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Abstract—This paper presents a general kinematic
analysis method for complex gear mechanisms. This
approach involves the null-space of the adjacency
matrix associated with the graph of the mechanism
weighted by complex coefficients. It allows to com-
pute the rotational speed ratios of all the links and
the frequency of all the contacts in this mechanism
(including roll bearings). This approach is applied to
various examples including a two degrees of freedom
car differential.
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1 Introduction

The research explained in this paper takes its source in
the domain of the Health and Usage Monitoring Systems
(HUMS) of helicopters. Nowadays, a lot of studies are
done on such systems [1]. A very important part of stud-
ies to improve the performances of HUMS concerns the
vibration analysis of the transmission, and especially of
the Main Gear Box (MGB). The aim of these studies is
to identify defaults on the MGB using vibration analy-
sis. In fact, each default of contact between the different
links of a complex system, as a MGB, can generate an
harmonic disturbance at a precise angular frequency in
the vibratory signal.

In that domain, a few researches have led to the use of
Kalman filters on angularly sampled signals [2]. Such
filters can provide a good estimation of the magnitude
and phase of an harmonic component in a signal when
its frequency is well-known [3]. So, to create the dynamic
Kalman model, a very good knowledge of (angular) fre-
quencies of all the contacts in this mechanism (including
roll bearings) is required. To determine these frequen-
cies, rotational speed ratios of the various links of the
mechanism is required first of all.

There are a lot of kinematic analysis approaches for dif-
ferent types of gear trains. The tabular method is com-
monly used but can involve a lot of calculation, and can-
not give the velocities of elements whose rotation axis
are not on the input/output axis [4]. The vector analysis
method gives very good results for bevel gears, but is very
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complex and can lead to human mistakes [5]. The graph
theory method can be easily computerized, and can give
the velocities of all elements of the gear trains. It can
also be adapted for bevel gears [6]. It has been studied
by Nelson in [7] so as to find the angular velocities of
all links in bevel epicyclic gear trains. It is also limited
to gear trains whose input and output axes are co-linear.

In this paper, a new kinematic analysis method, based
on the work of Nelson, is introduced. It’s objective is
to list all the mechanical contacts between all elements
in the transmission system (ball-bearing, gears...) and
for each of these contact, to find its angular apparition
rate, that is the number of times this contact appears for
one revolution of the input shaft. Of course, to solve this
problem, a general tool to compute all the speed ratios
between the links of the transmission is required.

There is a few advantages to this method. The most
important of them is that it is possible to analyze very
complex mechanisms, as long as its internal composition
is known. For example, it is possible to deal with a system
whose input and output axes are not co-linear. Systems
with several degrees of freedom, as a car differential can
also be studied with this method.

The first section presents the kinematic analysis method.
In the second section, examples are presented to demon-
strate the interest and the generality of this method : a
simple epicyclic bevel gear train and a car differential.

2 Kinematic Analysis Method

2.1 Speed ratio matrix

In this section, the kinematic analysis method is intro-
duced. First, it is important to understand that the dif-
ference with the kinematic analysis methods already ex-
isting, consists in the introduction of complex numbers
in the definition of each link of the mechanism.

The first step of that method is to build the table T of
mechanism links and joints. For a mechanism with N
links this table is a N × N table representing the kine-
matics graph of the mechanism. Only mechanisms with
turning pairs (revolute joints) or gear pairs are consid-
ered here. The element (i, j) of T denotes the interaction
of the link i on the link j. The table T is built following
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a few rules:

• Turning-pairs are noted (p) for the elements (i, j)
and (j, i).

• For gear pairs, the element (i, j) is equal to Nie
θi

√−1

and (j, i) to Nje
θj

√−1, where Ni and Nj are respec-
tively the number of tooth on elements i and j. θi

(respectively θj) is the angle between the axis of ro-
tation and the axis of the gear tooth of element i
(respectively j) in contact with element j (respec-
tively i), counted in the positif clockwise and so that
|θ| < π/2 for an internal gear and π > |θ| > π/2 for
an external gear.

• Otherwise, elements of T stay empty.

Lastly the reference (carrier) link k is also required for
each gear pair. The reference link is the link in which
the contact point of the gear pair is motionless (the car-
rier link for an epicycloidal gear). Then it is possible to
express the Willis formula under the form:

T (i, j)(ωi − ωk) + T (j, i)(ωj − ωk) = 0 (1)

where, T (i, j) and T (j, i) are the elements (i, j) and (j, i)
of the matrix T , ωi and ωj are respectively the rotational
speeds of the links i and j involved in the gear pair, and
ωk is the rotational speed of the reference link k of that
gear pair. Note that Willis formula is used in a more
general context since coefficients of T are complex.

