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Nonlinear Oscillation of FGM plates under
Aerodynamic Load

M. K. Singha, T. Prakash and M. Ganapathi

Abstract—Large amplitude flexural vibration characteristics
of functionally graded material plates under aerodynamic load
are investigated here using the finite element approach.
Material properties of the plate are assumed to be graded in the
thickness direction according to a simple power-law
distribution and the effective material properties are evaluated
based on the rule of mixture. The formulation is developed
based on the first-order shear deformation theory considering
the physical / exact neutral surface position. The shear
correction factors are evaluated from the energy equivalence
principle. The geometric nonlinearity, based on von Karman’s
assumptions is introduced and the first-order high Mach
number approximation to linear potential flow theory is
employed for evaluating the aerodynamic pressure. The
harmonic balance method is applied to study the nonlinear free
flexural vibration frequencies of FGM plates and flexural
vibration amplitude of FGM plates under supersonic air speeds.
Further, the nonlinear equation of motion is solved using
Newmark’s time integration technique to understand the
flexural vibration behavior (limit cycle oscillations or chaotic)
of FGM plates under aerodynamic load.

Index Terms—FGM plate, Finite element, Nonlinear flutter,
Limit cycle oscillation.

I. INTRODUCTION

Functionally graded materials (FGM) with continuously
changing thermal and mechanical properties at the
macroscopic level have recently received considerable
applications in thin walled structural components of aircraft
and space vehicles. Hence the dynamic instability (flutter)
characteristics of FGM plates and shells exposed to high
velocity air flow along the outer surface is an important
problem to be investigated in the design of aerospace
vehicles.

Most of the studies on the flutter analysis of plates
considered the first-order piston theory for estimating the
aerodynamic loads and evaluated the critical flutter speed of
isotropic plates and composite laminates [1-5]. Sarma and
Varadan [6] and Dixon and Mei [7] studied the nonlinear
flutter of rectangular isotropic and composite panels using
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the finite element approach. Abdel-Motaglay et al. [8]
employed finite element method based on first order shear
deformation theory and approximated the aerodynamic load
based on quasi-steady first-order piston theory to investigate
the influence of flow direction on the large amplitude
limit-cycle oscillation of composite panels. Guo and Mei [9]
employed 6 x 6 normal modes to study the nonlinear flutter
characteristics of composite plates under supersonic flow.
However, the studies pertaining to the flutter behavior of
functionally graded plates are limited in the literature.

Prakash et al [10] and Prakash and Ganapathi [11]
presented critical flutter speed of FGM plates in thermal
environment. Sohn and Kim [12] examined the flutter
boundaries of the FGM plates under thermal environments
through a linear flutter study, employing first-order shear
deformable finite element. Recently, few researchers have
attempted to analyze the nonlinear flutter characteristics of
the FGM plates [13-15]. Sohn and Kim [13] investigated the
nonlinear thermal flutter behavior of the FGM panels under
the supersonic flow through a time domain analysis. The time
independent deflection due to thermal loads was
superimposed with the time dependent deflection due to
flutter motion. Haddadpour et al. [14] examined the
nonlinear vibration of FGM plates under aerodynamic load.
The nonlinear partial differential equation of motion based on
classical plate theory and von Karman’s geometric
nonlinearity was solved by Galerkin’s procedure along with
Runge-Kutta method for time integration. Ibrahim et al [15]
investigated the nonlinear flutter and thermal buckling of a
functionally gradient material panel investigated using the
finite element.

In the present paper, a four node high precision plate
bending element [5] based on exact neutral surface position
[16, 17] is employed to investigate the large amplitude
flexural vibration characteristics of FGM plates under
aerodynamic load. The shear correction factors are calculated
from the energy equivalence principle. The element includes
shear strains as degrees of freedom and does not lock in
shear. First-order high Mach number approximation to linear
potential flow theory is employed for evaluating the
aerodynamic pressure and the harmonic balance method is
applied to obtain the vibration amplitudes of FGM plates
under aerodynamic load. Further, the equation of motion is
solved using Newmark’s time integration technique to
investigate the limit cycle oscillation or unsteady nature of
the flexural oscillation (nonlinear flutter) of FGM plates.
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II. FGM PLATE

