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The Simultaneous Influence of the Skin Effect,
Environmental Conditions and Variable
Resistivity on Current and Temperature

Distribution in Overhead Conductors

Oscar Chavez and Federico Méndez

Abstract— In the present work, we have theoretically
analyzed the heat conduction of alternating current that flows in
a circular electric conductor, taking into account variations of
electric resistivity with temperature, which leads to a coupled
thermo-electric model. In this approach, we have considered the
presence of the skin effect that yields important radial
differences of temperature by solving numerically the
corresponding Maxwell’s equations for the pass of the electrical
current, together with the heat conduction equation to predict
the radial variations of temperature. The results are presented
in dimensionless form in order to reduce the number of physical
variables. It is well-known that these high-voltage transmission
lines are constructed with aluminum conductors that are
composed by strands of the same material. For this reason,
trapped-air between these strands complicates the analysis of
these phenomena. In this direction, the mathematical model for
the heat conduction equation, therefore, takes into account that
the air-aluminum system is represented by a porous media.
Finally, the imposed thermal boundary conditions reveal that
the environmental conditions are a fundamental factor to
control the above effects.

Index Terms— Ampacity, Skin effect, Thermal behavior.

I. INTRODUCTION

Currently it is necessary to get a better model that
determines more accurate temperature profiles in order to
prompt the fuller utilization of overhead transmission lines;
therefore, we have to consider all possible physical laws that
describe the phenomenon.

Analytical and experimental studies of the thermal
behavior in cables were initially carried out measuring
conductor temperature and meteorological conditions in
real-time systems, which did not take into account
temperature variations within conductor, for this reason it
does not allow using the full function of the conductor [1].

For this reason, the estimation of the temperature for a
conductor is an important issue. In early models, a uniform
temperature approximation has been considered. Normally, it
is determined by an energy balance between the generated
heat due to the Joule effect and the removed heat by
environmental conditions. Reference [2] shows a thermal
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model that does not consider the existence of temperature
gradients and was solved by the transient and steady-state
cases.

On the other hand, in stranded cables the gradients of
temperature are larger than the corresponding gradients in
solid conductors, due to air trapped between the wires
forming the cable. Reference [3] shows in detail the
temperature profile for the steady —state case of monometallic
cables, considering both cases: the cable as solid and as well
as a stranded solid, under the assumption of uniform current
density. He also developed a novel analysis to calculate the
equivalent thermal conductivity for stranded cables.
Reference [4] developed a comparison between the
temperature gradients in a steady regime with the results
obtained with the aid of a lumped model, showing that the
temperature of the center of the conductors is always higher
than the temperature calculated on the assumption of constant
temperature.

At present, due to computational progress is possible to
obtain easily the solution of the equation of heat transfer in
transient state and thus to predict the thermal behavior of the
electrical conductor.

In the past, many mathematical models have been
developed to show the thermal behavior of electrical
conductors in order to make a better design of overhead-line
conductors. Early models were made under the assumption
that electrical current is uniform in the cross section of the
conductor. However, In order to have a better representation
of the thermal behavior is necessary to take into account the
electromagnetic effects, which affect seriously the electrical
performance. The above is particularly valid when alternating
current flows through a conductor and a redistribution of
current density is developed [5].

Therefore, in the present work we develop a mathematical
model for which the presence of simultaneous
electromagnetic and thermal effects has been taken into
account. The corresponding governing equations are solved
by finite difference method. In this manner, the temperature
profiles influenced by the electromagnetic effects are
obtained for realistic cases and the influence of the
environmental conditions is clarified.

II. DESCRIPTION OF THE PHENOMENON

The case of study is here represented by a sudden flow of
electric current in a cylindrical metallic conductor that is
initially found at ambient temperature. The alternating current
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that is flowing in this electrical medium leads to a
redistribution of current density, causing the well-known skin
effect. Under this condition, the current density tends to flow
over the surface of the conductor, depending strongly on the
frequency of the electrical signal. Recognizing the existence
of a specific electrical resistance associated with the
conductor, this component suffers an increment of its
temperature, generating a finite quantity of heat due to the
Joule effect, which originates an increase of temperature of
the conductor, and therefore an increase of the electric
resistivity, which causes a redistribution of current density.

Normally, the heat is generated in regions near to the
surface of the conductor, because of skin effect. Therefore, we
expect that during the transient state the heat is transferred to
the core of the cable by heat conduction and considering that
the cable is stranded, we use the theory of porous media to
know the equivalent thermal properties. We assume that the
heat transferred to the environment is characterized by an
appropriate Biot numbers.

A. Electromagnetic Model

From the well-known Maxwell’s equations, we can readily
derive a wave equation to analyze the electromagnetic
propagation. Therefore, the current density is governed by the
following equation [6]:

(1

YA,
VAT = ‘{a LAY )

In the above equation, A is the electric resistivity, J isthe
current density, x4 is the magnetic permeability, ¥ is the

electric permittivity and ¢ is the physical time.

