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Abstract— One of the major challenges for busi-
nesses today is to ensure that their processes are regu-
latory compliant. This implies that business processes
must be appropriately constrained for their correct
and legal operation. To evaluate such constraints, ev-
idence of the implementation of the business process
execution is needed. In a SOA, a business process
is commonly realised as an orchestration of services.
It is therefore necessary to observe the runtime be-
haviour of these services. In this paper we propose
a common evidence model, which allows constraints
to be modelled upon service behaviour and mapped
to the available evidence. We propose an architecture
to provide the runtime monitoring needed to evaluate
the constraints based on this model.

Keywords: SOA monitoring, constraints in SOA, evi-

dence model SOA, signalling model SOA

1 Introduction

Business goals imply actions to be taken or tasks to be
accomplished by a company. Compliance regulations ex-
ist to ensure a business operates in a legal, standardised
manner. Regulations thereby constrain businesses, pro-
viding confidence in a business’s governance. Business
goals are commonly realised as business processes, whose
implementation can be automated by IT systems. It fol-
lows therefore that regulatory constraints must be related
to and enacted by the implemented processes. To assess
whether a business runs in a compliant way, monitoring
of the performed operations is required. To this end, the
business operations must produce evidence suitable for
constraint-based monitoring. Thus not only must a busi-
ness satisfy the constraints necessary for compliance, but
it must also produce evidence required for the constraint
evaluation [1].

A popular way for a company to model and implement
business processes is through the adoption of the Service
Oriented Architecture (SOA) paradigm. SOA requires an
IT application to be designed in such a way that it can be
exposed as a service. These services externalise internal
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behaviours of the system through a common, standard-
ised interface. Business processes are then modelled to
reach the business goal by orchestrating these services.
This allows the orchestrated services to change indepen-
dently from the process specification. As such, a service
may be dynamically chosen at runtime as long as it pro-
vides the same functionality. This allows external entities
to implement part of a business process, thereby allowing
the process owner to outsource some process activities.
Accordingly, it must be assumed that parties other than
the process owner must be included into the modelling
process.

Just as business processes orchestrate services together
to achieve business goal, a business process choreogra-
phy aims to define a pre-determined plan that each party
in the business collaboration must follow. Choreogra-
phies therefore determine the protocol that must be fol-
lowed between each partner in a business process. This
is achieved by way of modelling the messages and their
order that must be followed by participating parties. To
support regulations governing the interactions between
businesses, constraints must be placed on these interac-
tions. Each party may have different regulations and thus
may require different constraints to govern the interac-
tions. Therefore evidence that can be used by each party
to prove the compliance to their regulations must be pro-
vided.

1.1 Paper Outline

Much work exists in providing the verification of a busi-
ness process specification against a set of constraints. The
existing approaches can be divided into two main cate-
gories: verification of the business process specification
(based on the process model and performed during the
design time of the process) and verification of the pro-
cess implementation (based on evidence collected during
the business process execution, and thus only achievable
during, or after runtime). We place our work into the sec-
ond category and discuss the problems and advantages of
constraint-based monitoring at the runtime. We motivate
the requirements for the runtime monitoring of service
behaviour by showing that verification of the business
process specification to the design time is not sufficient
to evaluate a range of constraints that could be applied to
a business process. We provide an example business pro-
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cess choreography in Section 2 as motivation. Further, we
argue that there is currently no technical solution to rep-
resent evidence of service behaviour in a common model
that could be interpreted by each party in a business pro-
cess collaboration. Similarly, there is no way to represent
a constraint in a way that the evidence required for its
evaluation can be derived from the constraint specifica-
tion. These arguments are detailed in Section 3. We then
propose a descriptive model of service behaviour that pro-
vides a standardised way of representing what evidence
may be provided by a service. This model is described
in Section 4. We then use this model as a basis to define
constraints, which can be applied to inform each party
in the choreography of what evidence must be provided
to the other parties. This is shown in Section 5. We
then describe how these constraints can be modelled and
evaluated in practice, through an architecture described
in Section 6. Finally, the paper positions the work in
the current state-of-the-art in Section 7, with concluding
remarks in Section 8.