The second step, after the construction of the table T ,
is to build the adjacency matrix M . This matrix will
be used to solve the kinematic analysis. Inspecting the
upper triangular part of T , the matrix M is built line
per line. For each gear-pair (i, j), with reference link k,
a new line l is added to matrix M following the rules
from equation (1):

• M(l, i) = T (i, j),

• M(l, j) = T (j, i),

• M(l, k) = −T (i, j) − T (j, i),

• 0 elsewhere.

Let us consider Ω = [ω1, ω2, · · · ωN ]T the vector of rota-
tional speeds of the N links of the mechanism. Then Ω
is solution of the equation:

MΩ = 0 , (2)

that is:
Ω ∈ Ker[M ] (3)

where Ker(M) denotes the null space of matrix M which
can be easily computed using linear algebra tools (for

example the function null in Matlab). The dimension
of this null space represents the number of degrees of
freedom (d.o.f.) Ndof of the mechanism:

Ndof = N − rk(M) (4)

where rk(M) is the rank of matrix M . In other words
Ω0 = Ker(M) is the N × Ndof matrix composed of the
Ndof vectors spanning this null space. In the one d.o.f.
case (Ndof = 1), Ω0 can be normalized in such a way
that Ω0(r) = 1 where r is the index of the input shaft.
This way, Ω0(i) corresponds to the speed ratio of the link
i w.r.t to link r. In the sequel, Ω0 is called the speed
ratio vector (or matrix in the multi d.o.f. case). In
the general case, the vector of rotational speeds Ω can be
parameterized in the following way:

Ω = Ω0Λ (5)

where Λ is Ndof × 1 vector of multiplicative coefficients.

In the multi d.o.f. case, it is possible to add some con-
straints to be met by Ω in order to reduce the number of
degrees of freedom:

CΩ = 0, ⇒ Ω ∈ Ker

[
M
C

]
;

For example it is possible to null the speed of link i (ωi =
0) using :

C = [ 0 · · · 0 1 0 · · · 0 ] .
1 · · · i − 1 i i + 1 · · · N

Lastly, it is important to notice that Ω is a complex vec-
tor. That way, the direction of the rotational speed ωi

of link i (in gear pair with link j) can be determined (in
the plane containing links i and j axes). That will be
illustrated in the first example.

2.2 Contact frequencies

In the context of vibration analysis, it appears that it
can be useful to know all the frequencies of contacts in
gear-pairs or turning pairs (that is : in ball or roll bear-
ings). A default in a particular contact will produce an
harmonic disturbance with a great magnitude at a known
frequency.

Default frequencies in gear pairs For a gear-pair (i, j)
between links i and j with a reference link k, one can
distinguish 3 contact default frequencies :

• the gear frequency ωg
ij defined by:

ωg
ij = |T (i, j)||ωi − ωk| = |T (j, i)||ωj − ωk| ,

• the frequency of a default on a single tooth of link i
(resp. j):

ωg
i = |ωi − ωk| (resp. ωg

j = |ωj − ωk|) .
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Figure 1: Example of ball bearing

There are Ni = |T (i, j)| (resp. Nj = |T (j, i)|) dif-
ferent and independent sources of such an harmonic
disturbance because there are Ni (resp. Nj) teeth
on link i (resp. j).

Default frequencies in ball (or roll)-bearings

For turning pairs involving ball (or roll)-bearing, contact
defaults can appear at several frequencies (even for one
element), depending on where the default is located (on
the internal or external ring, or on a ball).

The figure (1) represents a ball bearing with :

• Dm : its mean diameter,

• db : the ball diameter,

• Z : the number of balls.

In the sequel, indices i, e, c and b refer to the internal
ring, the external ring, the cage and the ball, respec-
tively. Under the rolling without slipping assumption,
the following formulae allows to compute various default
frequencies in a ball bearing [8].

Frequency ωdi of apparition of a default on the
internal ring

ωdi = Z|ωi − ωc| =
Z

2
(1 +

db

Dm
|ωi − ωe|) (6)

Frequency ωde of apparition of a default on the
external ring

ωde = Z|ωe − ωc| =
Z

2
(1 − db

Dm
|ωi − ωe|) (7)

Frequency ωdb of apparition of a default on a ball

ωdb = 2|ωb − ωc| =
Dm

db
(1 − d2

b

D2
m

|ωi − ωe|) (8)

These formulaes are still true for roll or ball bearings
with angular contacts changing d by d cos α where α is
the contact angle (see figure (2)).

