
ETHOM, an Ethernet over SCI and DX Driver
for Linux

Rainer Finocchiaro, Lukas Razik, Stefan Lankes, Thomas Bemmerl∗

Abstract—Nowadays, high computing demands are
often tackled by clusters of computers, each of which
is basically an assembly of a growing number of CPU
cores and main memory; these nodes are connected
by some kind of communication network. With the
growing speed and number of CPU cores, the network
becomes a severe bottleneck limiting overall cluster
performance. High-speed interconnects like SCI and
Dolphin DX are good for alleviating this communi-
cation bottleneck, when the communication software
is either based on IP or specifically adapted to the
interconnect. Software written to communicate di-
rectly via Ethernet frames can not be used this way,
though. In this article, we present ETHOM, a driver
that implements an Ethernet interface on top of the
Dolphin Express software stack. It enables the Dol-
phin networks SCI and DX to be used as high-speed
replacement for Ethernet. Offering an Ethernet and
with that an IP interface, it enhances their function-
ality and allows usage of layer-2 kernel functionality
like interface bonding and bridging. This driver is an
improvement of ETHOS, the Ethernet over Sockets
driver, delivering lower latencies at the cost of higher
CPU load. By means of various measurements, we
show that ETHOM with SCI or DX offers a twofold
increase in communication performance over Gigabit
Ethernet.

Keywords: Ethernet, SCI, Dolphin DX, Linux, TIPC

1 Introduction

Computational power has always been a scarce resource
and prognoses predict that this situation will not change
any time soon. While Computer performance increases,
the demand for more power increases at least at the same
pace.

Until very recently, CPUs as the main component of a
computing system grew more powerful by raising the
clock frequency. Today parallelism in the form of ad-
ditional cores per die adds to the performance increase.
From a hardware point of view, the next level of paral-
lelism is the gathering of single computers to form a clus-
ter. Traditionally, the single computers – called nodes –
in these clusters were connected by Ethernet in one of its

∗Chair for Operating Systems, RWTH Aachen University,
Kopernikusstr. 16, 52056 Aachen, Germany,
E-mail: {rainer,razik,stefan,thomas}@lfbs.rwth-aachen.de

incarnations, as it is cheap, stable, and well supported.
Concerning the software, the predominant protocol used
on top of Ethernet is the TCP/IP stack. With software
running on the cluster that communicates intensively, the
network is more and more the real bottleneck that limits
cluster performance.

So, there are two problems to cope with: (1) First of
all, networking hardware in the form of Gigabit Ethernet
is too slow for several purposes, 10G Ethernet is still in
the beginnings, not yet very wide-spread and rather ex-
pensive. (2) Then, TCP/IP is a protocol suite designed
for communication in wide area networks, offering elabo-
rate mechanisms for routing, to deal with even extensive
packet loss, etc. It is not so well suited for clusters.

To cope with these problems, there are mainly two ap-
proaches in order to allow faster1 communication: (1)
The first approach is to use high-speed networks, each
having their own low-level programming interface (API),
most providing an implementation of the POSIX socket
API, and some offering an IP interface. Examples of these
networks include InfiniBand2, Myrinet3, QsNet4, SCI5,
and Dolphin DX6. An IP interface for Dolphin DX has
been presented in [1]. (2) The second approach is to re-
place the software layer TCP/UDP – and sometimes IP as
well – while keeping the Ethernet hardware. Examples of
these replacement protocols include SCTP (Stream Con-
trol Transmission Protocol [2]), DCCP (Datagram Con-
gestion Control Protocol [3]), UDP-Lite [4], AoE (ATA
over Ethernet [5]), and TIPC (Transparent Interprocess
Communication Protocol [6][7]).

