
 
 

 

Nonlinear Oscillation of FGM plates under 
Aerodynamic Load 
M. K. Singha, T. Prakash and M. Ganapathi

  
Abstract—Large amplitude flexural vibration characteristics 
of functionally graded material plates under aerodynamic load 
are investigated here using the finite element approach. 
Material properties of the plate are assumed to be graded in the 
thickness direction according to a simple power-law 
distribution and the effective material properties are evaluated 
based on the rule of mixture. The formulation is developed 
based on the first-order shear deformation theory considering 
the physical / exact neutral surface position. The shear 
correction factors are evaluated from the energy equivalence 
principle. The geometric nonlinearity, based on von Kármán’s 
assumptions is introduced and the first-order high Mach 
number approximation to linear potential flow theory is 
employed for evaluating the aerodynamic pressure. The 
harmonic balance method is applied to study the nonlinear free 
flexural vibration frequencies of FGM plates and flexural 
vibration amplitude of FGM plates under supersonic air speeds. 
Further, the nonlinear equation of motion is solved using 
Newmark’s time integration technique to understand the 
flexural vibration behavior (limit cycle oscillations or chaotic) 
of FGM plates under aerodynamic load.  
 

Index Terms—FGM plate, Finite element, Nonlinear flutter, 
Limit cycle oscillation.  
 

I. INTRODUCTION 
Functionally graded materials (FGM) with continuously 

changing thermal and mechanical properties at the 
macroscopic level have recently received considerable 
applications in thin walled structural components of aircraft 
and space vehicles. Hence the dynamic instability (flutter) 
characteristics of FGM plates and shells exposed to high 
velocity air flow along the outer surface is an important 
problem to be investigated in the design of aerospace 
vehicles. 

Most of the studies on the flutter analysis of plates 
considered the first-order piston theory for estimating the 
aerodynamic loads and evaluated the critical flutter speed of 
isotropic plates and composite laminates [1-5].  Sarma and 
Varadan [6] and Dixon and Mei [7] studied the nonlinear 
flutter of rectangular isotropic and composite panels using 

the finite element approach. Abdel-Motaglay et al. [8] 
employed finite element method based on first order shear 
deformation theory and approximated the aerodynamic load 
based on quasi-steady first-order piston theory to investigate 
the influence of flow direction on the large amplitude 
limit-cycle oscillation of composite panels. Guo and Mei [9] 
employed 6 × 6 normal modes to study the nonlinear flutter 
characteristics of composite plates under supersonic flow.  
However, the studies pertaining to the flutter behavior of 
functionally graded plates are limited in the literature.  
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Prakash et al. [10] and Prakash and Ganapathi [11] 
presented critical flutter speed of FGM plates in thermal 
environment. Sohn and Kim [12] examined the flutter 
boundaries of the FGM plates under thermal environments 
through a linear flutter study, employing first-order shear 
deformable finite element. Recently, few researchers have 
attempted to analyze the nonlinear flutter characteristics of 
the FGM plates [13-15]. Sohn and Kim [13] investigated the 
nonlinear thermal flutter behavior of the FGM panels under 
the supersonic flow through a time domain analysis. The time 
independent deflection due to thermal loads was 
superimposed with the time dependent deflection due to 
flutter motion. Haddadpour et al. [14] examined the 
nonlinear vibration of FGM plates under aerodynamic load. 
The nonlinear partial differential equation of motion based on 
classical plate theory and von Kàrmàn’s geometric 
nonlinearity was solved by Galerkin’s procedure along with 
Runge-Kutta method for time integration. Ibrahim et al [15] 
investigated the nonlinear flutter and thermal buckling of a 
functionally gradient material panel investigated using the 
finite element.  