A functionally graded material (FGM) plate of thickness %
made by mixing two distinct materials, metal and ceramic is
shown in Fig 1. The material at the top surface of the plate is
ceramic, whereas, the bottom surface material is metal rich.
The volume-fraction of ceramic (¥, ) and metal (), ) vary

through the thickness of the plate according to a simple
power-law and is expressed as

2z +h g
Vi(2,)= [%j D V() =1V (2, (D

where & is the volume fraction exponent (kK > 0) and z,

is the distance measured from mid-surface of the plate. The
variation of effective modulus of elasticity £ and density
L may be written as

E(z)=E (2)V,, +E, (2)V,,
p(Z) = Iocer(z) I/cer +pm (Z) Vmet (2)

The Poisson’s ratio V is assumed to be a constant
v(z) =v,.

er

For such FGM plates, the distance d of the neutral surface

from the geometric mid-surface of the plate may be expressed
as [16, 17].

hl2
J.E(st’T)stdst
d —_ zh/2 (3)

hi2
[EG,,. Dz,
—h/2
For the analysis of FGM plates, the X-Y plane of the
Cartesian coordinate system is assumed to coincide with the

neutral surface of the plate and z, is measured upwards
from the neutral surface. The volume fraction of ceramic

v

<o ) i the new coordinate system can be expressed as

k
Vce/‘ (Zns ) = [W] (4)

Ceramic rich surface

| A Neutral surface——p

L _¢ _____ l —td— = Mid-surface -
!

v

Metal rich surface

Fig 1. The coordinate system, material distribution and neutral
surface of a functionally graded rectangular plate.

III. FINITE ELEMENT FORMULATION

The displacement components at a generic point (x, y, z,)
of a shear deformable rectangular plate can be expressed as
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M(X, Vs Zns ) = L{O(X, y)+zms {_ W’x +gxz }
V(x’ y’ Zns ) = vO (X, y)+ st {_ W’y +gyz }
w(x,y,z,,) = wy(x,)
Here, uy, vy, w are the neutral-surface displacements; (), and
(), represent the partial differentiation with respect to x and y;
p.=—w, +e&_and p_=—w, +¢_ are the nodal rotations;

&)

¢ and g, are the shear strains (i.e., rotations due to shear).

Following von Karman strain-displacement relation, the
in-plane strains can be written as

{‘9} = {gxx’ E s €y }T = {SL }+ {5NL }"" Z g {5b} Q)

2
uO,x 1 W,x
Where _ ; _ 2
{EL }_ Yo,y ’ {SNL } ) w,
Vo T, wow,
- W,xx + gxz,x
and _
{gb } -3 W,yy + gyz,y

2w, teE, tEL,
Here, {¢ l=1{¢,}+{¢,, | is the membrane strain; {g, } is
the linear component of the membrane strain and depends on

the in-plane displacements (uo,vo); {gNL} is the nonlinear
component of the membrane strain and is a quadratic
function of transverse displacement (w) and {g,} is the
curvature and is a function of lateral displacement and shear
strains (w, gﬂ,gw). In the neutral surface based formulation
[16, 17], the membrane {N}, bending {} and shear {0}
stress resultants can be expressed as
{N} = {Nxx Nyy ny }T = [ij ]{gm}
{M}: {Mxx Myy Mxy}T :[Dlj] k}
0=k [sle. .} ™

where [4], [D], and [S] are extensional, bending, and shear
stiffness coefficients respectively and are defined by

[4,.D,]= [[0,10.2)d, " [S,)= [K.10d, ©

g g
2 2

K, is shear correction factor introduced here to correct the
discrepancies between the actual non-uniform shear stress
distribution through the thickness of the FGM plate and the
assumed constant state of shear strain. The shear correction
factor is estimated using the energy equivalence principle as

K =2 ©)
- SLDe,
Where,
i, ?
2
» 2 i J E(z)zdz
2 z . 20y
€= hj hJ.E(z)zdz dz e,= hj ZZT dz
22 EN
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According to First-order piston theory [4, 5] the
aerodynamic pressure Ap, may be expressed as
ow 1 ow ow  ow
Ap =PI M—+——=A—+g— (10)
ox a, Ot ox Ot

where, P, is the free stream static pressure, a,, is the speed of
sound in the free stream, M is the Mach number and y is the
adiabatic exponent. The aero-dynamic constants 4 and g may
be evaluated for particular values of P,, a, and ¥.

