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Abstract— A Finite Element Analysis (FEA) and Fourier 

transform approach to obtain frequency response function 
(FRF) is presented in this paper. The aim in this paper is to 
eliminate the need for the classical impact experimental 
approach used in extracting structure’s FRF. 

The numerical and experimental FRFs have been used to 
obtain stable regions in machining of thin walled structures, 
which gives a good comparison. Examples are presented and 
compared with experimental results with a satisfactory 
agreement. 
 

Index Terms— FEA, frequency response function, discrete 
Fourier transform, stability lobes, transfer function.  
 

I. INTRODUCTION 
  Even after such an extensive research into chatter 

vibration, it still is (as stated by Taylor just over a century 
ago) one of the most obscure and delicate of all problems 
facing the machinist [1]. It certainly undermines and reduces 
productivity and surface quality in manufacturing. It could 
also increase the cost through possible machine or tool 
damage. It is because of these effects that it has been the topic 
of several studies over the years. The stability lobes/chart 
approach is more practical from the stance of a machinist, 
while its extraction can be somewhat tedious. The accuracy 
of the predicted stable region relies on the transfer function 
identified at the cutter-workpiece contact zone. The classical 
approach to obtaining the transfer function is through impact 
test. However, this paper proposes an alternative approach 
which uses finite element method (FEM) modal analysis to 
obtain the transfer function at specified cutter-workpiece 
contact zones. 

While the transfer functions for the tool can be assumed to 
be constant, the workpiece transfer function/dynamics are 
constantly changing as material is removed. Moreover, in 
thin wall machining, the workpiece vibration is significant 
compared to that of the tool. Hence the transfer function used 

must be precise. It will be highly impractical to perform 
impact tests at multiple stages of machining, hence the need 
for an offline approach to stability lobes prediction. 

 
Manuscript received March 18, 2009. This work was supported in part by 

EPSRC and Airbus UK under Grant BS123456. 
O. B. Adetoro is with Queen Mary University of London, Queen Mary, 

University of London, Mile End Road, London E1 4NS, UK (e-mail: 
o.adetoro@qmul.ac.uk). 

*P. H. Wen is with Queen Mary University of London, Queen Mary, 
University of London, Mile End Road, London E1 4NS, UK; (phone: 
44(0)20-7882-5371, fax: 44(0)20-8983-1007; email: p.h.wen@qmul.ac.uk).  

W. M. Sim is with Airbus, New Filton House, Golf Course Lane, Filton 
BS34 7AR, UK (e-mail: WeiMing.Sim@airbus.com). 

R. Vepa is with Queen Mary University of London, Queen Mary, 
University of London, Mile End Road, London E1 4NS, UK (e-mail: 
r.vepa@qmul.ac.uk). 

 

The prediction of stable conditions in the form of charts 
started when, Tobias [2] and Tlusty [3] simultaneously made 
the remarkable discovery that the main source of self-excited 
regenerative vibration/chatter was not related to the presence 
of negative process damping as was previously assumed. 
However, it is related to the structural dynamics of the 
machine tool-workpiece system and the feedback response 
between subsequent cuts. Though, a pioneering research, 
their model is only applicable to orthogonal metal cutting 
where the directional dynamic milling coefficients are 
constant and not periodic. Other studies on the stability of 
orthogonal metal cutting were reported Merritt [4]. 

Sridhar et al. [5] carried out an in-depth study in which, 
they introduced time-varying directional coefficients in their 
chatter stability analysis. They used the system’s state 
transition matrix in their stability model, which helps to 
eliminate the periodic and time delay terms. Slavicek [6] and 
Vanherck [7] made the assumption that all the cutter teeth 
have a constant directional orientation in their study of the 
effect of irregular pitch on the stability. Tlusty [8] made an 
attempt to apply the orthogonal model to milling process by 
assuming the teeth of the tool had equal pitch, was 
simultaneously in cut and that the motion was rectilinear with 
constant depth of cut. Optiz et al. [9, 10] used an average 
value of the periodic directional coefficients in the analysis. 
The Nyquist criterion was used by Minis and Yanushevsky 
[11, 12] and Lee et al. [13, 14] to obtain the stability limits. 
Lee et al. used the mean value method to replace the time 
varying directional coefficients by a constant. Altintas and 
Budak [15] later proposed an analytic approach in which the 
average value in the Fourier series expansion (single 
frequency solution) of the time varying coefficients was 
adopted. This is the main analytical approach generally used 
in predicting stable cutting conditions in machining [16, 17, 
18, 19]. Budak and Altintas [20, 21] later showed that the 
results obtained by including the harmonic terms 
(multi-frequency solution) are very close to the single 
frequency solution. 