In the present paper, a four node high precision plate 
bending element [5] based on exact neutral surface position 
[16, 17] is employed to investigate the large amplitude 
flexural vibration characteristics of FGM plates under 
aerodynamic load. The shear correction factors are calculated 
from the energy equivalence principle. The element includes 
shear strains as degrees of freedom and does not lock in 
shear. First-order high Mach number approximation to linear 
potential flow theory is employed for evaluating the 
aerodynamic pressure and the harmonic balance method is 
applied to obtain the vibration amplitudes of FGM plates 
under aerodynamic load. Further, the equation of motion is 
solved using Newmark’s time integration technique to 
investigate the limit cycle oscillation or unsteady nature of 
the flexural oscillation (nonlinear flutter) of FGM plates. 
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II. FGM PLATE 
A functionally graded material (FGM) plate of thickness h 

made by mixing two distinct materials, metal and ceramic is 
shown in Fig 1. The material at the top surface of the plate is 
ceramic, whereas, the bottom surface material is metal rich. 
The volume-fraction of ceramic ( ) and metal ( ) vary 
through the thickness of the plate according to a simple 
power-law and is expressed as 
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where  is the volume fraction exponent  and  
is the distance measured from mid-surface of the plate. The 
variation of effective modulus of elasticity 
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ρ  may be written as 
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The Poisson’s ratio ν  is assumed to be a constant 

0)( νν =z . 

For such FGM plates, the distance  of the neutral surface 
from the geometric mid-surface of the plate may be expressed 
as [16, 17]. 
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For the analysis of FGM plates, the X-Y plane of the 
Cartesian coordinate system is assumed to coincide with the 
neutral surface of the plate and  is measured upwards 
from the neutral surface. The volume fraction of ceramic 
( ) in the new coordinate system can be expressed as  
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Fig 1. The coordinate system, material distribution and neutral 
surface of a functionally graded rectangular plate. 

 

III. FINITE ELEMENT FORMULATION 
The displacement components at a generic point (x, y, zns) 

of a shear deformable rectangular plate can be expressed as 
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Here, u0, v0, w are the neutral-surface displacements; (),x and 
(),y represent the partial differentiation with respect to x and y; 

xzxx w εϕ +−= ,  and xzxx w εϕ +−= ,  are the nodal rotations; 

xzε  and  are the shear strains (i.e., rotations due to shear). yzε

Following von Kármán strain-displacement relation, the 
in-plane strains can be written as 

{ } { } { } { } { }bnsNLL
T

xyyyxx z εεεεεεε ++== ,,              (6) 

Where { } ;        { }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+

=

yx

y

x

L

uv

v
u

,0,0

,0

,0

ε

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

yx

y

x

NL

ww
w

w

,,

2
,

2
,

2
1ε  

and { }  
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

++−

+−

+−

=

yxzxyzxy

yyzyy

xxzxx

b

w

w
w

,,,

,,

,,

.2 εε

ε
ε

ε

 
Here, { } { } { }NLLm εεε +=  is the membrane strain; { }Lε  is 

the linear component of the membrane strain and depends on 
the in-plane displacements ( ) ; 00 ,vu { NL }ε  is the nonlinear 
component of the membrane strain and is a quadratic 
function of transverse displacement (w) and {εb} is the 
curvature and is a function of lateral displacement and shear 
strains ( )yzxzw εε ,, . In the neutral surface based formulation 

[16, 17], the membrane { }N , bending {  and shear }M { }Q  
stress resultants can be expressed as 
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where [A], [D], and [S] are extensional, bending, and shear 
stiffness coefficients respectively and are defined by 
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Zns Zmsh/2 X Ks is shear correction factor introduced here to correct the 
discrepancies between the actual non-uniform shear stress 
distribution through the thickness of the FGM plate and the 
assumed constant state of shear strain. The shear correction 
factor is estimated using the energy equivalence principle as  
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According to First-order piston theory [4, 5] the 
aerodynamic pressure ∆p, may be expressed as 
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where, Pα is the free stream static pressure, aα is the speed of 
sound in the free stream, M is the Mach number and γ is the 
adiabatic exponent. The aero-dynamic constants λ and g may 
be evaluated for particular values of Pα, aα and γ. 

Following standard procedure, the finite element equation 
of motion for the large amplitude flexural vibration of FGM 
plates under aero-dynamic load may be written as 
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Here, M and K, are the mass and linear stiffness matrices 
respectively; KN1 and KN2 are nonlinear stiffness matrices 
linearly dependant on transverse displacement w; KN3 is 
nonlinear stiffness matrix, which is a quadratic function of 
transverse displacement w; A and C are the aerodynamic load 
and damping matrices respectively. Subscripts ‘m’ and ‘b’ 
correspond to membrane ( )00 ,vu  and bending 

( )yzxzw εε ,,  components of the degrees of freedom and the 

corresponding mass and stiffness matrices respectively. 
 