Following standard procedure, the finite element equation
of motion for the large amplitude flexural vibration of FGM
plates under aero-dynamic load may be written as

sl o)
v Kl,b+$‘((f)w>+AH§f}:{g}

Here, M and K, are the mass and linear stiffness matrices
respectively; KN; and KN, are nonlinear stiffness matrices
linearly dependant on transverse displacement w; KNj is
nonlinear stiffness matrix, which is a quadratic function of
transverse displacement w; A and C are the aerodynamic load
and damping matrices respectively. Subscripts ‘m’ and ‘b’

(11)

correspond to  membrane (”o Vo ) and bending
(W, €€y, ) components of the degrees of freedom and the

corresponding mass and stiffness matrices respectively.

The governing equation (11) is solved using a four nodded
shear flexible high precision plate bending element [5] with
ten degrees of freedom namely uo, vo, W, W,x, Wy, War, Wiy,
Wy €. and £, - The displacement components ug, vy, W,
7z and x,, are expressed as
uo = [Lx,y,0] {ci},
vo = [1,x,3,x] {ci}, i
w =[1,x,y, X, Xy, y2, X, x2y, xyz, y3, x*, x3y, x2y2, xy3, y4, X,
x4y, x3y2, x2y3, xy4, ys, xsy, x3y3, xys] {ci}, i =932
8XZ=[l,x,y,xy]{c,.} i = 33’ 36
&, =[Lxy.olie} i = 37,40

This element does not lock in shear as the shear strains (&£,

and & _ ) are taken as independent degrees of freedom.

IV. SOLUTION PROCEDURE
Neglecting the in-plane inertia matrix (A, = 0), the
membrane displacements can be written as
{5m } = [Kmm ]71 [KNI (W)]{éb } (12)
Substituting expression (12) into governing equation (11)
leads to
[Mbb] {511}+ g[C] {5b}+ [Kbb +Ky (W, W) + lA] {§b} = {0} (13)
where,
K ow.w)] = [KNs 0w w)] = [KN, 0] [K,,, ] (KN, (w)]

Here, Ky is a quadratic function of transverse displacement
w, The governing equation (13) is solved for nonlinear
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vibration and nonlinear flutter of FGM plates under
aero-dynamic load. The details of the solution procedure are
explained below.

For the case of undamped oscillation, a harmonic solution
for the large amplitude free flexural vibration is assumed to
be

{5b}: 25,,[ cosiat (14)

i=1
Substituting the assumed harmonic solution (14) into the
governing equation (13), equating the coefficients of
harmonic terms coswt, cos(3wt), cos(Swt) etc (harmonic

balance method) and using ¢og? a)tzicos a)t+icos3a)t the

following equation is obtained for the large amplitude
flexural oscillation of the FGM panel under aerodynamic
load.

Kt 3K o) [0} o Jou )=}

The equation (15) is solved iteratively to solve as explained
below

(15)

A. Free Vibration:

Linear vibration frequencies and mode shapes are
obtained from the eigenvalue equation
[K =M, ]{5h} = {0} Thereafter, the nonlinear
eigenvalue equation (15) is solved iteratively as explained in
Ref [18] to obtain the frequency-amplitude relationship for
the case of large amplitude free flexural vibration ( 4=0) of

FGM plates

B. Flutter

In the presence of aecrodynamic load any two of the
eigenvalues of equation (15) ® will approach each other, as
the aerodynamic load parameter A increases from zero, and
coalesce to o, at 1= A, and become complex conjugate pairs
w = wg * iw; for 1 > A,. Here, A is considered to be that
value of A at which first coalescence occurs, and is the critical
flutter speed parameter. Then, the vibration amplitude wp,, is
fixed to a constant value, say Wy, = 0.2, and the aerodynamic
load parameter A; ( > A) is increased further till any pair of
nonlinear frequencies of equatiion (15) coalesce. After
evaluating the critical flutter speed (limit cycle oscillation)
with amplitude wy,, = 0.2A, the amplitude is increased further
to get the corresponding nonlinear flutter speeds.