This paper presents a numerical approach to obtaining the 
structures transfer function, which is required in the stability 
model. This approach aims to eliminate the need for series of 
experimental impact testing at various points on a thin walled 
workpiece in order to obtain the transfer function. 

II. CHATTER STABILITY MODEL 
The stability model used in this paper is the model 
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proposed by Altintas and Budak [15] as summarized below. 
The periodic milling forces excite the cutter and the 
workpiece causing two orthogonal dynamic displacements  

 
Fig. 1 – Dynamic Milling Model. 
x  and y  in the global axis. This generates undulations on 
the machined surface and each tooth removes the undulations 
generated by the previous tooth (see Figure 1). Therefore 
leading to a modulated chip thickness which can be 
expressed as 

( ) ( ) ( ),sin 00
jwjcjwjcjtj sh υυυυφφ −−−+=  (1) 

where  is the feed per tooth, ts ( )jcjc υυ ,0  and ( )jwjw υυ ,0  are 

the dynamic displacement of the cutter and workpiece at the 
previous and present tooth periods respectively, 

( )− tj pj Ω+= φφ 1  is the angular immersion of tooth j  

for a cutter (  if the angular speed), with constant pitch 
angle 

Ω
Np πφ 2=  (  is the number of teeth). N

The dynamic displacements in the chip thickness direction 
due to tool and workpiece vibrations are defined as 

jpjpjp yx φφυ cossin −−=  ( ),, wcp =  (2) 

where  and  indicate the cutter and workpiece 

respectively,  and  are the dynamic 

displacements in the global axis for the current and previous 
tooth periods respectively. 

c w

py,px 00 , pp yx

By eliminating the static part in (1), the dynamic chip 
thickness in milling is defined as 
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Therefore, the dynamic forces on tooth j  (using 
‘‘Exponential Force Coefficient Model’’, [22]) in the 
tangential and radial directions can be defined as 
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where  is the axial depth of cut (ADOC), and  and 

 are the tangential and radial cutting force coefficients 
respectively. By substituting (3) into (5) and resolving in the 

global directions, the following expression is obtained 
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where  are the periodic directional cutting coefficients 

and depends on the angular position of the cutter and the 
radial cutting force coefficient K , thereby making (6) a 
function of time 

( )[ ] ( ){ },
2
1 ttAaKtF t Δ=

( )]tA
Ω= N

 (7) 

As mentioned in previous section, [  is periodic at the 

tooth passing frequency ω , therefore its Fourier 
series expansion is used for the solution of the system. The 
average value in the Fourier series expansion (single 
frequency solution) of the time varying directional 
coefficients is used in this paper. Hence, (7) reduces to 

( ){ } [ ] ( ){ },
2
1

0 tAaKtF t Δ=  (8) 

[where ]0A  is the time invariant, but immersion 
dependent directional cutting coefficient matrix. 

From the frequency response function FRF and the 
dynamic forces, the dynamic displacement vector in (8) can 
be solved. Using the response at present time ( )t  and the 

previous tooth period ( )tT − , equation (8) can be expressed 
as [14, 22] 
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{where }F  represents the amplitude of the dynamic 

cutting force [ ( )]ciG( ){ }tF , ω  is the transfer function 
matrix. 