We consider that exist only variations of the current density
in the radial direction and the alternating current behaves like
a sinusoidal wave. Therefore, the current density can write

asJ =J,(r)e . On the other hand, the electrical resistivity
has a linear variation with temperature which can be written
as =1, [1+¢(T—Tw )] , and introducing it into (1) we
obtain that,
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where @ is the frequency of the electrical signal, ris the
radial coordinate, 7 is the temperature, 7, is the
environment temperature, J, is the current density function
depending only on radial coordinate, ¢ is the temperature
coefficient for resistivity and i is the imaginary number
=y

In practical cases, the term yw’u is smaller than iouf A
and can be neglected in a first approximation. In addition, we
can introduce the well-known conductor skin depth
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parameter, o , defined by & =(24/wu)"*, which can be

found elsewhere [7]; in this form then (2) can be written as

d*J, 2¢ or 1)\dJ,
+ —+— |+
dr*  \1+¢(T-T.) or dr
. ) O°T 107 J - 3)
1+¢(T-T.)| or r o
2i
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The above equation must be solved with the following
boundary conditions:

at r=0: —£ =0, 4)

J=J, 5)

Here, R represents the radius of the metallic conductor
and J, is the current density at the surface of the conductor

and should be determinate with the following restriction:
1= J,-dd,

where A is the cross section area, and / is the total
circulating electrical current. In our case, we assume known
values for this variable given lines below.

B. Thermal Model

In order to determinate the gradients of temperature
generated by the Joule effect, we must solve the heat
conduction equation in transient state, regarding only
temperature variations in the radial coordinate [8]:

*=(pe), 2L, )

7 ot
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and subject to the following boundary and initial conditions:

oT
=0: —=0, 7
r 5 (7
oT
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r ﬂ?ar ( w) ()
t=0: T=T.. )

In the above equations, £ is the thermal conductivity of the
metallic conductor, p is the density, ¢ is specific heat, /4 is
the convective heat transfer coefficient and subscript
ef denotes effective properties.

C. Order of magnitude analysis and dimensionless
variables

In order to reduce the number of physical parameters and
variables, we can develop an order of magnitude analysis.
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First, we identify various scales: the characteristic
convective time scale #. ~ pcR/h. On the other hand, the
suitable spatial scale corresponds directly to the radius of the
conductor » ~ R . Furthermore, the characteristic temperature
drop AT, canbe obtained through an energy balance between

the heat generation term and the transient term, i.e.:

AT,
Ch—vﬂ%Jﬁ, (10)
thus,
2 72
ENEJLQ, (1
k,-Bi

of

and the dimensionless parameter Bi in the above relationship
represents the Biot number defined as

Bi=—.

k,

(12)

With the above set of characteristic geometrical and
physical scales, the electromagnetic and thermal models can
be considerably simplified by introducing the following
dimensionless variables

T-T, r t-h
= . 77:—7 ’[:—7
AT, R PcR
AR J: J
K=—¢°" £, and @=—>.
k, - Bi Jr

D. Dimensionless Electromagnetic Model

Therefore, (3)-(5) with the aid of the above considerations
can be written as,

2
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Together with,

n=0: %%:Q (14)
n=1 p=1 (15)

In the above system of equations, & is a dimensionless
parameter related directly with the intensity of the skin effect
and given by e =(J/R) .
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Figure 1. Variation of dimensionless current density distribution, ¢, for
different values of &
E. Dimensionless Thermal Model

In the same manner, we can use the dimensionless variables
for obtaining the following dimensionless thermal model,

el 2 20
— |+ Bi(1+ 8 =Bi—;
(122 e v xoof =512

1o

- 16
7 on (16)

together with the associated boundary and initial conditions
given above.

n=0: 99 o, (17)
a7

n=1 92——8%& (18)
on

7=0: 6=0. (19)

The above dimensionless heat conduction equation
together with boundary and initial conditions, here
represented by the system (13)-(19) were solved using the
conventional finite-differences method [9].

III. RESULTS

In this paper we have numerically solved the current
density equation together with the unsteady heat conduction
equation with a non-uniform heat generation and here
represented by the alternating current. Both equations were
solved using the well known finite-differences method.

In particular, we show the current densities and the
temperature profiles as functions of the radial coordinate,
considering the influence of the skin effect and the variation
of electrical resistivity with temperature. In this direction, we
prove the existence of two dimensionless parameters -here
denoted by the symbols & and k-, which measures the
electrical thickness of the current density and the level of
coupling between both models —electric and thermal models-
respectively.
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Figure 2. Dimensionless temperature profile, &, for different values of the
dimensionless parameter £ and 7 =0.1.
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Figure 3. Dimensionless temperature profile, @, for different values of the
dimensionless parameter € and 7 =0.4.