2 Motivating Example

Figure 1 shows an example of a business process collab-
oration that automates the delivery of clinical treatment
to a patient by a hospital. There are three parties in the
choreography: the Patient, the Hospital, and the Insurer.
The activities of each party are encapsulated within a
pool, a modelling notation provided by BPMN [2]. The
collaboration is modelled from the Hospital ’s point of
view, therefore the partner processes on the Patient and
Insurer sides show an external (also called abstract) view
of the internal behaviour.

The basic flow of the process is the following: the Pa-
tient initialises the process by instructing the Hospital
that they require treatment. The Hospital receives this
request, locates the Electronic Patient Record (EPR) of
the patient, and determines the insurer of the patient.
The Hospital then requests a cost for the treatment of
the Patient to the Insurer. Note that multiple insurance
companies can implement the abstract behaviour mod-
elled for the party Insurer in this example. At runtime,
the insurance company of the patient who initiated the
treatment request is bound to the abstract description.
The Insurer receives the cost request and calculates a
cost for the treatment based on the insurance policy of
the Patient. The Hospital uses this cost as a basis to
provide a treatment plan for the patient. The Patient
receives this treatment plan, including the cost, and con-
firms that the treatment should take place. For brevity,
we do not model a negative confirmation. Upon receiving
the confirmation for treatment, the Hospital needs con-
firmation from the Insurer indicating that the insurer is
willing to pay for the treatment. Again, we do not model
a negative confirmation. The Hospital, on receipt of this
confirmation, treats the Patient. After treatment, the
Hospital requests a payment from the Insurer. The In-

Figure 1: Insurance for Healthcare Business Process
Choreography

surer initiates a transfer of funds to the Hospital to pay
for the treatment. The Hospital processes this payment,
and completes the process.

In classic SOA, the services used to implement these
activities will be described operationally, via a WSDL
description. This describes the data types consumed
and produced by the operations exposed in the service.
WSDL however does not provide any form of standard-
ised description for evidence that might attest to the exe-
cution of an operation. In the example, such a standard-
ised evidence model is required, as the Hospital requires
evidence from the Insurer that it correctly managed the
patient data it sent to it. As multiple Insurer parties
can be chosen dynamically at runtime, each must follow
the standard for the Hospital to be able to assess their
evidence.

Similarly, the BPMN standard does not allow the
Hospital or any other party to describe what evidence
they require from other parties in the choreography. One
could use the modelling notation of a data object to rep-
resent an SLA view of such a set of requirements, however
fine-grain relations between these requirements and the
possible evidence available from another party cannot be
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modelled in BPMN. Likewise, each party, if dynamically
bound at runtime, may have different evidence models
based on their own service implementations. Again, nei-
ther WSDL nor BPMN would enable this to be modelled,
described, or enacted.

3 Problem Analysis

In this section we analyse the implementation layers of a
business process collaboration in a SOA and outline how
the collaboration depicted in the example may be imple-
mented using SOA principles. Constraints that are re-
quired for compliance regulations are described and anal-
ysed in relation to the described implementation layers.
Finally, requirements for runtime monitoring of the spec-
ified constraints using evidence obtained from the collab-
oration implementation is discussed.

3.1 Business Process Implementation Anal-
ysis

Figure 2 shows the four main layers of a SOA implemen-
tation of a business collaboration. The top layer con-
tains the specification and implementation of the pro-
cess choreographies. A choreography describes interac-
tions between two or more parties, whose behaviour is
defined in the business services layer. These interac-
tions can be specified using choreography languages like
BPEL4Chor [3], Let’s Dance [4] and WS-CDL [5]. The
actual message exchange can be considered as the chore-
ography implementation, and can be conducted for exam-
ple over a service bus. While the choreography specifies a
multi-party collaboration protocol, a business process or-
chestration specifies a collaboration of activities designed
to accomplish a given business goal. The specification
and implementation of the service orchestrations is con-
tained in the business service layer. The orchestrated
services themselves are depicted in the application ser-
vice layer. An application service performs actions on
resources which are depicted in the bottom layer.