The transfer function matrix [ ( )]ciG ω  is the main focus 
of this paper. It is defined as 
[ ( )] [ ( )] ( )[ ],cwccc iGiGiG ω = ω + ω  (10) 

where 

( )[ ] ( ) ( )
( ) ( ) ,

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

cpcp

cpcp
cp iGiG

iGiG
iG

yyyx

xyxx

ωω
ωω

ω ( )wcp ,=  (11)  

Equation (9) has a non-trivial solution only if its 
determinant is zero, 

[[ ] [ ( )]] ,0det 0+ Λ ciGI ω =  (12) 

where [ ] [ ][ ]GAG 00 =  
The eigenvalues is defined as 

( ),e1
4

Ti
t aKN ω

π
−−−=Λ  (13) 

Solving (12) numerically will give eigenvalues with 
complex and real parts ( )IR iΛΛ +Λ= , and from Euler’s 

formula, . When this is 
substituted into (13), the complex part has to vanish (i.e. 

TiT cc
Ti c ωωω sincose −=−

( ) TT cRcI ωω sincos1− = ΛΛ ) because the axial depth 
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of cut  is a real value. Therefore, a
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where ψ  is the phase shift of the eigenvalues. From this 
expression the relationship between the frequency and the 
spindle speed is [15] obtained 
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where ε  is the phase difference between the inner and 
outer undulations, k  is an integer corresponding to the 
number of vibration waves within a tooth period and  is the 
spindle speed (rpm). Substituting (14) into (13) and the final 
expression for chatter free axial depth of cut becomes 

n

( 2
lim 12

κ
π

+
Λ )

t

R

NK
a −=  (16) 

Therefore for a given chatter frequency, cω  the 
eigenvalues are obtained from (12), which allows for the 
critical depth of cut to be calculated using (16) and finally the 
spindle speed using (15) for different number of vibration 
waves, . This is repeated for various frequencies around 
the structures dominant modes. 

k

{X

The System’s Transfer Function 
To obtain the transfer function of the system, the modal 

dynamic analysis on Abaqus was used. Being a very well 
developed model, the modal dynamic analysis gives the 
response of a defined domain as a function of time for a given 
time dependent loading. This gives the linear response of the 
structure, which can be very easily extracted once the modes 
of the system are available. This is due to the modes being 
orthogonal, thereby rendering the system as a mere 
combination of single degree of freedom systems. The modes 
are extracted in a frequency extraction analysis, which 
utilizes the Lanczos algorithm. The free vibration solution of 
the equation of motion takes the form 
{ } } tx ωsin=  (17) 

When substituted into equation of motion, an eigenvalue 
problem is obtained as 
[ ] [ ]( ){ } ,02 =XMK − ω  (18) 

where  is the stiffness matrix of the system, [K ] [ ]M  is 

the mass matrix,  is the eigenvalue or in this case the 

undamped natural frequency of the system squared and 

2
nω

{ }X  
is the eigenvector (the mode of vibration or mode shape). 

Being a large eigenvalue problem, the eigenvalues are 
extracted using the Lanczos method. The algorithm is 
detailed by Grimes et al. [24] and in Abaqus user manual 
[25]. 

Therefore, when the model is projected onto the 
eigenmodes (assuming the projected damping matrix is 
diagonal), the following expression at time  is obtained [25] t
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where r  is the mode number, q  is the amplitude of the 
response of mode 

r

r  (in the ‘‘generalized coordinate’’), 
r , frn,ω  is the undamped natural frequency of mode Δ  is 

the change in  over the time increment, Δ  assuming the 

excitation varies linearly within each increment and 

f t

rξ  is the 
critical damping ratio for mode r  defined as 

The solutions is simply obtained in the form 
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=where ji ijd ije

,

,  and  are constants, which are 

dependent on the three different cases of non-rigid body 
motion. These cases are based on the oscillation modes - 
underdamped, critical damping and overdamped. These 
constants are detailed in Abaqus user manual [25]. 

