge response (r_sc) and If
it is successful, FS is authenticated to the user, else the
protocol is aborted. After authentication, the SC com-
putes the session key (SK_fs_ws) using the key materials
(k_fs and k_sc). The WS has to be authenticated to the
user before passing the session key and the credential to
the WS kernel. The WS certificate is manually verified
by the user and is passed to the SC.

8) SC sends a random challenge (r) to the WS encrypted
with the public key of the WS host.

9) WS kernel decrypts the message and sends back the
response (r) to the SC.

10) At this point, WS is authenticated to the SC. SC
now passes the credential (SID) and the session key
(SK_fs_ws) to the WS login process encrypted with the
public key of the WS host.

WS login process now passes these blinded SID and SK_fs_ws
to the WS kernel. WS kernel extracts the keys (using its private
key) and assigns the credential to the user’s login process so
that all of its children inherit the same credentials.

VI. NFS OPERATIONS

During any file operations such as open, read, write by the
user, the NFS client sends the credential (SID) along with the
other standard parameters to the FS encrypted with the session
key (SK_fs_ws). FS decrypts the message using the session
key and verifies the credential. If the verification fails, FS
does not process the request further. FS also checks whether
the request came from the WS to which the SID is associated
and aborts the request if not. Fig 6 shows these steps in detail.
E

S denotes Symmetric Key encryption in the figure. In case
of the read and write operations, the data to be read or to be
written can even be encrypted using IPsec or the session key
established (if needed).

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



Fig. 5. Authentication Protocol

Fig. 6. NFS file operations

VII. I MPLEMENTATION

Our implementation of the protocol is a scalable one. It
involves changes in the NFS server as well as in the NFS
client.

A. NFS Server Changes

NFS server side changes include changes in certain compo-
nents of TransCrypt and changes in the NFS file system.

1) TransCrypt File System Changes:The user space as
well as kernel space components of TransCrypt are modified
to support credentials based executions. In the userspace we
modify the TransCrypt daemon to support initial authentication
protocol. In the kernel space we modify the TransCrypt to keep
the state information corresponding to every authenticated
user.

Each of these changes are explained in brief below.

• TransCrypt Daemon. All communication between FS
kernel and other entities (login process, SC) are routed
through TransCrypt daemon. The modified TransCrypt
kernel must keep a record of the PKS location of the user.
Therefore it must receive the PKS registration messages

as part of the secure protocol. To receive the user’s PKS
registration packets, TCP server functionality is added to
the current version of TransCrypt Daemon.

• Netlink Communication Manager. In the current Tran-
sCrypt version, the communication manager subsystem
supports only kernel initiated packets. It is not capable of
handling user initiated requests like those in the authenti-
cation protocol. The communication manager is modified
so that the messages related to different protocols are
handled appropriately.

• User Authentication Subsystem. This subsystem generates
the messages that are part of the initial authentication
protocol and then communicates them to the NFS Client
through the communication manager. It also stores the
credentials, user details and the session keys established
as part of the protocol in a shared data structure.

2) NFS file system changes:It includes changes in the
NFS file system. All NFS requests are handled by a function
“permission” to check for the genuineness of the request.
We modified this function, to verify whether the NFS client
requests originate from a genuine user session. If not, the
request is rejected.

B. NFS Client changes

The NFS Client implementation needs certain changes to
support the modified protocol. These changes are done in
user space as well as kernel space components of the NFS
client. The changes in the user space components of the
NFS client include the mechanisms to support the login
protocol and the support to contact SC through the smart card
daemon. The changes in the kernel space components include
the mechanism to assign the credentials to the processes as
explained earlier. These changes are described below.

• Login Patch.The changes in the login process must incor-
porate the mutual authentication between NFS sever and
client. This is done using the Pluggable Authentication
Module (PAM) [10]. This module provides two methods
to perform tasks associated with session set-up and to
perform tasks associated with session tear-down. In our
implementation session set-up method is used for mutual
authentication and session key establishment (between
User’s SmartCard and FS kernel). It also passes the per-
user session credentials obtained from the SC to the WS
kernel through a virtual I/O driver. During the session
tear-down, the FS kernel is informed about the session
termination so that it may remove the corresponding state
information.