Figure 2: Implementation levels of a SOA

Note that the level of abstraction increases from the bot-
tom to the top: an application service can use multiple

resources and perform multiple actions on the resources
but it is atomic from the point of view of a business ser-
vice. Thus, a business service abstracts from teh imple-
mentation details of the application service and is only
interested in the business value (or effect) it can produce
in combination with other application services. Similarly,
a choreography abstracts from the business semantic of
the business process and is only interested in the external
communication of the business processes.

On the other hand, an application service and can be a
used in different business processes and a business process
can participate in different choreographies. While these
principle of loose coupling makes SOA systems very flex-
ible, it also makes them very complex. In the dynamic
environment, a static analysis of such a system is not pos-
sible, therefore runtime monitoring is required to ensure
fulfilment of the constraints put on the system.

To give an example of a business collaboration imple-
mentation on these layers, consider the business process
outlined in Section 2. The process implementations of
the Patient, Hospital and Insurer business processes are
placed in the business services layer. The specified inter-
actions between these processes, such as RequestEPR and
RequestInsurance are placed in the business interactions
layer. The implementations of the activities modelled
by Hospital, such as Calculate Treatment Cost activity,
are placed in the application services layer. Finally, all
resources the business processes operate on, such as Pa-
tientData and TreatmentPlan, are placed in the resources
layer.

The next section analyses the constraints that can be
placed on the different layers, and relates them to the
motivating example from Section 2.

3.2 Constraint Analysis

According to the abstraction layers and relationships be-
tween the layers depicted in Figure 2, constraints can be
classified in the following three types:

Constraint Type 1 Choreography constraints or con-
straints over business process interactions.

Many constraints on the interactions between parties
are commonly defined within Service Level Agreements
(SLAs) [6]. SLAs provide contracts of expected perfor-
mance, behaviours, and other criteria that are agreed
upon by both parties, the service provider, and the ser-
vice consumer. For example, the Hospital may be viewed
as a consumer of the services of the Insurer. SLAs are
typically defined without a specific relation to the ac-
tivities defined in any business processes of the parties
involved, but rather relate to individual service interac-
tions. A high-level example of such a constraint could
be ”Invocation of service ConfirmPayment must give a
response within 2 hours”. A business process choreogra-
phy describes when the service interactions between the
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parties involved occur, and thus determines when and at
which point of execution the SLA constraints must be
applied and assessed.

Another example of a constraint of type 1 related to the
motivating example described in Section 2 is to ensure
that the activity Confirm Payment on the Insurer side
is always executed before activity Treat Patient on the
Hospital side.

A more elaborate example would be to ensure that if the
Insurer receives a payment request, then it must be guar-
anteed that this request was sent by a Hospital party and
the payment cost was not changed by any third party.
In addition, the Insurer wants to ensure that the treat-
ment the Insurer is supposed to pay for was actually
performed by Hospital. These constraints enforce data
integrity between interacting parties and require analysis
of the resource layer for their evaluation. The constraint’s
logic however is specified on the choreography level and
involves analysis of the interactions, therefore these con-
straints are considered to be of type 1.

Constraint Type 2 Business process constraints or
constraints over an orchestration of application services.

Constraints of type 2 include temporal dependencies be-
tween activities in a business process, for example that
activity Request Payment must follow activity Treat Pa-
tient. Such constraints are normally enforced by the pro-
cess model and can be verified to the design time. This
does not negate the need for the monitoring of the ac-
tual implementation of the process specification, as un-
expected behaviour can occur due to the software and
hardware bugs and unforeeseen operational situations.

An example of type 2 constraint is to ensure that the
treatment cost calculated in activity Calculate Treatment
Cost is consistent with the treatment cost sent to the In-
surer in activity Request Confirmation and Request Pay-
ment. Note that this constraint implies analysis of the
resources used in the business process. This constraint is
placed into the category 2, because the constraint logic
follows from the business integrity required on the busi-
ness process level.

Constraint Type 3 Application service constraints or
constraints over resource usage.