A. Influence of €

In Fig. 1 we show the current density as a function of the
dimensionless radial coordinate for three different values of
the skin parameter £ . Clearly, for small values of this
parameter, the stronger skin effect is enhanced because the
current density distribution tends to flow in regions closer to
the surface

For the following Figs. 2-5, we show the results for the heat
transfer process following this sequence: in order to see the
influence of skin effect on the dimensionless temperature
profiles, we choose a fixed values of the Biot number Bi=1,
and x=0.5, different values of the dimensionless time 7
(=0.1, 0.4, 1.0, 7.0) and three different values of the skin
parameter € (=0.01, 0.2, 0.5). Therefore, Figs. 2-5 show the
thermal behavior of dimensionless temperature as a function
of the dimensionless radial coordinate. These figures reveal
clearly the influence of the skin effect: for increasing values of
£ the domain of the spatial variation of the temperature is
going to be more relevant. Together with the above
considerations, on the other hand, these figures reveal that for
increasing values of the dimensionless time the temperature
profiles tend to reach a steady-state condition.

B. Influence of Bi

In Fig. 6 we show the current density as a function of the
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Figure 4. Dimensionless temperature profile, @, for different values of the
dimensionless parameter € and 7 =1.0.
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Figure 5. Dimensionless temperature profile, @, for different values of the

dimensionless parameter € and 7 =7.0.
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Figure 6. Variation of dimensionless current density distribution, ¢, for
different values of Biot number Bi
dimensionless radial coordinate for three different Biot
numbers Bi. Here, it is possible to appreciate redistribution in
dimensionless current density behavior, due to environment
conditions. A small value of Bi means that the heat transfer
process to the environment is weaker and therefore the above
figure suggest increasing values of the dimensionless current
density. It implies smaller values of the surface current
density J, in order to guarantee the relationship

1= J,-dd.
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Figure 7. Dimensionless temperature profile, @ , for different values of Biot
number Bi and 7 =0.1.
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Figure 8. Dimensionless temperature profile, @ , for different values of Biot
number Bi and 7 =0.4.
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Figure 9. Dimensionless temperature profile, @, for different values of Biot
number Bi and 7 =1.0.

Therefore, we can appreciate the influence of
environmental conditions showing in Figs. 7-10 the
temperature profiles under the influence of the Biot number,
Bi (=0.1, 0.5, 1); keeping uniform values for the parameters
£=0.5,and x=0.5 and varying the dimensionless time 7
(=0.1, 0.4, 1.0, 7.0). Thus, for increasing values of Bi the
spatial variation of the temperature is going to be more
relevant; otherwise, we obtain practically uniform values for
the temperature and in this case, the classical lumped method
can be used.
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Figure 10. Dimensionless temperature profile, @ , for different values of Biot
number Bi and 7 =7.0.
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Figure 11. Transient state of dimensionless current density distribution, ¢
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Figure 12. Variation of dimensionless current density distribution, ¢, for

different values of X

C. Influence of k

In Fig. 11 we show the current density as a function of the
dimensionless radial coordinate in transient state for four
different characteristic times and keeping fixed the values of
the parameters Bi=1.0, £€=0.5 and x¥=0.5. In order to
observe the influence of & on the current density distribution,
in Fig. 12 we keep invariable the parameters Bi=1.0 and
€ =0.5 for three different values of the parameter x (=0.01,
0.2,0.5).
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Figure 13. Dimensionless temperature profile, @ , for different values of the

dimensionless parameter X and 7 =0.1.

o 0170
-c-u' AAAAL.‘A;A““‘
5 0185 “
© i
S oo oaa.oooo...... 1

-
=3 [ERREEE N R . .
E o01ss5 . %
s
v 0150 v
@ ]
% 0.145 = x=0.01] Bi=1.0 w,
[=] *— g=(0.2 e=0.5 A
g 0.140 - A =05 oyt -

[ ]

@
£ 0135 \
= T . : . i .
[m] 00 02 04 06 o8 %8

Dimensionless radial coordinate n

Figure 14. Dimensionless temperature profile, @ , for different values of the

dimensionless parameter X and 7 =0.4.
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Figure 15. Dimensionless temperature profile, @ , for different values of the
dimensionless parameter X and 7 =1.0.

For the following Figs. 13-16, we show the transient state
of temperature profile. In order to show the effect of the
parameter X we kept uniform values of the parameters
Bi=1.0and £=0.5and varying the dimensionless time 7
(=0.1, 0.4, 1.0, 7.0). Thus, for increasing values of x the
spatial variation of the temperature is going to be more
relevant; otherwise, we can considerate both models
separately.
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Figure 16. Dimensionless temperature profile, @ , for different values of the

dimensionless parameter X and 7 =7.0.

IV. CONCLUSION

In summary, the temperature profiles are strongly
influenced by the following parameters: Bi, kx ,and €. For
small values of these parameters, the physical consequences
are direct: small values of the Biot number means an
inefficient heat transfer process to the environment; therefore,
the cable is overheated; while small values of skin parameter
€ has a undesirable effect, because a great amount of electric
current flows through a small area, leading it also to an
overheated of the cable, and finally a small value of x means
that electric and thermal model are weakly coupled and can be
solved separately. The above results are very interesting from
a practical point of view, because the global electrical
performance and design of high-tension cables is seriously
altered by the influence of these factors.
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