Since the time integrations is done in generalized 
coordinates, the response of the physical variables are 
obtained through summation 

∑=
r

rr qXu

rX
r u

( )

 (21) 

where  are the eigenvector corresponding to the mode 
 and  is the actual nodal displacement. From this the 

velocity and hence the nodal acceleration can be derived. 
The system’s frequency response function (FRF), is 

simply the ratio of the Fourier transform of the output over 
the input (in the case of a system with single input and 
output). 
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The discrete Fourier transform algorithm is adopted, which 
is defined [26] as 
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[ ]kHRe  and 2Mwhere  runs from  to , 

[ ]kHIm  are the real and imaginary parts of the frequency 

domain signal and [ ]ih  is the time domain signal. 
The corresponding frequencies are defined as 

⋅ ,
1−

=
M

fkω  (24) 

ω  is the frequency,  is the sampling frequency. f

310823. ×

were 

III. THE FINITE ELEMENT MODEL 
The workpiece material used in the FEM model is 

Aluminium Alloy 7010 T7651. The material properties 
required for generating the stiffness and mass matrices are: 
Density - 2  Kg m-3, Young’s Modulus - 69.809 
GPa and Poisson Ratio - 0.337. Three different types of 
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workpiece were used in the finite element analysis (FEA). 
The dimensions are shown in Figure 2 and the different 
thicknesses, (W) are shown in tables 1, 2 and 3 respectively. 

The assumptions made in the finite element analysis (FEA) 
are as follows: 
1) The workpiece was bolted at the back surface during the 

impact tests and in the FEM this was assumed to be 
clamped. 

2) The workpiece was bolted to the milling machine 
during the impact test and it was assumed that the 
natural frequencies of the machine are very high 
compared to that of the workpiece, hence their influence 
can be ignored in the FEM analysis. 

3) The mass of the accelerometer was assumed to be a 
point mass added to the FEM model. 

260mm

260mm

30mm

30mm

W

R=5mm

260mm

260mm

30mm

30mm

W

R=5mm

 
Fig. 2 – Workpiece dimensions. 

Table 1 – Workpiece A, W = 1.5mm 

MODE NUMBER NATURAL FREQUENCY, nω  (HZ) DAMPING RATIO, ξ  (%)

1 1323.00 2.9345E-02 
2 1604.00 2.6765E-03 
3 1708.00 1.9422E-03 
4 1908.00 2.2348E-03 
5 2196.00 1.4750E-03 
6 2566.00 1.6500E-03 
7 3021.00 2.0739E-03 
8 3571.215 8.0504E-03 

Table 2 – Workpiece B, W = 3.0mm 

MODE NUMBER NATURAL FREQUENCY, nω  (HZ) DAMPING RATIO, ξ  (%)

1 2830.5000 2.5449E-02 
2 3204.5000 4.4995E-03 
3 3406.0000 2.9076E-03 
4 3798.0000 4.8137E-03 
5 4372.0000 5.3524E-03 

Table 3 – Workpiece C, W = 4.5mm 

MODE NUMBER, NATURAL FREQUENCY, nω  (HZ) DAMPING RATIO, ξ  (%)

1 4253.0000 3.4222E-02 
2 4568.0000 9.0496E-03 
3 4894.0000 8.2851E-03 

The Damping Ratio 
The damping ratios, rξ  used in (19) were identified 

through impact tests and are given in tables 1, 2 and 3. The 
workpiece is excited using an instrumented hammer, whilst 
the accelerometer is placed on the opposite side of the impact 
point, to measure the direct transfer function. Using a Fourier 

analyser, the accelerance frequency response function is 
extracted for each impact test. This is simply the division of 
the Fourier transform of the measured time domain input 
force ( )tf ( )tx

( )

 and acceleration . 

( )
( ) ,
ω
ωω

F
XAcc =  (25) 

(( )ωAcc  is the accelerance FRF, where )ωX  is the 

output acceleration signal in frequency domain and ( )ωF  is 
the input force signal in frequency domain. The experimental 
measurements are analysed using a modal analysis system 
(CutPro was used for the solutions in this paper), which scans 
the measured transfer function and fits a curve to the data in 
order to obtain the numerical values of natural frequency, 
damping [27]. 