Constraints may also be placed upon the use of re-
sources, independent from the application service logic.
In the healthcare domain for example, the regulatory act
HIPAA demands protection of patient data being dis-
closed to external parties [7]. This constraint can be ap-
plied to the EPR data object in the process, as described
in [8]. Its fulfilment however must be ensured by the ser-
vices that are processing and requesting the EPR, namely
the application services.

The next section motivates evidence based monitoring
of the specified constraint types and discusses evidence

available on each abstraction layer and required for the
monitoring of the specified constraints.

3.3 Evidence Analysis

Where a complete process specification is present, many
design time techniques can be applied to prove properties
of the process, a review of which is provided in Section 7.
A process can be considered as an ordered graph with
nodes as activities, and flow dependencies as edges [9].
Temporal relations, for example, can be verified between
activities where each activity is modelled (i.e. activity
Confirm Payment must always precede an activity Treat
Patient) by analysing the business process graph: ev-
ery path leading to the Treat Patient node must pass the
Confirm Payment node. To verify this happened in prac-
tice however, monitoring of the underlying implementa-
tion is still required. In the case of the constraint type
1, only an incomplete process specification, and thus an
incomplete graph, is available. This is due to the chore-
ography specification over the abstract description of the
interacting business processes. This means that any con-
straint the Hospital wants to ensure at design time on the
choreography can only be applied to the abstract process
specifications exposed by the other parties. A runtime
constraint verification on the other hand is based on the
evidence provided by the interacting parties and can con-
tain more information than the abstract process specifi-
cation. For example the Insurer may be asked to provide
evidence to the Hospital if it outsources some activities
(e.g. to ensure that some critical activities will always
be performed by Insurer), but Insurer does not have to
specify the logic behind this step. As such, evidence gen-
erated at runtime that indicates a request sent by Insurer
to any third party is required for evaluation of this con-
straint.

For constraints that check the data integrity outlined in
the previous sections, the values of the data to check can
only be known at run time as a value is assigned dur-
ing the business process execution by the activities that
generate the data values. Thus it is not possible to ver-
ify this constraint the modelling level. Other examples
of constraints based on runtime data include those relat-
ing to separation of duty (ensuring that the same person
did not execute two or more tasks). Such constraints are
demanded by Sarbanes-Oxley and the ISO 27002 stan-
dard [10]. To evaluate such a constraint, evidence of who
executed an activity must be observed from the underly-
ing implementation of the process. Such evidence could
be obtained from the Business Process Management Sys-
tem, which can act as a service itself, providing runtime
evidence of the process execution state. For instance,
in the SAP NetWeaver R©Business Process Management
Solution [11], activities involving human interaction are
assigned to users via a service-based worklist component.
This can be monitored to capture when an activity was
assigned to a user, and to whom the activity was assigned.
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Where a constraint implies evaluation of a resource or
data, as in type 3, we assume its evaluation can only occur
at runtime as this requires constraining the application
service using the resource or data itself. This means that
there must be a description of which services interact
with the resource or data so that this evidence can be
obtained. For example, to verify the behaviours of the
Insurer, such as their use of a patient record, monitoring
of the actual resource usage of the resource PatientData
is required at runtime. The application services muat
provide appropriate evidence to indicate their usage.