The governing equation (11) is solved using a four nodded 

shear flexible high precision plate bending element [5] with 
ten degrees of freedom namely u0, v0, w, w,x, w,y,  w,xx,  w,xy,  
w,yy,  xzε  and yzε . The displacement components u0, v0, w, 

γxz and γyz are expressed as  
u0   =  [1, x, y, xy] {ci},    i  = 1, 4 
v0   =  [1, x, y, xy] {ci},      i  = 5, 8 
w    = [1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x4, x3y, x2y2, xy3, y4, x5, 
x4y, x3y2, x2y3, xy4, y5, x5y, x3y3, xy5] {ci},   i  = 9,32           

[ ]{ }ixz cxyyx ,,,1=ε        i  =  33, 36             

[ ]{ }iyz cxyyx ,,,1=ε            i  =  37, 40 

This element does not lock in shear as the shear strains ( xzε  

and yzε ) are taken as independent degrees of freedom. 

.  

IV. SOLUTION PROCEDURE 
Neglecting the in-plane inertia matrix (  = 0), the 

membrane displacements can be written as 
mmM

{ } [ ] ( )[ ]{ }bmmm wKNK δδ 1
1−−=     (12) 

Substituting expression (12) into governing equation (11) 
leads to 
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Here, KNL is a quadratic function of transverse displacement 
w, The governing equation (13) is solved for nonlinear 

vibration and nonlinear flutter of FGM plates under 
aero-dynamic load. The details of the solution procedure are 
explained below. 

For the case of undamped oscillation, a harmonic solution 
for the large amplitude free flexural vibration is assumed to 
be 
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=
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i
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Substituting the assumed harmonic solution (14) into the 
governing equation (13), equating the coefficients of 
harmonic terms )5cos(),3cos(,cos ttt ωωω  etc (harmonic 

balance method) and using ttt ωωω 3cos
4
1cos

4
3cos3 +=  the 

following equation is obtained for the large amplitude 
flexural oscillation of the FGM panel under aerodynamic 
load. 
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The equation (15) is solved iteratively to solve as explained 
below 
 

A. Free Vibration:  

Linear vibration frequencies and mode shapes are 
obtained from the eigenvalue equation 
[ ]{ } { }02 =− bbbbb MK δω . Thereafter, the nonlinear 

eigenvalue equation (15) is solved iteratively as explained in 
Ref [18] to obtain the frequency-amplitude relationship for 
the case of large amplitude free flexural vibration ( 0=A ) of 
FGM plates 

B. Flutter 
In the presence of aerodynamic load any two of the 

eigenvalues of equation (15) ω will approach each other, as 
the aerodynamic load parameter λ increases from zero, and 
coalesce to ωcr at λ = λcr and become complex conjugate pairs 
ω = ωR ± iωI for λ > λcr. Here, λcr is considered to be that 
value of λ at which first coalescence occurs, and is the critical 
flutter speed parameter. Then, the vibration amplitude wmax is 
fixed to a constant value, say wmax = 0.2, and the aerodynamic 
load parameter λ1 ( > λcr) is increased further till any pair of 
nonlinear frequencies of equatiion (15) coalesce. After 
evaluating the critical flutter speed (limit cycle oscillation) 
with amplitude wmax = 0.2h, the amplitude is increased further 
to get the corresponding nonlinear flutter speeds. 
 

C. Time history analysis 
For the case of large amplitude flexural vibration, the 

vibration amplitudes { }T
bm δδ ,  are obtained from the 

eigenvalue equation (15). Thereafter, the governing equation 
(13) is solved by newmark’s time integration procedure 
staring from the initial condition ({  at time t = 0) 
obtained from the eigenvalue equation. The time history of 
transverse displacement at different aero-thermal loads is 
plotted to understand flexural vibration characteristics of 
FGM plates under aerodynamic load. 