IV. RESULTS 

A. Extracting the Workpiece Transfer Function. 
For workpiece A, the measured input force from the 

impact test was used as the input force (in time domain) in the 
FEM modal analysis. The predicted acceleration (time 
domain) is shown in comparison to the experimental 
acceleration from the accelerometer (during the impact test) 
in Figure 3. The predicted FRF (using the approach in section 
2) and experimental FRF, are compared in Figures 4 a and b 
respectively. The agreement between the experimental 
results and the predictions is satisfactory. 

Time, s
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Fig. 3 – Predicted and measured acceleration for workpiece A. 

 
(a) Real 

 
(b) Imag 
Fig. 4 – Predicted and measured FRFs for workpiece A, G . 
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For workpiece B, the input force (in time domain) used in 
the FEM modal analysis was a Dirac delta function. The 
predicted and experimental FRFs are compared in Figures 5. 
The agreement between the experimental results and the 
predictions is satisfactory. 

Figure 6 compares the predicted and experimental FRFs 
for workpiece C and the agreement has shown to be good. 

 

 
(a) Real 

 
(b) Imag 

Fig. 5 – Predicted and measured FRFs for workpiece B, . 
yywG

 
(a) Real 

 
(b) Imag 

Fig. 6 – Predicted and measured FRFs for workpiece C, . 
yywG

B. Chatter Stability Lobes. 
Using both the predicted and experimental FRFs, the 

stability lobes was generated using CutPro, for the different 
types of workpiece using the parameters listed in table 4. 
CutPro is an analytical and time-domain machining process 
simulation commercial package developed by Altintas. It has 

an in built modal analysis module and also a stability lobes 
module. The stability lobes module can take the transfer 
function in all three orthogonal directions for the workpiece 
and transfer function in x, and y directions for the tool.  The 
predicted and experimental results are compared in Figures. 
7a, b & c for the three different workpiece. The comparisons 
show a satisfactory agreement. The slight discrepancy in the 
predicted natural frequency (frequency at which FRF real is 
zero and imaginary is maximum) can be seen in the slight 
shift in the spindle speed calculated in the stability lobes. The 
natural frequency predicted affects the stable tooth passing 
frequency calculated in the stability lobes, hence the slight 
differences seen in the spindle speeds.  

Table 4 

 WORKPIECE A WORKPIECE B WORKPIECE C

RCFC,  rK -0.7040 0.3030 1.1459 

TCFC,  (MPa) tK 981.6966 801.0970 679.6021 

Radial depth of Cut, (mm) 0.500 1.000 2.000 

where ‘‘RCFC’’ is the radial cutting force coefficient and ‘‘TCFC’’ is the 
tangential cutting force coefficient. 
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(b) Workpiece C 
Fig. 7 – Stability lobes comparison. 
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The predicted stable axial depth of cuts in Figures 7 b and c 
are slightly higher than the experimental stable ADOC and 
this is due to the FEM model being too stiff. This can be 
caused by the boundary condition assumption stated in 
section 3, where the back surface was assumed to be perfectly 
clamped. In the FEM stiffness matrix formulation, the 
elements are therefore set to 1E+36 and the degrees of 
freedom at this surface are not included in the simulation. A 
more accurate approach would require knowledge of the 
friction at the boundary between the machine and the 
workpiece. 

For completeness, the full FRF matrix in (11) is required, 
however applying the impact force and/or measuring the 
response in certain directions experimentally can prove 
difficult. Using the proposed approach however, the full FRF 
matrix in (11) can be obtained easily in all directions. This is 
done by simply applying the impact force in the 
corresponding directions of interest. 

V. CONCLUSION 
Chatter still undermines the efforts of the machinist by 

reducing surface quality, productivity and increasing cost in 
damage repair. In this paper, an alternative approach to 
extracting the transfer function using the FEM modal 
analysis has been presented. The approach is based on the 
Fourier transform of the results obtained from the finite 
element analysis. The results are shown to agree with 
experimental results and hence the transfer function 
calculated. Its accuracy is further explored by its use in 
stability lobe predictions. This approach can be used to solve 
different problems encountered through the use of impact 
test, including obtaining the frequency response function in 
directions that ca prove difficult experimentally. 
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