Being developed originally at Ericsson, TIPC has its ori-
gin in the telecommunication sector, but provides some
characteristics making it suitable for high performance
computing (HPC) with clusters, such as an addressing
scheme supporting failover mechanisms and less overhead
for exchanging data within a cluster. TIPC is the trans-
port layer of choice of the Kerrighed project [8]. It is
used for kernel to kernel commnunication, but cannot
currently make use of high-speed networks like InfiniBand

1latency and bandwidth wise
2http://www.infinibandta.org/events/past/it roadshow/

overview.pdf
3http://www.myri.com/myrinet/product list.html
4http://www.quadrics.com
5http://www.dolphinics.com/products/pent-dseries-d350.html
6http://www.dolphinics.com/products/pent-dxseries-dxh510.html

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

or SCI, as they both do not provide an Ethernet interface,
nor does TIPC provide a specialised ”bearer”, which is
the adaptation layer between TIPC and a network inter-
face.

A previous article [9] described ETHOS, the first ap-
proach of a driver offering an Ethernet interface utilising
high-speed networks for communication. This driver was
designed to use kernel-level UDP sockets to deliver data
to peers (see Figure 2); it enables any network providing
kernel-space UDP sockets to be used as Ethernet replace-
ment. Measurements with ETHOS on top of SCI and In-
finiBand showed significantly higher bandwidth and lower
latency than Gigabit Ethernet.

In order to further reduce communication latency, we de-
cided to abandon compatibility with other high-speed in-
terconnects and use the next lower software layer avail-
able in the Dolphin Express stack, the Message Queue
Interface. Using this interface, ETHOM (ETHernet Over
Message-Queue driver) provides an Ethernet interface for
SCI and Dolphin DX hardware. Therefore, in addition to
the TCP/UDP-Sockets already provided by the Dolphin
Express software stack, ETHOM offers an Ethernet in-
terface, enabling interface bonding, bridging and other
layer 2 kernel features, as well as (IP-)Routing for the
SCI and Dolphin DX interconnects. Furthermore, TIPC
is enabled to make use of these two network technolo-
gies leveraging its Ethernet bearer, just like any other
software that is stacked on top of an Ethernet interface.

The rest of this article is organised in the following way:
In section 2, we shortly present the Linux network archi-
tecture, serving as a background for understanding where
the presented Ethernet interface resides. Furthermore,
some details about design decisions are given. Section 3
gives an overview of the performance of ETHOM mea-
sured with popular microbenchmarks. Finally, in section
4, we conclude with the current status and plans for fur-
ther improvements.

2 Architecture

In order to describe the architecture of our Ethernet over
Message Queues driver, an overview of the different hard-
ware and software layers is given in section 2.1. Building
on that, we shortly describe our first attempt of an Eth-
ernet replacement driver, which uses sockets as ”commu-
nication medium”, in section 2.2. With this background,
we go into some detail about the implementation and de-
sign decisions in section 2.3.

2.1 Linux Ethernet Network Architecture

Seen from a rather high level of abstraction, the Linux
Ethernet network architecture consists of three layers
that are used by an application to communicate with a
counterpart on another node (see Figure 1). The first
layer consists of a programming interface like for example

user

kernel

HW

ETH interface

Application

Standard
Sockets

Ethernet NIC

Other

OtherStandard
Sockets

TIPC
Sockets

TIPC
native/
Sockets

Figure 1: Linux Network Architecture

the well-known and wide-spread sockets interface. This
layer is available for user-space application processes as
well as for the kernel space. It expects user data in any
form from the application and builds Ethernet frames
which are passed to the next lower layer. The layer be-
low is represented by the Ethernet interface layer. This
layer takes Ethernet frames from above and passes them
on to the hardware. The third and lowest is the hardware
layer, as represented by the Ethernet NIC, which cares
for the physical transmission of data from a sender to its
peer.

2.2 Architecture of ETHOS

The article presented in [9] describes previous work on
ETHOS, an Ethernet driver built using the Linux kernel
sockets API to send and receive data. The Ethernet in-
terface layer no longer passes Ethernet frames directly to
the hardware. Instead it makes use of kernel-space UDP
sockets to pass on the Ethernet frames to the hardware
layer. If a network device does not offer native UDP ker-
nel sockets but an IP driver, standard UDP kernel sockets
on top of this IP driver are deployed. (Note that the Eth-
ernet NIC shown in Figure 2 is used for demonstration
purposes only. It is in general not reasonable to use it for
applications, as performance should by principle always
lag behind the native interface.)