}T
bm δδ ,
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V. RESULTS AND DISCUSSION 
 
Large amplitude flexural vibration characteristics of 

aluminum / alumina (Al / Al2O3) FGM square plates under 
aerodynamic load are investigated here. The material 
properties used in the present analysis are 

cerE   = 380 GPa, cerρ  = 3800 kg/m3 for alumina

metE  = 70 GPa, matρ  = 2702 kg/m3 aluminum 
Poisson’s ratio υ  is 0.3 for both alumina and aluminum.   

The immovable simply supported and clamped boundary 
conditions, considered for the present investigation are 
expressed as: 
Simply supported:   u0 = v0 = w = 0 at x =0, a and y = 0, b 
Clamped:            u0 = v0 = w = 0, w,x = 0  at x = 0, a 
                   u0 = v0 = w = 0, w,y = 0  at y = 0, b  

 
The efficiency of the present plate bending element and the 

solution procedure for the vibration and supersonic flutter 
characteristics of composite plates are established earlier [5] 
using the linear structural theory. The linear frequency 
parameter cc Eh /ρωϖ =  for a simply supported alumina / 

aluminum thick square plate (a/h = 10) are compared in Table 
1 with available results. It is observed that the vibration 
frequencies obtained from the present high-precision plate 
bending element with exact shear correction factor closely 
match with the results of higher order shear deformation 
theory [Matsunaga 20] and the first order shear deformation 
theory with shear correction facor 5/6 [Zhao et al. 19]. 
Further, the variation of nonlinear frequency ratio (ωNL/ωL; 
ωL is the linear frequency) with non-dimensional maximum 
amplitude (wmax/h; wmax is the maximum amplitude of the 
plate) of an immovable simply supported isotropic square 
plate (a/h = 1000) is reported in Table 2 along with the 
published results and they compared well. Further, based on 
progressive mesh refinement, an 8 × 8 mesh is found to be 
adequate for nonlinear analysis of the full plate.  

Now, the frequency-amplitude relationships (i.e., the 
variation of nonlinear frequency ωNL with vibration 
amplitude wmax/h) for simply supported and clamped, thin 
(a/h = 100) square Al / Al2O3 FGM plates are studied in Fig 2 
for various values of material gradient index. The 
non-dimensional frequency of FGM plates is defined as 

ccNLNL Dha // 22 ρπωω = , where 
( )2

3

112 ν−
=

hED cer
c

 is the 

flexural rigidity of ceramic plate. It may be observed from the 
figure that the nonlinear frequency in general increases with 
the increase in vibration amplitude. It can be further seen that 
the frequency decreases with the increase in the gradient 
index k, because of the reason that the stiffness degradation 
occurs due to the increase in metallic volumetric fraction. 
The clamped FGM plates exhibit higher vibration frequency 
compared to simply supported FGM plates as the plates 
behave stiffer with clamped boundary condition.  
 
 
 
 

Table 1. Comparison of linear frequency parameter 

cc Eh /ρωϖ =  for a simply supported alumina / aluminum 

thick square plate (a/h = 10). 
 

 Present 
study 

FSDT 
Zhao et al. 

[19] 

HSDT 
Matsunaga 

[20] 
k = 0 0.05767 0.05673 0.05777 

k = 0.5 0.04899 0.04818 0.04917 
k = 1 0.04416 0.04346 0.04426 
k = 5 0.03761 0.03757 0.03811 

k = 10 0.03631 0.03591 0.03642 
 
Table 2. Comparison of nonlinear frequency ratio ( LNL ωω / ) 
of simply supported isotropic square plate (a = b, a/h = 
1000). 

Present study w/h 
6x6 8x8 10x10 

Lee et al. 
[21] 

Shi et al. 
[22] 

0.2 1.020 1.020 1.020 1.020 1.0195 
0.4 1.079 1.078 1.077 1.077 1.0765 
0.6 1.171 1.169 1.168 1.165 1.1658 
0.8 1.289 1.286 1.284 1.280 1.2796 
1.0 1.427 1.423 1.421 1.415 1.4163 
1.2 1.581 1.575 1.572 1.567   
1.4 1.744 1.738 1.735 1.737   
1.6 1.919 1.910 1.906     
1.8 2.095 2.088 2.084     
2.0 2.282 2.275 2.272     
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Fig 2. The variation of nonlinear vibration frequency ( NLω  ) with 

vibration amplitude (wmax/h) of Al / Al2O3 thin (a/h = 100) square 
FGM plates. (a) simply supported, (b) clamped.  
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Fig 3. Comparison of non-dimensional aerodynamic load λ  (= λ1 
a3/ D) of simply supported isotropic square plate (a/b = 1; a/h = 
100). 
 

