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Markov Models and Extensions for Land Cover
Mapping in Aerial Imagery

Mohamed El Yazid Boudaren, and Abdel Belaid

Abstract— Markov models are well-established stochastic
models for image analysis and processing since thaljow one to
take into account the contextual relationships beteen image
pixels. In this paper, we attempt to methodically eview the use
of Markov models and their extensions for Land Covemapping
problem in aerial imagery according to available fierature and
previous research works. A new Markov model combimg
Markov random fields and hidden Markov models and nspired
from the NSHP-HMM model, initially introduced for
Handwritten Words Recognition is defined. New learmg and
labeling procedures are derived.

Index Terms—Aerial Images, Land Cover Mapping, Markov
models, Markov Random Fields MRF, Hidden Markov Mocels
HMM.

I. INTRODUCTION

Availability of accurate and up-to-date terrain epv
information is crucial
applications. For instance, land cover maps arentiss
inputs for Combat simulators and agricultural medel

Land cover mapping in aerial pictures can be seeamna
image labeling problem since we need to assigmadh pixel
a missing label.

Image labeling is a topic of great importance faany
computer vision systems. In general, three maincgghes

to many military and public

holds) the image observation joint probability he product
of local label observation probability.

Markov models were widely used in aerial image
interpretation and segmentation: land cover mapfing, 8],
remote sensing [9], Coast Line detection [7] andeBb
Change detection [10]. In this paper, we aim tcestigate
which Markov modeling could yield best results foe task
of segmenting high-resolution aerial images oflrareas into
its constituent cartographic objects (fields, ftsgkkes...).

The rest of the paper is organized as follows:isedt
defines the land cover mapping problem. SectiomeNiews
the use of several Markov models for land coverpimap In
Section 1V we remind the basics of the NSHP-HMM od
we defined in [3]. In section V, we define a norkov
model combining Dependency Tree Hidden Markov Model
(DT-HMM) and NSHP-MRF. Conclusion remarks and fetur
work are discussed in the last section.

Il. LAND COVER MAPPING INAERIAL IMAGERY

In this section, we formally define the so calladd cover
mapping problem.

Let us consider an aerial ima§ef sizeT = m x n pixels,
where m and n represent the image length and width
respectively. Each pixe$ [0 S is described by an observable
parametery 0V . The symbol sev ={v, ...v, } may

correspond to a color space or any other charatitexi

are used to solve computer vision problems: stdithas The problem under consideration in this sectiontas

structural and neural approaches. Stochastic maglaiof a
great importance to solve image labeling problespgeeially
when there is no direct deterministic link betwésrels and
observable pixels (two pixels sharing the sameaddtaristics
may be assigned different labels) [12]. Consequgettitere is
evidence that stochastic modeling is the most duiteland
cover mapping given the large variations in aemahges
[13].

Most stochastic systems incorporate Markov modéishw
provide a basis for modeling contextual constraimtgisual
processing and interpretation.

The use of contextual information within image féxe

allocate each of the image pixesOS a missed
(unobservable) labei, O E whereE ={e, ...e,}. All e

are supposed beforehand known so that training bean
performed on each of them taken alone. In thisecdnthey
correspond to natural object classes (fields, ferdakes...).
The problem solution consists in deriving
class-max 0 E' from a given aerial image observatipn
We assume that aerial images of a resolution enough high
that each pixe$ belongs to only one natural object class.
The problem can be seen as a segmentation praiite
neighboring pixels tend to belong to the same @redhe
only difference is that besides segmenting theabériage

a

means to go beyond the independence assumptioredetwinto distinguishable regions, we need to identdgleregion.

labels. In term of probability, the contextual cbamts are
expressed through local conditional probabilities.

In non-context situation (when independence assompt
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I1l. MARKOV MODELS FORLAND COVER MAPPING

A. Bayesian Naive Segmentation

The problem resolution of the aerial image mapping
described in section Il can be achieved througlelpise
naive Bayesian segmentation. This method consigach
pixel taken lonely.