2.3 Architecture of ETHOM

Within the work presented in this paper, a thin layer of
indirection is inserted below the Ethernet interface (see
Figure 3). This layer passes the Ethernet frames to the
SCI Message Queues, which represent the lowest message
passing layer of the Dolphin software stack. At the lowest
level, SCI or DX cards physically deliver the data to the
peer nodes.

As depicted in Figure 4, on each node of the cluster there
are two message queues for every peer. Each message
queue is identified by a cluster-wide unique ID.

The memory requirements for each message queue are
dominated by the buffer, which is currently hard-coded
to ˜13 KB. As the SCI network allows a maximum of 512

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

user

kernel

HW

ETH interface (ETHOS)

Application

Ethernet
NIC

Other

Other

Standard
SocketsSCI

Sockets
Other
Sockets

SCI
NIC

Infiniband
NIC

Other
NIC

IPoIB ETH

Standard
Sockets

Standard
Sockets

TIPC
Sockets

TIPC
native/
Sockets

Figure 2: Network Architecture with ETHOS

user

kernel

HW

ETH interface (ETHOM)

Application

Other

Other

SCI Message Queues

SCI-NIC

Standard
IP-Sockets

Standard
Sockets

TIPC
Sockets

TIPC
native/
Sockets

DX-NIC

Figure 3: Network Architecture with ETHOM

node ... n

kernel

HW

ethif (ETHOM)

Application

NIC

eth2: 192.168.0.1

ethif (ETHOM)

Application

NIC

eth2: 192.168.0.5

user

node 1 node 2

Send
MSQ

Receive
MSQ
MSQ-2MSQ-1

Send
MSQ

Receive
MSQ
MSQ-2MSQ-1

Send
MSQ

Receive
MSQ
MSQ-2MSQ-1

Send
MSQ

Receive
MSQ
MSQ-2MSQ-1

Send
MSQ

Receive
MSQ
MSQ-2MSQ-1

Send
MSQ

Receive
MSQ
MSQ-1MSQ-2

Figure 4: Implementation of ETHOM

nodes when setup as a 3D torus, total memory require-
ment per node would amount to: number of peers × 2
queues × size of queue = 511 × 2 × 13 KB = 13 MB.
So, concerning memory consumption, our driver should
be quite scalable.

As it is very improbable to have more than one card of
either SCI or Dolphin DX inside of one node, currently
only one Ethernet interface is supported by ETHOM.

Connection Establishment ETHOM is configured in
two phases: (1) First, at load time of the driver, the
number of nodes in the network are specified, (2) then at
runtime, an IP address, MTU7, broadcast address, and
network mask are assigned with ifconfig just like with any
other ethernet interface.

After loading of the driver, on each node, two uni-
directional message queues are created for every peer
node in the network (e.g. 14 message queues on each
node in case of 7 peer nodes). Message queue IDs are
calculated from the local and the peer node number as

IDReceiveQueue = #hosts× peer + local
IDSendQueue = #hosts× local + peer

This way they are guaranteed to be unique throughout
the cluster.

For each peer node, two threads are started (e.g. 14
threads on each node in case of 7 peers), one trying to
connect the local send to the distant receive queue and
one waiting for a connection on the local receive queue.
As soon as the first of the threads waiting on the local re-
ceive queue has accomplished its connection, this thread
becomes the master thread that polls on all connected
receive queues. All the other send and receive threads
terminate as soon as their connection is established, ef-
fectively reducing the number of remaining threads to
one. In case the peer node does not connect directly, a
new connection attempt is made periodically.