We now consider how the source of the evidence can affect
the scope and evaluation of a constraint. The different
layers shown in Figure 2 can provide evidence on differ-
ent abstraction levels. For instance if a business process
is a BPEL implementation, then the events can be emit-
ted by the BPEL engine when an activity changes its
state, to show that the activity was for example com-
pleted or terminated. If a single activity represents a
complex process on an application service level, in some
cases there is a need to go down on the abstraction lev-
els to obtain more fine grained evidence. To demonstrate
the relation and difference of the evidence on different
abstraction levels, consider the following example. Inter-
actions between business processes, as well as invocations
of the application services, normally happen via a service
bus. This means that evidence about a service invoca-
tion can be obtained from three sources: from a business
service that invokes a service identifying the intended in-
vocation, from a service bus which routes the invocation
request and eventually performs service discovery and
dynamic binding, and from the invoked service identi-
fying the execution of teh invoked operation. Although
all of these events relate to the occurrence of the same
actions performed by the invoked service, they have dif-
ferent semantics: events emitted by the business process
engine indicates the intention to perform an action, the
event emitted by service bus can indicate the selection
of the action implementation (or lack of a suitable im-
plementation), the delivery of the request or the request
timeout, and the application service can emit an event
when the actual execution of the service operation has
started, completed or faulted. By monitoring these three
levels of events relating to the service invocation, certain
constraints such as a service response time specified in a
SLA can be verified. This allows different values to be
obtained for the response time, depending on the chosen
abstraction level. If the events on the business process
layer indicating the start and end times of an invocation
are correlated to calculate the service response time, then
it will differ from the response time calculated from the
events on the application service layer. This is due to
the additional time taken for service discovery, message
routing and queue waiting time. As a consequence, the
expected SLA might be violated from the business pro-
cess view while it is fulfiled from the application service

point of view.

To be able to capture evidence available on all abstraction
layers, a common evidence model is required. This model
must be suitable for modelling constraints on all layers of
abstraction. The next section shows why the action state
change related evidence is sufficient to monitor all types
of discussed constraints and presents the evidence model.

4 Evidence Model

We now formalise our understanding of a SOA system so
that a model attesting to its operation can be formalated.
In general, a system in a SOA can be described as fol-
lows. Let Σ denote a SOA system, then Σ = S ×R×I ,
where R = {R1, ..., Rl} denotes the set of all resources,
S = {S1, ..., Sn} denotes the set of all services, and
I = {I1, ...Im} denotes the set of all interactions be-
tween services (or service choreographies).

Every service Si performs a set of actions {Ai1 , ..., Aik
}.

At any point of time every action is located in a specific
state denoting the action progress. Let Γ denote the set
of all action states. The state function σA : A ×T → Γ
returns the state of an action at specific time point, where
T denotes time. The state of the service Si at time t is
defined by the states of its actions: σS : S × T → 2Γ,
or σS (Si, t) = (σA (Ai1 , t), ..., σA (Aik

, t))

The state of the system is defined by the current state
of the system services, resources and interactions. As
the previous section discusses, every resource can be ab-
stracted through an application service, which captures
all accesses to this resource. This means that any state
change of this resource implies invocation of an action
of the application service. Therefore any resource state
change can be related to the state change of the cor-
responding action of the application service. Thus, the
resource states of the system can be derived from mon-
itoring application service action state changes. For ex-
ample, if an action update on resource data changes its
state to completed, then it can be derived that resource
data is in state updated.

All service interactions happen through the service bus.
Thus, monitoring of the state changes of the service bus
actions provides enough information to derive the current
state of service interactions. A similar approach for mon-
itoring predefined choreographies in the service bus was
described in [12].

Thus, the complete state of a SOA system can be derived
from the state changes of the actions on the application
service level, business service level, and the interaction
service level. Therefore the evidence model presented in
this section considers the evidence that can show state
changes of the service actions and provide information
about the current state of the resources the action oper-
ates on, which allows monitoring for the resource state
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changes.

Figure 3 shows a graphical representation of the evidence
model based on the action state changes.

ActionAction

ResourceResource

EventEvent
on

onState

properties

SupportedStates

contains

ServiceService

performs

emits

uses

subtypeOf

Figure 3: Evidence Model

The evidence model contains the following concepts:

• Service - represents the described service.

• Action - captures the actions service performs. A
set of all actions builds action taxonomy. The sub-
and super-class relationships between actions can be
used to enhance modelling of the observational re-
quirements. For example, if an evidence on execu-
tion of an action of type AccessData is required, and
it is known that the actions ReadData, UpdateData,
DeleteData are sub-classes of the action AccessData,
then the evidence requirement can be propagated
to all sub-class actions. Every action can specify
a set of supported states as attributes. Every action
can have it own set of supported states, we assume
however that a superset of all possible states exists.
This means that an action specific state set must
always be a subset of the superset. An example of
such a superset can be based on the BPEL activ-
ity state diagram [13] and can include states Started,
Running, Faulted, Repaired, Suspended, Terminated,
Completed and Compensated

• The Event - describes events a service can emit which
are related to a certain action state change. The re-
lation onState between Event and Action concepts
is an abstract relation. It can be refined with the on-
Started, onRunning, onFaulted, onRepaired, onSus-
pended, onTerminated, onCompleted and onCom-
pensated relations, depending on the states the cor-
responding action supports. Events can have prop-
erties, for example event timestamp. As a payload,
events can contain information about resources the
action operates on. This provides contextual infor-
mation at the current execution state.