Let us consider a grey level aerial image of a aegi
containing five classes: forest, grass, stone, mand sand
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which we denote ,e, ... g, respectively. Thus, for each
pixel sOS y, and X, take their

inv ={01... 255} andE = {e, ... e, } respectively.
In the following formulae, we will simply useinstead

values

of x,andy instead ofy_since we assign a label to each pixel

regardless of its location.
The natural object clasg of pixel x is chosen so that it
maximizes the MAP probability.
P(x, y)}

P(y)

Sincep( y) is constant while estimating we only need to
evaluateP (x, y).

x" = argmax P(x/y)= arg max{
xOE xOE

1)

X = arg max P(x,y) )
For this, we have recourse to Bayes rule.
x* =argmax P(y/x)P(x) 3)
XOE

The probability distributionsP(x) and P(y/x) can be

estimated from aerial images samples of the samene
P(x)represents the proportion of the objgdh the region

under consideration where@{y/x)reflects the variability

within the object class.

The criterion adopted here assures a minimal assdied
pixels number when the aerial image is enough big.

However, the resulting mapping when using such thook
contains a lot of discontinuities. This is majodye to noise
within the image and the nature of object clasBemselves.

Therefore, there are justifiable reasons to ththkt
considering grey level values of neighboring pixelsen
achieving the classification would improve clagsifion
accuracy. Indeed, when analyzing a pixel takenegldnis
usually impossible even for a human to tell whdss<it is.

B. Local contextual Bayesian Segmentation

To surmount the problem discussed above, one cantit®
estimating the object clasg of each pixes [ S using the

local informationy, whereN _is the neighborhood of pixel

} @

Nevertheless, the main limit of this method is hisavy
computational complexity. In fact, even for a vdimited

S.

XS

= arg max P(xs/yN ): arg max
XOE ¢ X0E

P(xs‘ yNS)
P(yn,)

number of object classé&§ one can not consider larger than

an 8-Neighborhood. Since image siz&s usually very big, a
huge amount of local information is then overlookelten
assigning labels.

Another important drawback of the previous Bayesian

methods is that they do not take account of theailglass
repartition within the aerial image.

C. MRF Bayesian Segmentation

The MRF Bayesian segmentation overcomes the prablem

discussed in the previous section and enables @riake
account of the geographical repartition of natuvhject
classes while segmenting an aerial picture.

The class-map associated to the aerial image is suppos
to be the realization of an MRF.

ISBN: 978-988-17012-5-1

OsOS:P(x./x)= P(x,/xy, ) (5)
It is usually computed based on the MAP criterion.
x" = argmax P(x/y)

xOET (6)
This is equivalent to:
x" = argmax P(y/x)P(x) )

xOET
A particular case of Bayesian labeling consistssimg the
Hidden Markov Field (HMF) which assumes the followgi

P(y/x)= il P(y./x) ®)

P(y./x)=P(y./x,) 9)
Therefore, the likelihood probability becomes:

P(y/x)= il P(y,/x) (10)

To solve the MAP estimation problem, direct resols
are intractable. For this reason, many approximatio
algorithms have been proposed. One of the mostlaozu
ICM algorithm [11]. In [16], Pieczynski suggestsrtdax the
assumption of noise independence by replaxytg/st in

the likelihood probability.

P(y/x)= il P(y./%y.)

. (11)

However, the main drawback of HMF based classificat
in our opinion is that it ties a lonely pixel obgation
emissiony_ to each statex, whereas one needs usually a

larger observation to decide of the class of alpixe
Indeed, labels can be more accurately associategitons
than to solely pixels. For this reason, severalkadike [14]
consider region-based labeling and start by segngetiie
image into regions before assigning labels to pixel

D. HMM Based Land Cover Mapping

In [1], we proposed a solution based on a hieraathi
model constituted of two layers of HMM (figure 1).

Higher layer

lberass(OkF ?

rass

P (OﬁerasQT

Lower layer

?

bG..r:i.slok)

P O Zcrasd

owviw
Fig. 1 Two layered HMM architecture

The first layer comprises one unique HMM we called
high-level HMM. It contains as many super statestrees
number of natural object classes. The high-level NHM

e;grodels the natural objects geographical repartititin

ovides us with the prior probabiIiB/(x). Each super state

is associated to a low-level HMM that models the
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corresponding object class. The low-level HMMs ¢ibate
the lower layer of the global model that providesaith the
likelihood probabilityP (y /x) -

This model principle is very similar to that of NBHHMM
in the sense that local distributions are tied ightevel
model states. The training of our two layered mddel been
done in two steps: firstly, the low level HMMs werained on
unitextured pictures. Secondly the high level o wained
on multitextured pictures using the parameters biMs$ of
the first step, according to Baum-Welch algorithm.