Thereafter, the influences of geometric nonlinearity on 
the vibration characteristics of simply supported and clamped 
FGM plates under aerodynamic load are taken up for 
investigation. At the beginning, the non-dimensional 
maximum vibration amplitudes (wmax/h) of a simply 
supported isotropic thin square plate (a = b, a/h=100) are 
estimated at different non-dimensional aero-dynamic load (λ  
= λ1 a3/ D) and the results are found to compare well with the 
published results [Guo and Mei 9] in Fig 3.  An 8 × 8 mesh of 
the plate element is employed here to solve eigenvalue 
equation (15) and the eigenvector indicates that maximum 
displacement (wmax) occurs at (0.75a, 0.5b). 

The nonlinear response of simply supported thin Al / 
Al2O3 FGM plate (k = 0.5, a/h=100) under supersonic airflow 
with mach number M = 2.0 is presented in Fig 4 along with 
phase diagrams and Poincoir maps to show the degree of 
closeness to the limit cycle oscillation. At the beginning, the 
nonlinear eigenvalue equation (15) is solved iteratively to 
obtain the aerodynamic loads corresponding to a given 
maximum vibration amplitude. The non-dimensional 
aerodynamic loads corresponding to vibration amplitudes 
(wmax) 0.4h is 371.09 ( crλ  = 331.82 for k =0.5). Thereafter, 
time history analysis is performed from the same initial 
condition. The flexural oscillation is observed to be smooth 
as shown in the phase diagram Fig 4(b) The poincoir map 
given in Fig 4. (c) shows the degree of unsteady vibration.  

Furthermore, the bifurcation curves for the flutter response 
of the plates under supersonic airflow of Mach number M = 
2.0 is shown in Fig 5 for functionally graded plate (k = 0.5) 
with simply supported and clamped boundary conditions. 
The bifurcation graphs are the peak vibration amplitudes 
over a period of few cycles of vibration in the time history 
response of the plate under different magnitude of 
aero-dynamic loads λ. From the figure, it is observed that, 
with the increase in aero-dynamic load, the amplitude of 
oscillation increases and does not remain constant. It shows 
the stable regime (λ < λcr), the growing amplitude LCO and 
chaotic oscillations over a range of aerodynamic loads. It 
may also be seen that a reduced chaotic response is observed 

with the clamped boundary condition in comparison with the 
simply supported boundary condition.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4. Nonlinear flutter response of a simply supported graded plate 
(k = 0.5, a/b = 1, a/h = 100) at λ  = 371.09 

 
Finally, Fig 6 presents the variation of maximum vibration 

amplitude with non-dimensional aero-dynamic load, λ  
(=λ1a3/Dcer) for a simply supported thin Al / Al2O3 FGM plate 
(a/b = 1; a/h = 100) with different gradient index. For a given 
aero-dynamic load, the vibration amplitude increases with 
the increase in material index. . 

 

VI. CONCLUSION 
Flexural oscillation characteristics of functionally graded 

plates are investigated using a high precision plate bending 
finite element based on exact neutral surface position. The 
harmonic balance method is applied to obtain (a) 
frequency-amplitude relationship for the case of free flexural 
vibration (b) critical aerodynamic pressure and (c) flexural 
vibration amplitude beyond the critical aerodynamic speed 
of aluminum / alumina (Al / Al2O3) FGM square plates. 
Further, the flexural vibration behavior is characterized by 
poincoir map and bifurcation curves, obtained from a time 
domain analysis. The limited numerical results presented 
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here, indicate that the aerodynamic stability of an FGM plate 
decreases with the increase of in material gradient index. . 
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Fig 5. Bifurcation curves for nonlinear flutter response of 
thin square FGM plates (a/b = 1, a/h = 100, k = 0.5) under 
supersonic airflow (M = 2). (a) simply supported (b) 
clamped.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 6. Flutter characteristics of simply supported thin Al / 
Al2O3 FGM panels (a/b = 1; a/h = 100). 
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