C. Time history analysis

For the case of large amplitude flexural vibration, the
vibration amplitudes {5 ,5,}" are obtained from the
eigenvalue equation (15). Thereafter, the governing equation
(13) is solved by newmark’s time integration procedure
staring from the initial condition ({5»1’@ }T at time ¢ = 0)
obtained from the eigenvalue equation. The time history of
transverse displacement at different aero-thermal loads is

plotted to understand flexural vibration characteristics of
FGM plates under aerodynamic load.
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V. RESULTS AND DISCUSSION

Large amplitude flexural vibration characteristics of
aluminum / alumina (Al / Al,O3;) FGM square plates under
aerodynamic load are investigated here. The material
properties used in the present analysis are

E., =380GPa, p,, =3800kg/m’ for alumina
E. .. =70GPa, p, . =2702kg/m’ aluminum

Poisson’s ratio U is 0.3 for both alumina and aluminum.
The immovable simply supported and clamped boundary
conditions, considered for the present investigation are
expressed as:
Simply supported:
Clamped:

uy=vo=w=0atx=0,aandy=0, b
up=vo=w=0,w,=0 atx=0,a
upy=vo=w=0,wy,=0 aty=0,b

The efficiency of the present plate bending element and the
solution procedure for the vibration and supersonic flutter
characteristics of composite plates are established earlier [5]
using the linear structural theory. The linear frequency

parameter m=wh./p, /E, fora simply supported alumina /

aluminum thick square plate (a/h = 10) are compared in Table
1 with available results. It is observed that the vibration
frequencies obtained from the present high-precision plate
bending element with exact shear correction factor closely
match with the results of higher order shear deformation
theory [Matsunaga 20] and the first order shear deformation
theory with shear correction facor 5/6 [Zhao et al. 19].
Further, the variation of nonlinear frequency ratio (on /@y ;
ay, is the linear frequency) with non-dimensional maximum
amplitude (Wpa/; Winax 1S the maximum amplitude of the
plate) of an immovable simply supported isotropic square
plate (a/h = 1000) is reported in Table 2 along with the
published results and they compared well. Further, based on
progressive mesh refinement, an 8 x 8 mesh is found to be
adequate for nonlinear analysis of the full plate.

Now, the frequency-amplitude relationships (i.e., the
variation of nonlinear frequency @y, with vibration
amplitude wy,x/h) for simply supported and clamped, thin
(a/h=100) square Al/ Al,0; FGM plates are studied in Fig 2
for various values of material gradient index. The
non-dimensional frequency of FGM plates is defined as

3 .
oy, = oya’ T /Pch/Dc , Where D, = E..h is the

12(1-v?

flexural rigidity of ceramic plate. It may be observed from the
figure that the nonlinear frequency in general increases with
the increase in vibration amplitude. It can be further seen that
the frequency decreases with the increase in the gradient
index k, because of the reason that the stiffness degradation
occurs due to the increase in metallic volumetric fraction.
The clamped FGM plates exhibit higher vibration frequency
compared to simply supported FGM plates as the plates
behave stiffer with clamped boundary condition.
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Table 1. Comparison of linear frequency parameter
@=wh,/p,/E, forasimply supported alumina / aluminum

thick square plate (a’h = 10).

Present FSDT HSDT
study Zhao etal. | Matsunaga
[19] [20]

k=0 0.05767 0.05673 0.05777
k=0.5 0.04899 0.04818 0.04917
k=1 0.04416 0.04346 0.04426
k=5 0.03761 0.03757 0.03811
=10 0.03631 0.03591 0.03642

Table 2. Comparison of nonlinear frequency ratio (w,, /@, )

of simply supported isotropic square plate (¢ = b, a/h =
1000).

Present study Leeetal. | Shietal.
wh [21] [22]
6x6 8x8 10x10
0.2 | 1.020 | 1.020 | 1.020 1.020 1.0195
04 | 1.079 | 1.078 | 1.077 1.077 1.0765
0.6 | 1.171 | 1.169 | 1.168 1.165 1.1658
0.8 | 1.289 | 1.286 | 1.284 1.280 1.2796
1.0 | 1.427 | 1423 | 1421 1.415 1.4163
1.2 | 1.581 | 1.575 | 1.572 1.567
14| 1.744 | 1.738 | 1.735 1.737
1.6 | 1.919 | 1.910 | 1.906
1.8 | 2.095 | 2.088 | 2.084
2.0 | 2282 | 2.275 | 2.272
4.0
a 1 ——0.00 —0—0.20 ——0.50
( ) : ——1.00 ——2.00 —a—5.00
3.0 :'
Oy
20 :
1.0 +
(b) ™

wNL

20

1 Whna/h 15
Fig 2. The variation of nonlinear vibration frequency (w,, ) with
vibration amplitude (Wy/h) of Al / Al,O; thin (a/h = 100) square

FGM plates. (a) simply supported, (b) clamped.
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600 T

Aero dyn load, 3

400 o Guo and Mei, [9]

—— Present

ol v
0.0 0.2 04 0.6 0.8 1.0 1.2
Wmax/h

Fig 3. Comparison of non-dimensional aerodynamic load 4 (= 4,
@’/ D) of simply supported isotropic square plate (a/b = 1; alh =
100).