For our experiments, we used real world aerialpéd of a
relatively large area, with a resolution of 50 ometers. Our
results were then used to generate reconstitutadrps like
depicted in figure 2. This showed that our classifias able
to satisfactorily reproduce the original images.

Fig. 2 Aerial image mapping using 'fvilo Iayé?ed HMMde )
original aerial image (left) and mapping resultght).
With the permission of "Régie de Données des Payaseie

RGD73-74" [17]

&

The main weakness of our model is that we scanagdla

images in a linear way. To weaken the repercussicuch a
choice, we considered horizontal scanning withgthHevel
HMM and vertical one within low-level models. Hovexy

numerous researches proved that 2D modeling gieésrb

results than 1D one.

IV. ComBINING MRF AND HMM FORHWR
In [3], we proposed a particularly interesting bt model

Finally, let us define the sets:

s, ={khOL/i<jor(=jk<i)}. 0, 05,

Z; is called thenon-symmetric half-planend ©; the
support of pixe(i, j) L .

For binarized images, the symbol wet {0,1}. A word

image is then a possible realization of a randatha fi
Xis an NSHP-MRF if and only if:
P(Xy/X5,)=P(Xy/Xe, ) OG0, )0 L (12)
The joint field mass probability? (X ) is obtained by:
P(X) = ﬁp(x xR

j=!

Bl
3

(13)

Authors usually the same form Giij for all pixels that is:
o={o,}G, oL
©, ={(i —i. j —j,)/1sk<P, j, >00r (j, =0i, >0} NL
For instance, the pixel support may be equal to:
O, ={(i-1j-1.G,j-D.G(-1j)G+1j-D}NL

B. NSHP-HMM (Non-Symmetric Half-Plane Hidden
Markov Model)

The key idea of NSHP-HMM is to tie the conditional
probability distributions within image columns toMi
states so that these ones condition the featusitiséy of the
adjacent MRF. For instance, HMM may include spéxial
states to detect the presence of an upstroke on-dtroke,

which would be very advantageous for HWR.

Let us rewrite the joint field mass probability terms of
pattern likelihood with respect to the HMM.

P(X//l):|jP(Xi/Xi‘l,...Xl,/]):ﬁl - P(X; /Xe,,4)

(14)

As columnX is associated to a parallel state stochastic

called NSHP-HMM which advantageously combines MRproces) = q, ... q, -

and HMM for handwritten words recognition (HWR). it

mainly based on the use of MRF at pixel level with
probability
distributions assured by an HMM: The HMM analyzbs t

switching mechanism between conditional

image columns along the writing axis and an MRHyees
each column with specific parameters accordingeatrrent
HMM state. Tying the MRF probability distributionis the
HMM states enable the model to dynamically detecal
features within the image (strokes of differenteatations
inherent to handwriting) [3].
In the present section, we briefly present the NSHWM

model and show how it is used to model handwrittend
images.

A. NSHP-MRF (Non Symmetric Half Plane) Overview

LetL be a lattice ofi x m sites and leX = {Xij }(i oL

P(X/A)=ZQ: P(X,Q//\)=ZQ: P(X/Q.A)P(@Q/1)
=2Q: |__n:|1 P(qj'/qi—l)P(X X Xl:qiv/])
=ZQ: jrillp(qj/qj_l)li_jll P(Xy/Xo,.q;,4)

Note thatQ is a first order Markov process and that pixel
distributions of columrX ! depend only on the stagg .

(15)

The results obtain by NSHP-HMM modeling on a real
database of unconstrained words are extremelyfaztsy.
However, in opposition to other MRF based models,
NSHP-HMM main weakness is the requiring of imagig e
normalization.