In case of IP communication on top of ETHOM, IP ad-
dresses can be specified arbitrarily, they do not have to
correspond to node numbers. Just like with hardware
Ethernet devices, ARP8 is used at first contact to find
the node that provides the sought-after IP address. The
ARP broadcast request is sent to each connected node
sequentially and answered by the node in question. From
that point on, communication over IP is possible.

Communication Phase When the application on
node 1 (compare Figure 4) sends a message to the ap-
plication on node 2, this message is passed to the kernel

7Maximum Transmission Unit
8Address Resolution Protocol

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

networking stack. The kernel then splits it into pack-
ets fitting into the previously specified MTU (Fragmen-
tation) – if necessary – and equips each packet with an
Ethernet header. This newly constructed Ethernet frame
is passed to ETHOM, which hands it over to the send
message queue and directly flushes the queue. On the
receiving node 2, the Ethernet frame’s arrival is detected
by the polling thread and immediately forwarded to the
kernel networking stack. The kernel reassembles the up-
per layer message – if necessary – and hands it over to
the application.

By exchanging Ethernet frames, ETHOM – unlike IP in-
terfaces like IPoIB9 – directly supports all protocols that
rely on Ethernet (like e.g. TIPC) in addition to IP.

As the Dolphin message queue API does not support
broadcasting of data to all connected peers, broadcast
is implemented in ETHOM. Currently, data is sent to
each peer sequentially in a simple Round-Robin fashion.

In case of a node failure or shutdown, all other nodes con-
tinue working as before. Reconnection of message queues
as soon as a node comes up again is not yet implemented,
though.

3 Experimental Results

Measurements were performed on two clusters as SCI and
DX cards are built into separate clusters:

(1) The first cluster, called Xeon throughout this paper,
consists of two nodes equipped with two Intel Xeon X5355
four-core CPUs running at 2.66 GHz. The mainboard
is an Intel S5000PSL with two on-board Gigabit Ether-
net controllers (Intel 82563EB). Each node is equipped
with a DX adapter from Dolphin (DX510H, 16 Gb/s) in
a PCIe x8 slot, and an InfiniBand adapter from Mel-
lanox (MHGS18-XTC DDR, 20 Gb/s), which is plugged
into a PCIe x8 slot, too. The DX cards are connected di-
rectly without an intermediate switch, while Gigabit Eth-
ernet and InfiniBand use a switch; Cisco Catalyst 2960G-
24TC-L (Ethernet) and Mellanox MTS-2400-DDR (In-
finiBand).

(2) The second cluster, called PD, consists of 16 nodes,
two of wich were used for measurements. Each node
features a PentiumD 820 dual-core CPU running at
2.8 GHz. The mainboard is from ASUSTek (P5MT-M).
It is equipped with two on-board Gigabit Ethernet con-
trollers (Broadcom BCM5721). In addition to that, each
node is equipped with an SCI card from Dolphin (D352,
10 Gb/s), which resides in a PCIe x4 slot, and with an
InfiniBand adapter from Mellanox (MHGS18-XTC DDR,
20 Gb/s), which is plugged into a PCIe x8 slot. The SCI
cards are connected in a 4x4 torus topology.

All nodes run an unpatched kernel 2.6.22, 64-bit on Xeon

9IP over InfiniBand

and 32-bit on PD. Kernel preemption was enabled. For
InfiniBand, we used the drivers included in kernel 2.6.22,
for SCI and DX, version 3.3.1d of Dolphin’s software
stack.

In order to measure the performance of our driver in
comparison with hardware drivers for Ethernet and In-
finiBand, we measured TCP socket performance, concen-
trating on latency (see section 3.1) and bandwidth (see
section 3.2) for various message sizes. In addition to that,
we performed two measurements with TIPC replacing
TCP/IP (see section 3.4) in order to see what perfor-
mance to expect from our approach to enable TIPC over
high-speed interconnects.

For the TCP experiments, we used NPtcp from the Net-
PIPE10 suite in version 3.7.1, which is described in [10]
and Dolphin’s sockperf11 in version 3.3.1d as it records
information about interrupt and CPU usage. TIPC per-
formance was measured with tipcbench12, which is part
of the “TIPC demo v1.15 package”.