• Resource - Describes the resources which can be used
by a service and on which the actions are performed.
In an abstract way, everything can be considered as a
resource: an action can be executed on a service, ac-
tion or an event. Therefore a resource can be viewed
as a super concept. Resources can have relations to
other resources, which are captured in an ontology.

A specific type of the resource ontology is an action
taxonomy described above.

5 Application of Model

The previous section detailed the design of the evidence
model. This section shows how this model can be used to
describe the service behaviour in terms of performed ac-
tions and the available events. Following this, we outline
how the presented model can be used for specifying con-
straints, and the mapping of these specified constraints
to the available evidence for their evaluation. Finally,
an architectural example is presented which supports the
implementation of the approach proposed.

5.1 Service Description

Figure 4 shows a description of the activity Transfer Pay-
ment on the Insurer side. This activity is represented
with action Pay and is performed on the resource Pay-
ment, which includes another resource SumToPay. Ac-
tion Pay supports states Started and Completed and can
emit events E1 and E2 on these states. Events can in-
clude information about the Payment as the payload and
contain Timestamp of their generation as a property.

Figure 4: Insurer description of the Transfer Payment
activity

Figure 5 shows an example of the service description on
the Hospital side which is responsible for patient treat-
ment. Note that even if a treatment itself is a complex
process which consists of human activities, the Hospital
service only provides an abstraction of this process cap-
tured in the action Treat. In practice every part of patient
treatment is normally logged into an IT system, which
means that an IT abstraction of the patient treatment
can be represented by this system. The action Treat is
performed on a Patient according to the TreatmentPlan.
The Hospital can inform other parties when the treat-
ment has been Started (event E3), Terminated (event
E4) and Completed (event E5). All events can contain
information about the TreatmentPlan the action Treat
follows and a Timestamp of the event generation.
Figure 6 shows the description of the Request Payment
activity on the Hospital side. The Request Payment ac-
tivity is represented by Invoke action that is performed on
the action Pay. Note that in this case action Pay is a re-
source for action Invoke. Action Invoke sends Treatment-
Plan to the partner, which contains the PatientID and
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Figure 5: Hospital description of the patient treatment

CalculatedSum. Events E6, E7 and E8 containing Treta-
mentPlan information and the Timestampof their gen-
eration can be emitted on action states Started, Faulted
and Completed.

Figure 6: Hospital description of the Request Payment
activity

5.2 Constraint Specification

This section shows how constraints can be specified using
the concepts of the evidence model and relations between
them. We consider the following constraints as an exam-
ple:

1. Before Insurer pays for the treatment, the treatment
must be completed by Hospital.

2. If Insurer receives a payment request, then it was
sent by a Hospital party and the payment cost was
not changed by any third party.

The first constraint describes a temporal dependency be-
tween actions Treat and Pay. This kind of dependency is
often expressed using Linear Temporal Logic (LTL) [14].
The relations between concepts in the evidence model
can be used as the predicates in the constraint specifi-
cation. Using concepts from the evidence model as the
domain vocabulary, relations between these concepts as
predicates over these domains, and LTL operators to con-
nect these predicates, the first constraint can be specified
as follows:

�(Performs(Insurer, Pay) →
Performs(Hospital, T reat) ∧

¬Started(Pay)UCompleted(Treat)))

Each party in a choreography can have different con-
straints on the overall behaviour. For example, the above
constraint is of interest for the Insurer side. The Hospital
might provide their own constraint, as the previous con-
straint is also satisfied when hospital treats the patient
and does not receive the payment:

