
 
 

 

 
Abstract—In this study, the thermoelastic instability (TEI) 

was analyzed using the finite element analysis technique. The 
governing dynamic and heat equations were described. Three 
dimensional thermomechanical analysis model of the disc brake 
system were created. An intermediate processor based on the 
staggered approached was used to exchange result data: 
temperature, friction contact power, nodal displacement and 
deformation. Disc thickness variation (DTV) and temperature 
distribution of the disc were calculated, and the tendency and 
meaning of each result were discussed. 
 

Index Terms—Thermoelastic instability, Finite element 
analysis technique, Thermomechanical analysis, Intermediate 
processor, Disc thickness variation 
 

I. INTRODUCTION 

The friction heat generated between two sliding bodies 
causes thermoelastic deformation which alters the contact 
pressure distribution. This coupled thermo-mechanical 
process is referred to as frictionally-excited thermoelastic 
instability or TEI [1]. If the sliding speed is above one called 
critical speed, the resulting thermo-mechanical feedback is 
unstable, leading to the development of non-uniform contact 
pressure and local high temperature with important gradients 
called ‘hot spots’ [2]. The formation of such localized hot 
spots is accompanied by high local stresses that can lead to 
material degradation and eventual failure [3]. Also, the hot 
spots can be a source of undesirable frictional vibrations, 
known in the automotive disc brake community as ‘hot 
roughness’ or ‘hot judder’ [4].  
In this study, a transient FE analysis method was used to 

analyze the fully coupled thermoelastic instability problem 
for a disc brake system. Mechanical and thermal model for 
the disc brake were generated separately, and solved 
iteratively using the staggered approach [5]. The staggered 
approach is one of the most popular computation techniques 
used to solve the highly coupled non-linear equations. Three 
dimensional FE model of a disc brake was created. The 
mechanical model of the disc brake was assumed to be in 
braking with an acceleration of 0.3g from 160 kph to 80kph. 

The thermal model with an initial temperature of 80℃ 
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interacts with the mechanical model, and the friction heat 
between the pad and disc is generated by the contact 
condition. Due to the heat generation, the material of disc is 
expanded and alters the contact condition. By comparing the 
simulation results to the test data in Part.2 of this paper, the 
reliability of the FE models and computation scheme is 
verified. 
 

II. THEORETICAL BACKGROUND 

  The equation of motion of a constrained dynamic system 
is introduced based on the finite element approach [6]. The 
general heat equation is briefly reviewed and the basic 
strategy to analyze the coupled thermo-mechanical system is 
described according to the staggered approach. 

A. Dynamics of a Constrained Flexible Multibody System 

The constraints on the system are efficiently taken into 
account using the Augmented Lagrangian method. The 
augmented functional of Hamilton’s principle is 
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where k  is the scaling factor and p  is the penalty 

coefficient.    is the vector of Lagrange multipliers and 
 

is   the vector of constraints. L  is the Lagrangian of the 

mechanism defined as  VTL  .  T
 
and  V  are the 

kinetic and potential energies of the system, respectively. W   
is the virtual work of external forces. Using the virtual 
displacement principle, the motion equations are obtained as 
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where q

 
is the vector of generalized coordinates. 

Equation (2) can be written in the matrix form 
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where B   is the gradient matrix of the constraints 
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The linearized form of the motion (65) can be described as 
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B. Transient Computation of Heat Transfer Equation 

The temperature within in an element is computed based 
on the nodal temperature vector 

 

)()(),( tTxtxT                     (7) 

 

where x  is the nodal coordinate, )(x  is the 

interpolation function vector and )(tT  is the nodal 

temperature vector. The governing equation of the heat 
transfer problem is 
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where )(TC  and )(TK  are the discretised system’s 

temperature-dependant heat capacity and thermal 

conductivity matrices, respectively, T  is the nodal 

temperature vector, T  is the time derivative of the 

temperature vector, and )(TQ  is the heat flux vector. The 

solution vector rT
 
of Equation (11) at time   , which is 

located at time intervals between n and n+1 step, can be 
expressed as 
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The variation rate of the temperature can be written as 
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C. Heat Generation Due to Friction Contact 

In disc brakes, the friction heat is generated between the 
disc and pads. Frictional heat generation per unit time at the 
node i is calculated as 
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where    is the factor defining the percentage of 

mechanical power converted into heat,   is the friction 

coefficient, t  is the contact pressure and   is the local 

velocity. The amount of heat going to the contractor and 

target bodies, 
iq1  and  

iq2 , are determined with the 

parameter   
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D. Computation Strategy 

Figure 1 shows the computational analysis strategy used in 
this study. The thermal model can send the nodal temperature 
to the mechanical model. The mechanical model transfers the 
nodal position, power and contact pressure to the thermal 
model. At time (t) = 0, the initial static computation results of 
the mechanical model and the initial steady-state 
computation results of the thermal model are exchanged. In 
step 1, the nodal temperature distribution is updated 
considering the initial deformation and power of the 
mechanical model. In step 2, using the nodal temperature, the 
deformation of material is calculated. This affects on 
constraints including the contact condition, and if the 
deformation of the material due to the temperature is too 
large, the Newton-Raphson iteration can be failed to 
converge. The power due to plastic deformation and friction 
contact is computed in this step. In step 3, the power is 
transferred to the heat and the heat is applied to the thermal 
model as a thermal load. At this step, the temperature 
distribution of nodal point is estimated in equilibrium state. 
Step 2 and 3 are repeated until the calculation time ends. At 
every step, the time step is controlled automatically 
according to the residue of equation (9) and (11) and if the 
residue doesn’t converge in the allowed number of iterations, 
calculation stops. 