After testing with several different MTU settings, we
chose to use the biggest possible MTU for ETHOM, as it
does not have a negative effect on latency but proved pos-
itive for bandwidth. Apart from that, we did not touch
the default settings for the other parameters of our Eth-
ernet, SCI, DX, and InfiniBand NICs (like interrupt coa-
lescing, message coalescing, and any other).

Currently, we use a protocol of the message queues which
is restricted to 8 KB, therefore the largest MTU for
ETHOM is 8 KB minus header length at the moment.
We expect greatly improved bandwidth when usage of a
protocol supporting larger messages is implemented.

3.1 Latency

In Figure 5 the round-trip latency (RTT/2) for messages
of varying sizes measured with NPtcp is shown.

The green curve represents Gigabit Ethernet, the refer-
ence that ETHOM competes with. The lowest latencies
are delivered by ETHOM on SCI, followed by ETHOM on
DX; the highest times are the Ethernet times. A dramatic
decrease in latency can be seen for Ethernet with mes-
sage sizes between 16 and 48 B, which indicates polling
for new messages on the receiving side. For larger mes-
sages, the high raw bandwidths of InfiniBand and DX
lead to lower latency as for SCI. Comparing ETHOM
on SCI with ETHOS on SCI, an improvement in latency
of around 10 µs for small messages and around 15 µs for
larger ones can be observed.

Summarising, ETHOM on SCI provides an improvement
in latency by a factor of two and above on our measure-

10http://www.scl.ameslab.gov/netpipe/
11sockperf is part of the Dolphin Driver Package available from

http://www.dolphinics.com
12http://tipc.sourceforge.net/tipc linux.html

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

100

90

80

70

60

50

40

30

20
19

16
 1 4 16 64 256 1024

R
ou

nd
-T

rip
/2

 [u
s]

Message size [Byte]

Xeon: ETHOS on IPoIB connected mode (ETHOS MTU=65493, MTU=65520)
Xeon: Gigabit Ethernet (MTU= 1500)

PD: ETHOS on SCI (ETHOS MTU=34790)
PD: ETHOM on SCI (ETHOM MTU= 8000)

Xeon: ETHOM on DX (ETHOM MTU= 8000)

Figure 5: Latency measured with NPtcp

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

 4096

1 32 1024 32768 1048576

T
hr

ou
gh

pu
t [

M
bi

t/s
]

Message size [Byte]

Xeon: ETHOS on IPoIB connected mode (ETHOS MTU=65493, MTU=65520)
Xeon: Gigabit Ethernet (MTU= 1500)

PD: ETHOS on SCI (ETHOS MTU=34790)
PD: ETHOM on SCI (ETHOM MTU= 8000)

Xeon: ETHOM on DX (ETHOM MTU= 8000)

Figure 6: Throughput measured with NPtcp

ment platform over Gigabit Ethernet and about a 30%
improvement over its companion ETHOS.

3.2 Bandwidth

Figure 6 shows the bandwidth for varying message sizes
measured with NPtcp.

Gigabit Ethernet delivers for all message sizes the low-
est bandwidth (excluding the aforementioned interval be-
tween 16 and 48 B). For small messages, ETHOM on
SCI performs best with ETHOM on DX and ETHOS
on IPoIB close by. At about 1 KB, the three curves split
again each gradually approaching its maximum, which is
at 1.5 Gb/s for SCI and 3 Gb/s for DX (with their cur-
rent limitation to an MTU of 8 KB) and about 5 Gb/s
for ETHOS on InfiniBand. Comparing ETHOM with
ETHOS on SCI, it can be noticed that for small messages
(until 8 KB) ETHOM provides a 50% increase in band-
width. For large messages (256 KB and above) ETHOS
benefits from the support for larger low-level packets and
maybe additional buffering in the sockets layer.