�(Performs(Hospital, T reat) ∧ Started(Treat) →
♦Completed(Insurer, Pay)

The second constraint is slightly more complicated as it
involves comparison of the resource states. Thus, to be
able to monitor this constraint, the events must contain
information about the resource states. The second con-
straint can be modelled as follows:

∀insurer ∈ Insurer, ∀pay ∈ Pay,∀payment ∈ Payment :
Performs(insurer, pay) ∧ On(pay, payment) →

(¬(Started(pay)U(∃hospital ∈ Hospital,

∃invoke ∈ Invoke : Performs(hospital, invoke) ∧
On(invoke, pay) ∧ Started(Invoke)

∧∃plan ∈ TreatmentP lan : On(invoke, plan)
∧∃S1 ∈ TreatmentSum : Contains(payment, S1)
∧∃ID1 ∈ PatientID : Contains(payment, ID1)

∧∃ID2 ∈ PatientID : Contains(plan, ID2)
∧∃S2 ∈ SumToPay : Contains(plan, S2)

∧Equal(S1, S2) ∧ Equal(ID1, ID2)))

The above formula states that if an insurer performs an
action pay, then there must be a hospital, which invoked
this action. Furthermore, the values which were sent by
the hospital must be the same as the ones the action pay
on the insurer side is performed on.

Whilst constraints and their representation can differ de-
pending on whatever formalism is used, the objects it
refers to within the predicate must be understood by all
parties. This is so that evidence across the choreogra-
phy regarding the operation of each party can be col-
lected and provided for all parties wishing to evaluate
their constraints. As an example, consider the Hospital
as the party wishing to enforce the constraint modelled
above. It needs to be aware of what states the Insurer can
provide for observation that a payment was performed,
i.e. an event on completion of action Pay containing in-
formation about Payment, so that it may evaluate its
constraint. In turn, the Insurer needs to be aware that
it must provide the evidence required for the Hospital.

In this context, the service model described in Section 4
forms a common vocabulary for constraint modelling
across the choreography. By defining the objects that
may be targeted by constraint predicates, each party may
construct predicates that require the events described by
each service for its evaluation. For example, given the
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descriptions of the Insurer and Hospital actions from the
previous section, the above constraints can be mapped to
the events as follows:

¬E1UE5

Taking into account the delivery time of the events this
constraint can be refined into the following:

E5 → (E1 ∧ E5.timestamp > E1.timestamp)

Note that this constraint must be applied to every process
instance, the correlation information for the events is not
shown in this example. For the second constraint the
following mapping can be derived:

¬E1UE8

∧E1.Payment.SumToPay =
E8.T reatmentP lan.CalculatedSum

∧E1.Payment.PatientID =
E8.T reatmentP lan.PatientID

6 Architectural Support

We now detail how the described observation and evalua-
tion could take place in practice. In Figure 7, a simplified
architecture of a system is given that evaluates rules using
evidence gathered from events described in the proposed
model. The basic design of the system is described, with
a description of the information flow.

Figure 7: Monitoring Architecture

The architectural schematic describes two entities: the
Process Owner (in our examples, the Hospital), and a
third-party in a Business Process Choreography (for ex-
ample, an Insurer). As the process owner is unaware of
the actual implementation of the services of the third-
party, the architecture reflects that only a service evi-
dence model provided by the third-party is exposed. We
assume additional components are required for the service
evidence model to be managed, and exposed for query.

Such components would provide interfaces to relate a ser-
vice endpoint or WSDL operation to an evidence model,
as well as provide a routing of the events produced by the
underlying service to a designated endpoint.

A business process execution component (here the BPEL
Engine) instantiates a business process, and queries the
Rule Repository to return predicates that govern the cur-
rent execution state of the process. These predicates refer
to the events described by the evidence models of each
party in the choreography. The BPEL Engine can per-
form this task as it is aware of which services are being
invoked through the process, and which operations are to
be invoked. This information is forwarded to the Repos-
itory to build a list of rules that reference the events
that can be produced by the corresponding actions per-
formed by these services. The actions are determined
based on a query to each party’s service evidence model
manager. The matching rules are relayed to a Rule Eval-
uator who instructs a Monitoring component to inform
it when events needed to evaluate the rules are observed.
The Rule Evaluator instructs each service evidence model
manager to inform it when the events needed occur.