α

Figure 2: Ball bearing with angular contacts
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2
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Figure 3: Mechanism with a simple bevel planet [7]

3 Examples

In this section, two examples of mechanisms are analyzed
using this method. The first one is a simple bevel planet
that was studied in the article of Nelson. The second
one is a 2 d.o.f. car differential taking into account roll
bearings.

Example 1

The epicyclic gear with a simple bevel planet is shown
in figure 3. In this mechanism, the link # 1 is the sun,
the link # 2 is the outer ring gear (and the input shaft),
link # 3 is the planet and link # 4 is the carrier. The
numerical data are: N1 = 15, N2 = 25 and N3 = 10,
α = π/3 and β = π/4.

The table T of links and joints is depicted in Table (1)

Table 1: Table of links and joints (example 1)
1 2 3 4

1 N1e
√−1β (p)

2 N2e
√−1(2α−β−π) (p)

3 N3e
√−1(β−α) N3e

√−1(α−β) (p)
4 (p) (p) (p)
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M =

[
15eπ/4

√−1 0 10e−π/12
√−1 −15eπ/4

√−1 − 10e−π/12
√−1

0 25e−7π/12
√−1 10eπ/12

√−1 −25e−7π/12
√−1 − 10eπ/12

√−1

]
(9)

and the adjacency matrix is given by equation (9).

Then, the null space of M reads:

Ker(M) =

⎡
⎢⎢⎢⎣

0.357e2.147
√−1 0.729e−0.070

√−1

0.412e−0.686
√−1 0.444e0.633

√−1

0.828e0.125
√−1 0.069e−0.106

√−1

0.136e−0.382
√−1 0.517e0.284

√−1

⎤
⎥⎥⎥⎦
(10)

As it has already been said, the speed ratios are complex
in this method, so as to express the different angles of
rotational speed vectors. The nominal value of the speed
is in fact the modulus of the element of Ker(M).

As it is proposed in the example of Nelson, ω1 is set to
zero. With this constraint (that is: C = [1 0 0 0]),
the speed ratio vector normalized w.r.t the input shaft
(r = 2) reads:

Ω0 = Ker

([
M
C

])
=

⎡
⎢⎢⎣

0
1

1.36e0.639
√−1

0.6250

⎤
⎥⎥⎦ (11)

Remark: one can compute the angular velocity of 3
with respect to 4 (ω3/4) and check that the direction of
the relative velocity is given by the angle α. Indeed :

ω3/4 = ω3 − ω4 = 0.9375eπ/4
√−1 (12)

From (11), ω2 = 1.6ω4. It is the same result as the one of
Nelson [7]. Lastly, for ω2 = 10Hz, the gear frequencies
are :

ωg
13 = ωg

23 = 93.75 Hz . (13)

Example 2 In the following example we consider a car
differential depicted in Figures 4 and 5.

The table T of links and joints is given in Table (2) with
N1 = 13, N2 = 65, N3 = 10, N4 = 14, θ1 = 0 and
θ2 = π/4. Then, the corresponding adjacency matrix is
given by equation (14).

Imposing the rotational speed of the car frame (the link
# 1) is equal to 0, then the speed ratio matrix Ω0 can
be normalized with respect to the two wheels (links # 3

Figure 4: Picture of the car differential

N4

N3

N2

N1

1

2

7

4

3

6

5

θ2
Right Axle Shaft

Drive Shaft
Planet PinionDifferentiel Cage

Left Axle Shaft

Planet Pinion

Crown Wheel

Sun Gear

Drive Pinion

θ1

Figure 5: Car Differential
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Table 2: Table of links and joints for the car differential (example 3)
1 2 3 4 5 6 7

1 (p) (p) (p) (p)
2 (p) N1e

θ1
√−1

3 (p) N4e
−θ2

√−1 N4e
θ2

√−1 (p)
4 (p) N4e

θ2
√−1 N4e

−θ2
√−1 (p)

5 N3e
θ2

√−1 N3e
−θ2

√−1 (p)
6 N3e

−θ2
√−1 N3e

θ2
√−1 (p)

7 (p) N2e
−θ1

√−1 (p) (p) (p) (p)