 0

 10000

 20000

 30000

 40000

 50000

1 4 16 64 256 1024 4096 16384 65536

In
te

rr
up

ts
 [1

/s
]

Message size [Byte]

Xeon: ETHOS on IPoIB connected mode (ETHOS MTU=65493)
Xeon: Gigabit Ethernet (MTU= 1500)

PD: ETHOS on SCI (ETHOS MTU=34790)
PD: ETHOM on SCI (ETHOM MTU= 8000)

Xeon: ETHOM on DX (ETHOM MTU= 8000)

Figure 7: Interrupts measured with sockperf

To sum up, ETHOM on SCI exhibits a twofold increase in
bandwidth for messages up to 1 KB over Gigabit Ethernet
and about a 50% increase over ETHOS.

3.3 Interrupts and CPU Utilisation

In this section we show the drawbacks of ETHOM, which
uses polling and therefore a higher system load to achieve
its high performance. Figure 7 and Figure 8 have to be
examined together in order to get some meaningful state-
ment. In Figure 7 the number of interrupts triggered by
each device are recorded over the message size.

Two points are immediately eye-catching: (1) ETHOM
on SCI and DX does not trigger any interrupts, which
is obvious considering that ETHOM uses polling mech-
anisms instead of relying on an interrupt. (2) With
45000 IRQs/s, ETHOS on InfiniBand puts by far the
highest load onto the IRQ-processing routines, sharply
decreasing with messages bigger than 512 Byte. At a sec-
ond glance, it can be seen that our Ethernet adapter is
limited to 20000 IRQs/s, which is a clear indication of
coalescing intermediate interrupts.

As mentioned before, we have to keep the interrupts in
mind when discussing the system load. Figure 8 shows
only the system time and not the time needed for IRQ
processing. Several aspects are worth mentioning here:
First of all, ETHOM on SCI has a very high system load,
as one thread is constantly polling for new messages, ef-
fectively occupying one of the 2 cores. The curve for
ETHOM on DX, which is measured on the 8-core Xeon
system, indicates that a multi-core platform is a much
better basis for our polling approach and alleviates the
high load. The system load amounts to 12.5%, which
again reflects one core fully occupied with polling, and
there is very low IRQ load to be expected as no interrupt
is triggered by the DX adapter.

The next point worth mentioning is the very low system
time for Gigabit Ethernet and ETHOS on InfiniBand. On

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

 0

 10

 20

 30

 40

 50

 60

 70

1 4 16 64 256 1024 4096 16384 65536

C
P

U
 u

til
is

at
io

n
[%

]

Message size [Byte]

Xeon: ETHOS on IPoIB connected mode (ETHOS MTU=65493)
Xeon: Gigabit Ethernet (MTU= 1500)

PD: ETHOS on SCI (ETHOS MTU=34790)
PD: ETHOM on SCI (ETHOM MTU= 8000)

Xeon: ETHOM on DX (ETHOM MTU= 8000)

Figure 8: Systime measured with sockperf

InfiniBand, due to the high interrupt rate, non-negligible
time will be spend in the interrupt routines, but on Eth-
ernet, the overall system load in general is very low.

The unsteadiness of the ETHOS on SCI curve seems to
stem from changing between polling and interrupt mode
in Dolphin’s SCI sockets, which ETHOS uses.

System utilisation can be summarised with very low load
for Gigabit Ethernet, moderate load for ETHOS on SCI
and ETHOS on InfiniBand. At the other end is ETHOM,
which causes a very high load. ETHOM will clearly ben-
efit very much from upcoming many cores13.

3.4 TIPC Benchmarks

As one of the main points in our motivation was to speed
up communication over TIPC, we finally measured per-
formance of Ethernet, SCI, DX, and InfiniBand with the
TIPC protocol replacing TCP/IP.

Latency In Figure 9, the latency for varying message
sizes measured with tipcbench is depicted.