During the business process execution, the service oper-
ations are invoked by the BPEL engine to provide the
activities described in the process. Upon an invocation
of an operation it provides, a service emits an event as
described in its service evidence model. This includes the
properties that are represented in the event payload. The
local service evidence model manager relays this event to
the Monitoring component that subscribed to this event.
This could be achieved in multiple ways: the use of a
service bus for example, allows invocations and messages
sent by and to services to be monitored. The Monitor
forwards this to the Rule Evaluator. The event payload
(detailed information regarding the event) is also sent so
that operational state leading to the event can be cap-
tured and represented in the rules too. The Rule Eval-
uator, upon receiving this event and the others it must
observe to evaluate the rule, then evaluates the predicate.
This can also lead to another event being emitted by the
Rule Evaluator, that others can subscribe to, for exam-
ple, to assess how often positive evaluation of a predicate
was achieved.

7 Related Work

We now situate the work presented within the current
state-of-the-art. We consider exisiting approaches that
provide design-time and run-time verification of con-
straints over business processes, and general approaches
that aim to provide constraint modelling and manage-
ment.

The area of formally verifying properties of a business
process against a set of constraints is rich and mature.
Extensive work has been conducted in proving structural
properties of a business process control flow using model-
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checking techniques. These rely on formalising the work-
flow in different representations, for example in a Petri-
net [15]. A review of the different formalisations is given
in [16]. Extensions of existing formalisms can be used
to verify additional constraints, for example logical rela-
tionships between variables in a process, as shown in [17].
Constraints can be modelled in relation to these formali-
sations. For example Promela can be used to model busi-
ness processes, and the process requirements are speci-
fied in temporal logic (LTL). SPIN [18], another model
checking tool, can be used to verify LTL specifications in
Promela models [19]. These techniques can be used to
verify, for example, structural dependencies [20], and en-
tailment constraints [21] (constraints where the execution
of one activity is constrained by the execution of another
activity) as shown in [8].

Similarly to the control flow, data flow has been recog-
nised as a fundamental aspect of workflow specification
[22]. Techniques such as described in [23] can be used to
model data dependencies in a workflow specification, and
verify these against a formalisation. All these techniques
however lack the ability to verify the implementation of
the business process.

In [24] the author propose to model monitoring rules
based on the concept model of the domain and using an
extension of a temporal logic. However they do not pro-
pose a common evidence model, which does not allow the
use of this approach across different organisations.

Another monitoring approach proposes monitoring of the
choreography in the message bus [12, 25, 26]. This al-
lows comparison of the actual message exchange with the
choreography specification. In contrast to our approach,
the approach described in these works only allows to mon-
itor the external messages and cannot handle the events
related to the internal behaviour of the partner processes.

8 Conclusions and Outlook

This work presented an approach for constraint-based
monitoring of the services behaviour in a SOA. We anal-
ysed implementation layers of a business process and
gave a constraint classification based on the layer this
constraint is applied to. We then proposed an evidence
model that allows the description of the service behaviour
to be defined in terms of the actions it performs, the in-
teractions these actions have with other resources in the
system, and the evidence the service can produce upon
the different execution states of the action. We showed
how constraints could be specified using the concepts de-
fined in this model to enable the mapping of the specified
constraints to the evidence provided by the service.

As part of the ongoing work we investigate how this ev-
idence model can be used as part of the agreement be-
tween services, similar to an SLA. In this case, the service
should also be able to describe the constraints it satisfies.

The required constraints can then be matched with the
provided constraints as part of the agreement, and then
monitored on the provided evidence.

As future work, we plan to extend the model so that
it can capture information about the trustworthiness of
the provided description and evidence. For instance, if
a service claims to perform actions on financial data, we
need mechanisms to ensure that this description is cor-
rect. Such mechanisms could include providing security
assertions or certification from trusted authorities that
support the claims made in the description.
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