M =

⎡
⎢⎢⎢⎢⎢⎣

−78 13 0 0 0 0 65
0 0 14e−π/4

√−1 0 10eπ/4
√−1 0 −14e−π/4

√−1 − 10eπ/4
√−1

0 0 14eπ/4
√−1 0 0 10e−π/4

√−1 −14eπ/4
√−1 − 10e−π/4

√−1

0 0 0 14eπ/4
√−1 10e−π/4

√−1 0 −14eπ/4
√−1 − 10e−π/4

√−1

0 0 0 14e−π/4
√−1 0 10eπ/4

√−1 −14e−π/4
√−1 − 10eπ/4

√−1

⎤
⎥⎥⎥⎥⎥⎦ (14)

and 4):

Ω0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
−2.5 −2.5

1 0
0 1

0.86e0.95
√−1 0.86e−0.95

√−1

0.86e−0.95
√−1 0.86e0.95

√−1

0.5 0.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

The car differential is obviously a 2 d.o.f mechanism, as
long as it is made so that the two wheels of the car can
spin at different speeds. The two columns of Ω0 give
the speed ratios when one wheel is locked and the other
is free. The most common behavior (driving straight
ahead) corresponds when both wheels spin at the same
speed ω3 = ω4 = ω. Then the rotational speed vector is:

Ω = Ω0

[
ω
ω

]
= [ 0 −5 1 1 1 1 1 ]T ω .

Another well-known behavior appears when there is no
transmission ω2 = 0 and the car is jacked up. Then
the two wheels spin in opposite sense at the same speed
ω3 = −ω4 = ω. Indeed:

Ω = Ω0

[
ω
−ω

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
−1

1.4eπ/2
√−1

−1.4e−π/2
√−1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

ω .

Numerical application : let’s consider the example of
a car turning a right corner at a speed of 30km/h. It can

be shown that the rotational speeds of the two wheels
are ω3 = 26 rd/s and ω4 = 30 rd/s. Then the rotational
speed vector becomes:

Ω = Ω0

[
26
30

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−140
26
30

28.14e−0.10
√−1

28.14e0.10
√−1

28

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(rd/s) . (16)

Now it is possible to take into account the data relative
to the 2 roll bearings in the revolute joint between links
1 and 7:

Dm = 54mm, db = 5mm, Z = 25, α = 15 .

Then, the Table (A) in appendix lists all the frequencies
of defaults that could be found in this mechanism, their
locations, and the number of different sources.

4 Conclusions

The kinematic method introduced in this paper is an im-
provement of the Nelson’s method. Based on the same
principle and the same formula (the Willis Formula), this
approach solves the model using the null space of the ad-
jacency matrix associated to the kinematic graph of the
mechanism. It allows complex mechanisms with several
degrees of freedom to be solved.

The other advantage of this method is the introduction
of complex coefficients in the adjacency matrix. It is now
possible to deal with complex systems with non co-linear
input and output axis.

It is also possible to have access to the gear frequencies
and the frequencies of all defaults which could appear in
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the various contacts of the mechanism including contacts
inside ball (roll)-bearings. Such a kinematic analysis can
be very useful in the context of vibration analysis.

Further works will be focused on different directions:

• this approach will be applied to analyze the Main
Gear Box (MGB) of an helicopter. This analysis will
be used in the Kalman filter involved in the signal
processing of sensors (accelerometers) distributed on
the MGB in order to diagnose its health,

• the approach will be also linked to the graph theory
(Hsu and Lam [6]) in order to develop a procedure
to find automatically the reference (carrier) link of
gear pairs,

• lastly, the aim of that study was to obtain a list
of frequencies at which a default can appear. In
that context, there was no interest in Power-flow ef-
ficiency or Efficiency analysis. It may be interesting
to lead some studies to extend this method to these
two domains.

A Appendix

Table A: List of possible default frequencies in the car
Pair Frequency (rd/s) Description Number of sources
(1,7) 381.3 Default on the inside ring of bearing 1 1

318.7 Default on the outside ring of bearing 1 1
310.6 Default on a roll of bearing 1 25
381.3 Default on the inside ring of bearing 2 1
318.7 Default on the outside ring of bearing 2 1
310.6 Default on a roll of bearing 2 25

(2,7) 1820 Gear frequency
140 Default on a tooth of link 2 13
28 Default on a tooth of link 7 65

(3,5), (3,6), (4,5), (4,6) 28 Gear frequency
2 Defaults on a tooth of links 3 and 4 14

2.8 Defaults on a tooth of links 5 and 6 10
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