• SmartCard Daemon. It has to take care of the full duplex
communication between NFS Client, login process and
user’s SC. It integrates PKCS #11 APIs [11] to commu-
nicate to the SC and socket support to communicate with
other entities (login process, transcrypt-daemon).

• Device Layer in kernel. The login process passes the
credentials to the kernel for assignment to the processes
as explained earlier. Such changes are done through
an installable device driver. The login process uses an
ioctl [12] call to perform this functionality.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



• NFS file system changes. During any file operation from
the NFS Client, WS kernel will pass the credentials
corresponding to the user to the NFS server. This along
with other parameters is relayed to the FS through the
secure channel established earlier between NFS server
and client. These modifications are done by patching the
NFS client code in the Linux kernel.

VIII. C ONCLUSION

In this paper we have discussed the security vulnerabilities,
when a user tries to access his files over an untrusted network.
We also proposed a secure and scalable protocol to solve the
same. The strong trust model in our implementation where
even administrators are not trusted distinguishes our solution
from other existing solutions. We have a scalable implemen-
tation of the solution in Linux environment using the open
source encrypted file system, TransCrypt [4]. The modularized
implementation helps an integration of the solution to any
environment. Our implementation is open source and can be
obtained through the home page of TransCrypt [7].

IX. A CKNOWLEDGMENT

We would like to thank Prof. Arnab Bhattacharya and
Prof. Piyush Kurur, Deparment of Computer Science and
Engineering, IIT Kanpur for their help and suggestions through
out our work. We also thank Satyam Sharma, Doctoral student,
Department of Computer Science and Engineering, IIT Kanpur
for all his guidance.

REFERENCES

[1] M. A. Halcrow, “eCryptfs: An Enterprise-class Encrypted Filesystem for
Linux,” in Proceedings of the Linux Symposium, Ottawa, Canada, Jul.
2005, pp. 201–218.

[2] “dm-crypt: a device-mapper crypto target for linux,” Available,
http://www.saout.de/misc/dm-crypt/.

[3] “Apple Mac OS X FileVault,” Available, http://www.apple.com/macosx/
features/filevault/.

[4] S. Sharma, R. Moona, and D. Sanghi, “TransCrypt: A Secureand
Transparent Encrypting File System for Enterprises,” in8th International
Symposium on System and Information Security, 2006.

[5] “How Encrypting File System Works,” Available,
http://technet2.microsoft.com/WindowsServer/en/Library/997fdd99-
73ec-4041-9cf4-1370739a59201033.mspx.

[6] A. Raghavan, “File System Independent Metadata Organization for
Transcrypt.” Master’s thesis, Indian Institute of Technology Kanpur,
India, Available, www.cse.iitk.ac.in/ moona/students/Y6111006.pdf.

[7] “TransCrypt Filesystem Homepage,” Available,
http://www2.cse.iitk.ac.in/transcrypt/.

[8] S. Vellal, “A Device Mapper based Encryption Layer for Transcrypt.”
Master’s thesis, Indian Institute of Technology Kanpur, India, Available,
www.cse.iitk.ac.in/ moona/students/Y6111039.pdf.

[9] R. Sandberg, D. Goddberg, S. Kleiman, D. Watch, and B. Lyon,
“Design and Implementation of the Sun Network File System,”in Usenix
Conference Proceedings, June 1985.

[10] V. Samar and R. Schemers, “Unified Login with Pluggable Authen-
tication Modules,” inConference on Computer and Communications
Security, March 1996.

[11] “PKCS 11: Cryptographic Token Interface Standard.” Available,
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-11/.

[12] “ioctl - control device,” Manual Page,ioctl(2).

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009