V. AERIAL IMAGESMAPPINGUSING NSHP-HMF
Our main idea was to adapt the NSHP-HMM modeling to

ISBN: 978-988-17012-5-1

a random field defined over the lattite In the context of aerial images mapping. However, unlike words imagesal
HWR, mandn correspond to the width and length of the worgbictures do not possess a natural ordering of cadur

image respectively and each site represents a piXedtands  9enuine two-dimensional modeling is then required.

for the columnj of X and P(X»-/XA), A L stands The Hidden Markov Fields (HMF) can be seen as an
! extension of MRF. They have long been used to model
forp(x, /x, ) (K,)OA.

problems where the data is two-dimensional. ThécHask
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of HMF methods in our opinion is that most of thassume
that pixel conditional observations are independaeneach
other, this is more commonly called the ‘noise peledence
assumption’.

P(Y/X): EL P(yS/XS)

whereP(y, /x, ) does not depend on locatien

(16)

At statex_ level, the observations inter-relationship is then

ignored and a huge amount of information is thegriooked.

We believe that this kind of information may be of

fundamental importance in the context of aerial gem
mapping and propose to go beyond the noise indepeed
assumption by linking the local observation disitibn given

by an NSHP-MRF to an HMF states like we did in the

NSHP-HMM.

A. Non-Symmetric Half-Plane Hidden Markov Fields

Let L be a Ilattice of T =nxm sites and
letX ={X,}, ,, and ber ={Y, } , the hidden and the

observable random fields respectively of HMFdefined
over the latticd..

In the context of images, sites correspond to pixehindm
are image length and width respectively.
If L is a grey level image,

isv ={01..255}.

X; stands for pixel state and take their values instiaee

the symbol

setg = {el . eN}. In the context of aerial images mapping,

states correspond to natural object classes.
Y; stands for pixe(j, j)grey-level value ang \WANE

AU Lstands fop (v, /v, ). (k,)OA.

Finally, let us consider the sets:
o ={khoL/i<jor (I =jk<i)}
9, U,
A, OZ,
whereX ; is thenon-symmetric half-planand ©; andA,
are the observable and hidden support respectioély

pixel(i, j)OL.
We have:
P(Y/2)=> P(v,X/A)
=3 ptrap(xa)
(x,y) is a Non-Symmetric Half-Plane

(NSHP-HMF) if and only if:
* P(X; /X,2)=P(X; /X, 1)
* P(Yii /Y,X,/])= P(Yij/YO“’Xijl )

(18)
(19)

B. NSHP-2D-HMM Modeling of Aerial Images

set

Let us define the state suppdf :
A, ={0-1i)0 -2t

Then, we derive the joint probability:

P(y/1)=> P(Y,Xx/1)
=> P(Y/X,A)P(X/4)
=3 (il,j_)LLP(Y” Mo Xy APX, /X,4)

We only need to defir@ij to make the previous formula

(20)

fully defined. For instance, we can take:
0, ={(i-1j-0,6,i-9.G-L)).G(+Lj-D}NL
More  explicitly, the elements of NSHP-2D
HMM A (A, B,©)are:
cO= {Oij } (@i, ))OL . Inthis work, we consider:
0, ={(i-1j-2,G,j-D.(-1)).G+Lj-D}NL
V= {v1 . VM} , the vocabulary ofM possible
symbols[(i, j)OL:Y, OV.
For instance, we can tak¢ = {0 " 255} for
grey-level images.
*E= {el eN}, the set ofN possible states of the
model. (i, j)OL: X, OE.

* A:{%rr}]gq,nswadm:P( X; :Qn/xi—lj =6, X%41=8 ) ;

the state transition matrix.
*B = {bk (yii Yo, )}

1<sks N, (i, j)OL
conditional pixel observation distribution where
bk(yij,you )=PY, = Yi Yo, = Yo, X =g ).

Let us now consider the aerial image mapping prabte
the NSHP-2D-HMM context: given the observai¥oof an
aerial image. and a NSHP—2D—HMI\M(A, B,G)), mapping
consists in assigning the correspondiag that maximizes
the MAP probability.

X" =argmax P(Y/X )P(X)
xOET

, the

- argﬂgax (i,lj_)lmLp(Yij JACTERSRY ) P(xij /Xa, ) @)
= arg mTax bx,, (YIJ o, )axA,, X,
xOE (i,j)bL

Where the state sEz{el ...eN} is the set of natural

HMF object classes and the symbol ¥Yet {O..255} if we

consider grey-level aerial images.