With the TIPC protocol, ETHOM on DX reaches the
lowest latencies we ever measured, amounting to 14 µs.
ETHOM on SCI lies at 19 µs for small messages. Gigabit
Ethernet has the highest latencies for all message sizes.
ETHOS on InfiniBand has a latency of 20 µs for small
messages, starting from 8 KB it has the lowest latency of
the measured interconnects.

Comparing ETHOM and ETHOS on SCI, a decrease in
latency of between 10 and 20 µs can be observed for mes-
sages smaller than 8 KB. For 8 KB and above the bigger
packet size supported by ETHOS leads to a latency which
is on par with ETHOM.

13the term used for high number of cores per CPU die

 300

 200

 100 100
 90
 80
 70

 60

 50

 40

 30

 20

 30

 20

 13
 64 128 256 512 1024 2048 4096 8192 16384

R
ou

nd
-T

rip
/2

 [u
s]

Message size [Byte]

Xeon: ETHOS on IPoIB c. mode (ETHOS MTU=65493, IPoIB MTU=65520)
Xeon: Gigabit Ethernet (MTU= 1500)

PD: ETHOS on SCI (ETHOS MTU=34790)
PD: ETHOM on SCI (ETHOM MTU= 8000)

Xeon: ETHOM on DX (ETHOM MTU= 8000)

Figure 9: Latency measured with tipcbench

Bandwidth Figure 10 shows the bandwidth for vary-
ing message sizes measured with tipcbench. Several facts
are interesting about this measurement: (1) Gigabit Eth-
ernet provides the best throughput for small messages,
has a significant decrease at a message size of 4 KB and
reaches a maximum of clearly below 500 Mb/s. It is not
clear to us why Ethernet performs so well for small mes-
sages in this test, but we suspect that this is influenced
by polling and very efficient buffering. The fact that
the maximum throughput is rather low indicates that
the strength of the TIPC protocol lies in low latency
rather than a high bandwidth. (2) The second point that
catches the eye is the severe decrease in bandwidth of
ETHOM on DX for messages of 8 KB and above. Part of
the problem should be related to the limitation of 8 KB
for packets that can in our implementation currently be
sent via message queues. Another part seems to be the
way that ETHOM deals with send failures. As this prob-
lem does not appear with NPtcp, we suspect part of the
problem in the way TIPC uses the ETH interface or in
the way tipcbench works. We are still investigating this
issue and hope for improvement when we get rid of the
“8 KB limit”.

Comparing ETHOM and ETHOS on SCI, we see an im-
provement in bandwidth for practically all message sizes.
An increase for message sizes above 8 KB is expected after
modification of ETHOM.

Summarising the TIPC benchmarks, we record that
ETHOM on SCI and DX shows a very low latency. Com-
pared with Ethernet, it provides a decrease by the factor
2 to 3 for small messages and up to 4 at 4 KB. Concerning
bandwidth, Ethernet performs surprisingly well for small
messages. Tipcbench and the effects with ETHOM on
DX have to be studied more thoroughly.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 64 256 1024 4096 16384 65536

T
hr

ou
gh

pu
t p

er
 d

ire
ct

io
n

[M
ib

it/
s]

Message size [Byte]

Xeon: ETHOS on IPoIB connected mode (ETHOS MTU=65493, MTU=65520)
Xeon: Gigabit Ethernet (MTU= 1500)

PD: ETHOS on SCI (ETHOS MTU=34790)
PD: ETHOM on SCI (ETHOM MTU= 8000)

Xeon: ETHOM on DX (ETHOM MTU= 8000)

Figure 10: Bandwidth measured with tipcbench

4 Conclusions and Outlook

The tests performed within the scope of this article show
that ETHOM – making use of a high-speed interconnect
like either SCI or Dolphin DX – is a solution that offers
better performance than Gigabit Ethernet, latency-wise
and bandwidth-wise. Regarding the completely different
price range of Gigabit Ethernet and high-speed intercon-
nects, this comparison is only reasonable, when an Eth-
ernet interface is required.