Thereafter, the influences of geometric nonlinearity on
the vibration characteristics of simply supported and clamped
FGM plates under aerodynamic load are taken up for
investigation. At the beginning, the non-dimensional
maximum vibration amplitudes (wp./h) of a simply
supported isotropic thin square plate (¢ = b, a/h=100) are
estimated at different non-dimensional aero-dynamic load (4
= 1, @’/ D) and the results are found to compare well with the
published results [Guo and Mei 9] in Fig 3. An 8 x 8 mesh of
the plate element is employed here to solve eigenvalue
equation (15) and the eigenvector indicates that maximum
displacement (wy,,y) occurs at (0.75a, 0.5b).

The nonlinear response of simply supported thin Al /
Al,O; FGM plate (k = 0.5, a/h=100) under supersonic airflow
with mach number M = 2.0 is presented in Fig 4 along with
phase diagrams and Poincoir maps to show the degree of
closeness to the limit cycle oscillation. At the beginning, the
nonlinear eigenvalue equation (15) is solved iteratively to
obtain the aerodynamic loads corresponding to a given
maximum vibration amplitude. The non-dimensional
aerodynamic loads corresponding to vibration amplitudes
(Wmax) 0.4h is 371.09 (1, = 331.82 for k =0.5). Thereafter,

time history analysis is performed from the same initial
condition. The flexural oscillation is observed to be smooth
as shown in the phase diagram Fig 4(b) The poincoir map
given in Fig 4. (c) shows the degree of unsteady vibration.

Furthermore, the bifurcation curves for the flutter response
of the plates under supersonic airflow of Mach number M =
2.0 is shown in Fig 5 for functionally graded plate (k = 0.5)
with simply supported and clamped boundary conditions.
The bifurcation graphs are the peak vibration amplitudes
over a period of few cycles of vibration in the time history
response of the plate under different magnitude of
aero-dynamic loads A. From the figure, it is observed that,
with the increase in aero-dynamic load, the amplitude of
oscillation increases and does not remain constant. It shows
the stable regime (A < A.;), the growing amplitude LCO and
chaotic oscillations over a range of aerodynamic loads. It
may also be seen that a reduced chaotic response is observed
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with the clamped boundary condition in comparison with the
simply supported boundary condition.

(a) Displacement History
0.4

0.3 -
=0.2 -
2 0.1 -
0 . . .

Iitude, w

£0.1 4 1 3 4
Sec)

<(,2 - in
-0.3 4
0.4 -

(b} Phase Diagram &

{c) Poinceir map

Vel
4
+*

-0.4 0.2 ] 0.2 0.4
-2 4 Disp.. wh
4
6 4

Fig 4. Nonlinear flutter response of a simply supported graded plate
(k=0.5,ab=1,ah=100)at A =371.09

Finally, Fig 6 presents the variation of maximum vibration
amplitude with non-dimensional aero-dynamic load, A
(=4,a’ID,.,) for a simply supported thin Al/ AL,O; FGM plate
(a/b = 1; a/h = 100) with different gradient index. For a given
aero-dynamic load, the vibration amplitude increases with
the increase in material index. .

VI. CONCLUSION

Flexural oscillation characteristics of functionally graded
plates are investigated using a high precision plate bending
finite element based on exact neutral surface position. The
harmonic balance method is applied to obtain (a)
frequency-amplitude relationship for the case of free flexural
vibration (b) critical aerodynamic pressure and (c) flexural
vibration amplitude beyond the critical aerodynamic speed
of aluminum / alumina (Al / Al,0;) FGM square plates.
Further, the flexural vibration behavior is characterized by
poincoir map and bifurcation curves, obtained from a time
domain analysis. The limited numerical results presented
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Fig 6. Flutter characteristics of simply supported thin Al /
Al,O3 FGM panels (a/b = 1; a/h = 100).
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