Finding outX " is an NP-hard problem [15]. In fact, even
for classical 2D-HMM, the optimal decoding proceslus
intractable in practice; contrary to 1D-HMM, the
factorization of computation is not possible in P2IMM.

Fortunately, relaxation methods that yield goodultss

To make aerial image modeling through NSHP-HMFRyist in literature [4, 5]. In [5], an interestimgodel called

possible, we need to define the prior probabif /).

For this reason, we will resort in a first timea®pecial case
of HMF models which is 2D-HMM.

Dependency Tree Hidden Markov Model (DT-HMM) was
proposed to overcome the complexity problem of 2IANH
while keeping the two-dimensional aspect of ddta. hainly

2D-HMM is a special case defined in a similar way tbased on the idea that each state depends on oely o

1D-HMM. The only difference is that each state defseon
one state in both horizontal and vertical directioifhe
causality principle is then maintained.

ISBN: 978-988-17012-5-1

neighboring state at a time.
Thereafter, we summarize the main aspects of DT-HMM
Then, we will develop the DT-NSHP-HMM. Finally, wall

WCE 2009
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- | i
they exhibit a reasonable computational complexity. V, (l, j) =< IBE (30)

derive the training and recognition procedures stralv that maxa, (k |),3i+1,-( )if t(i +1 j) — ( )
{ otherwise

C. DT-HMM Overview .
Th inid ¢ DT-HMM is th h q Thereatfter, let us consider:
e main idea o - is that each state depesrs Dk(- -)_ ( j)\/k ( ) (31)

only one neighboring state at the time. This nedginy state

may be the horizontal or the vertical one dependinga V& can compute the valuesgf(i, j)recursively as

direction random vanabte(l )such that: follows: o
- y_ (-1 j)with prob 05 22) B, 1)=b.\y; /¥e, 4. D7) (32)
(i,i)= {(I j -1)with prob 0.5 Finally, let us define:
The model assume(s the foIIO\)/ving: X)) = Xa:g)igi.j (k) (33)
R X /X, )if ti,§)=0-11]) : :
X, i/ i (23) Note thaty = ar k) is the solution of the
( u/ ) {P (X”/X, 1])If t( J)— (i, i _1) T(0,0) XT(g)ﬁO,O( )
whered, ={(i-1j).(i,i -L}NL. MAP labeling defined above.
Let the direction function be: X =Xr(00) (34)
D)= v oif (i, j)=0-1]j) (24) Thereafter, we show how the previous algorithm ban
R i, )=, -1) used iteratively to produce the image labeling.
Consequently According to the MAP criterion, we have:
’ *=argmax P(Y, X
P(X; /X4, )= Poi (X /%) (25) e (P(Y)X t) (39
The variablet defines a tree structure (dependency tree) arg max Z /
over the lattice with pixel (0,0) as the root. Let us assume:
D. DT-NSHP-HMM Definition 2. P X /t)=max P(Y, X /t) (36)

The DT-NSHP-HMM has the same parameters as theConsequentIy,
NSHP-2D-HMM. The only difference is ik matrix.

Horizontal and vertical states transitions are nesstied = arg max max P(Y, X /t)} (37)
separatelyA matrix is then replaced by two matrices that we - arg max max P(Y/X t)P(X/t)}
denoteA,, andA, where:

A, ={akl}]sk,IsN 8y = P( Xi =6 /X1 =& ) (26) As P(Y/X ,t)— P(Y/X). therefore:
A ={addagaae =P X, =6/Xy =6 X * = argmax{P (¥ /X )max P(X /t)} (38)
For the sake of simplicity, we will denote the XDET ‘
DT-NSHP-HMM A (A, B,© ) wherea = {A,, , A }- Let us denote” =argmax P(X /1) (39)
The image likelihood calculus given a dependeneg ts We get:
as follows: X =arg max P(Y/X t)P(X/t") (40)
XOET

P(Y/At)=> P(Y,X/4)