 

 
Figure 1. Analysis strategy based on the staggered 
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approach 

III. SIMULATION 

A. Finite Element Model 

Figure 2 shows the finite element model and boundary 
conditions of the simple disc brake module composed of a 
disc and two pads. The outer radius (R1) and inner radius (R2) 
of the disc are 127.5 mm and 80 mm. The effective angle of 
the pad (Φ) is 60° and the thickness of the disc and pad is 19 
mm and 15 mm, respectively. The disc is constrained on the 
ground with a hinge joint and rotates with a constant 
rotational speed (ω) of 1400 rpm. The pad can move in 
z-direction and a constant pressure of 25 bar pushes on the 
surface of the pad. The friction contact conditions are applied 
between the surfaces of the disc and pads with the friction 
coefficient (μ) of 0.4. To avoid a singularity problem and 
reduce a computational effort, the rotational speed of the disc 
increases from 0 rpm to 1400 rpm for 0.1 second. When the 
rotational speed of the disc reaches its maximum, the pad 
starts to move. So, it is not necessary to perform the static 
analysis of the dynamic model at t = 0 second and the friction 
contact condition converges in a small number of the 
Newton-Raphson iterations since the pad contacts on the disc 
when dynamic status of the disc is stable. The boundary 
conditions of the thermal model are also described in Figure 2, 
and it is quite simple. The initial temperature of the disc and 

pads is 80℃, and the surface convection condition is applied 

at all surfaces of the disc with the reference temperature (air) 

of 25℃ and the convection coefficient (h) of 40 W/m2℃. 

8-nodes hexahedron elements are used and all parts are 
assumed to be aluminum. 

 

 
 

B. Simulation Results 

Figure 4 shows the change of the temperature distribution 
of the disc surface in radial direction according to time. The 
temperature of the disc is 80℃ at t = 0s and increases to its 
maximum of 442℃  at time = 10s. It is shown that the 
temperature of the inner region of the disc is higher than that 
of the outer region. The hinge joint was set between the 

ground and the nodes of the surface of the disc inner circle 
(refer to Figure 5), and rotates the nodes compulsorily by 
1400 rpm. Thus, the reaction stress is concentrated at the 
nodes located at the surface of the disc inner circle and the 
contact pressure and temperature are increased. 

 

      

(a) time = 0s                   (b) time = 2s 

 

     

(c) time = 4s                  (d) time = 6s 

 

     

(e) time = 8s                 (f) time = 10s 

Figure 4. Change of the temperature distribution of the disc 
surface in radial direction according to time 

 

 

Figure 5. Temperature variation of the disc and pads in axial 
direction 

Figure 6 (a), (b) shows the disc thickness variation (DTV) 
and temperature variation of the disc surface along the radial 
direction of the disc. In Figure 6 (a), DTV of node 1, which is 
located at the surface of the disc inner circle, is almost zero. 
Because 6-DOF of node 1 is fixed with the disc center node 
where the hinge joint is equipped, translation in y-axes, 
which is the same direction with the rotational axes of the 
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disc, is constrained, and then the resultant DTV is zero. DTV 
is sharply increased at node 2 since the contact pressure and 
temperature are concentrated at this region. DTV keeps an 
almost constant level between nodes 2 and 5, then decreases. 
As time increasing, DTV is also increasing because of the 
contact pressure improvement by the thermal expansion of 
materials of the disc and pads. The magnitude of the thermal 
expansion becomes bigger as temperature rise. Figure 6 (b) 
shows the temperature at each node is increasing according to 
time, and the maximum temperature can be measured at node 
2 and 3. 

 

 
(a) Disc thickness variation (DTV) 

 

 
(b) Temperature variation of the disc surface 

 
Figure 6. Disc thickness and temperature variation along the 
radial direction of the disc 

 

IV. CONCLUSION 

Thermoelastic instability (TEI) of the disc brake system is 
discussed in this paper. A simple finite element model of a 
disc and two pads was created, and TEI phenomenon was 
implemented by rotating the disc with a constant rotational 
speed of 1400 rpm. The intermediate processor using the 

staggered approach was used to connect results of two other 
analysis domains: mechanical and thermal analysis. By 
exchanging calculation results such as temperature 
distribution, contact power and nodal position at every time 
step, solutions of fully coupled thermo-mechanical system 
could be obtained. Contact pressure distribution of the pad 
surface was varied according to the rotational direction of the 
disc. DTV and temperature of the disc were calculated and 
tendency was verified by earlier studies. In the near future, 
the analysis technique is going to be applied to the actual disc 
brake module and the result will be compare with the 
experiment. 
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