Comparing the results with ETHOS [9], which imple-
mented an Ethernet interface using kernel-level sockets
as its lower interface, we observe a 30%-70% improve-
ment in bandwidth for small to medium packages and
about a 30% decrease in latency, when SCI is used.

The advent of many cores should have a twofold positive
effect: (1) The network should become an even bigger
bottleneck for communicating applications, as the con-
nection is shared by a bigger number of cores, so better
communication performance is highly appreciated. (2)
Having a smaller ratio between the one core sacrificed
for communication and the number of cores still avail-
able for computation reduces the relative communication
overhead.

With ETHOM, we present a driver for Linux, that makes
effective use of the lowest message passing layer of the
Dolphin software stack. Processing Ethernet frames from
the layer above, it enables a potentially wide range of
software to make use of Dolphin’s high-speed networks.
It has a low overhead and is small with about 1000 lines
of code.

Currently, ETHOM fulfills our main aim to enable TIPC
– and any other software communicating via Ethernet
frames – to use SCI and DX. Besides ETHOS, it provides
the only Ethernet interface for SCI and DX; as a side
effect, support for IP-routing is now offered using the
standard kernel IP stack on top of ETHOM.

On the other hand side, porting software to the native
interfaces of high-speed interconnects almost always pro-
vides better performance and efficiency at runtime – ob-
viously at the cost of porting effort. As usual, it remains
to the user to balance the pros and cons.

Having succeeded to let TIPC run on top of SCI and DX,
our next goal is to sacrifice the compatibility to Ethernet
and design a native TIPC bearer for SCI and DX. This
way, we hope to further improve performance. Apart
from that, the effect of the performance improvement
onto applications and higher-level functionality will be
studied.

References

[1] V. Krishnan, “Towards an Integrated IO and Clustering
Solution using PCI Express,” in IEEE Cluster, (Austin,
Texas), Sept. 2007.

[2] S. Fu and M. Atiquzzaman, “SCTP: state of the art in
research, products, and technical challenges,” in Com-
puter Communications, 2003. CCW 2003. Proceedings.
2003 IEEE 18th Annual Workshop on, pp. 85–91, 2003.

[3] E. Kohler, M. Handley, and S. Floyd, “Datagram
Congestion Control Protocol (DCCP).”
http://ietfreport.isoc.org/rfc/PDF/rfc4340.pdf,
2006.

[4] L.-A. Larzon, M. Degermark, S. Pink, L.-E. Jonsson,
and G. Fairhurst, “The Lightweight User Datagram
Protocol (UDP-Lite).”
http://ietfreport.isoc.org/rfc/PDF/rfc3828.pdf,
2004.

[5] S. Hopkins and B. Coile, “AoE (ATA over Ethernet).”
http://www.coraid.com/site/co-pdfs/AoEr10.pdf,
2006.

[6] J. Maloy, “TIPC: Providing Communication for Linux
Clusters,” in Proceedings of the Ottawa Linux Sympo-
sium, pp. 347–356, 2004.
http://www.linuxsymposium.org/proceedings/

LinuxSymposium2004 V2.pdf.

[7] A. Stephens, J. Maloy, and E. Horvath, “TIPC Pro-
grammer’s Guide.”
http://tipc.sourceforge.net/doc/

tipc 1.7 prog guide.pdf, 2008.

[8] The Kerrighed Team, “Kerrighed: a Single System Image
operating system for clusters.”
http://www.kerrighed.org, 2008.

[9] R. Finocchiaro, L. Razik, S. Lankes, and T. Bemmerl,
“ETHOS, a generic Ethernet over Sockets Driver for
Linux,” in Proceedings of the 20th International Confer-
ence on Parallel and Distributed Computing and Systems
(PDCS), 2008.

[10] Q. Snell, A. Mikler, and J. Gustafson, “Netpipe: A net-
work protocol independent performace evaluator,” in In
Proceedings of the IASTED International Conference on
Intelligent Information Management and Systems, 1996.
http://www.scl.ameslab.gov/netpipe/paper/full.html.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