27 Which we propose to solve iteratively by maximizangprt
i P(Y/X A t)P(X//] t) @) andX alternatively like follows:
|1b)(U ij ,Y@ )(Xt(i,j),Xij) _arg maX P(Y/X)P(X/t ) (41)
t =arg max P(X*/t)

E'_ Labeling Procedu-re o Hence, an initialization is required to run theratéese
Given the observatioly of an aerial imagel and a process. We can choose either to start by initiaizhe
DT-NSHP-HMMA (A, B,©), mapping consists in assigningdependency tree or the labeling.
the corresponding that maximizes the MAP probability o o
given a dependency tree function * Initialization:  Initialize  Dependency tree:
x" = argmax P(y/x)P(x) (28) t(i,j)= arg_rt:ln”y(i’j) - ymyj)”
1]

xOET
In the following we will adapt the DT-HMMViterbi

procedure to the DT-NSHP-HMM model. Where” " is Euclidian distance.

In a first time, we assume the dependency treengive » Step 1: Achieve adapted Viterbi alignment as
LetT (i, j)be the sub-tree having pi)(ej j)as a root and described above.
let 5, (k) be the maximum probability that,  is » Step 2: Update Dependency tree as follows:
generated starting by stdtén the roofj, j ). tii)= argtg(lmax A1) K %)
Let us define: ()5 () )= (.1) « Step 3: If end criterion not reached go to step 1.
maxay, (K, )B; ., if tli,j+1)=1(i,] e End
H (i, j)=1 ' o (29)
1 otherwise

ISBN: 978-988-17012-5-1 WCE 2009
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F. Training

To train our model on aerial images, we suggegbpamg
the learning in two steps like we did in [1].

First, to compute the observations conditional philities,
we devote an NSHP-MRF model to each natural olgjass.
We train each model on a natural object class taltene.
Explicitly, we need to have unitextured aerial irragThen,

VI.

In this paper, we addressed the problem of lancercov
mapping in aerial images. After reviewing Markov dets
based previous works, we reminded the NSHP-HMM
formalism that we proposed in [3] for HWR and defirthree
new NSHP-like models.

First, we defined the NSHP-HMF which is a spec#lecof

CONCLUSION

we estimate the state transition ma#iusing the parameters HMF that assumes observations local conditionaéddpnce

of the previous learned NSHP-MRF models.

within aerial image.

Letg, be the NSHP-MRF corresponding to object class of Then, we defined a particular NSHP-HMF that weezhll
statee, . Therefore, the classical emission probabilityegiv NSHP-2D-HMM which can be seen as an extension ef th

byb, (y; , Y. )is computed as follows:

b (y+ Yo, )= P1Y; /Yo, - &) (42)
To estimate the transition matrix, we assume iinsa fime
that we have labeled aerial pictures.
Thus, we can simply resort to a frequency-basexinig
Let us define the parameters:

NSHP-HMM model since it assign a state to each enaxel
instead of a whole image column.

Like HMF and 2D-HMM, direct inference methods ofrou
new models are intractable in practice. For thesom, we
proposed to approximate the NSHP-2D-HMM by a
DT-NSHP-HMM that extends the DT-HMM.
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an image labeling.
» Step 2: Re-estimaté matrix as described above.
» Step 3: If end criterion not reached go to step 1.

(6]

 End [°]

G. Model Complexity [10]
In this section, we demonstrate that our model lEtshia
reasonable computational complexity. Let us comside

DT-NSHP-HMM (A, B,©) and an aerial image of sizeT. [11]

Let N be the number of states akidthe number of symbols.
NSHP-MRF training is performed independently onl2]
unitextured images. Since, this kind of modelingeadly

exist, there is no need to analyze its compleXXy-HMM |13
modeling also already exists and it was shown JrtHét its
complexity is linear with the image siZe

Accordingly, we only need to analyze our adaptetNgi [14]

procedure. We will prove that we can convert oudeido a
simple DT-HMM after a set of reasonable-cost corapaons.
If we compute for each pixe(i,j)O0L and each [15]

statek [ E the value ob, (y; , Yo ) . we will have all thé3
ij

. N [16]
matrix elements necessary to apply Viterbi procedura

simple DT-HMM context. Consequently, the modef17]
complexity is tractable in practice.
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