
  

Abstract— This paper presents the formulation of an 

axi-symmetric element based on an efficient method called the 
“Inverse Approach” (I.A.) for the numerical modeling of cold 
forging process. In contrast to the classical incremental 
methods, the Inverse Approach exploits the known shape of the 
final part and executes the calculation from the final part to the 
initial billet. The assumptions of the proportional loading and 
the simplified tool actions make the I.A. calculation very fast. 
The metal’s incompressibility is ensured by the penalty method. 
The comparison with Abaqus shows the efficiency and 
limitations of the I.A. which will be a good tool for the 
preliminary preform design. 

 
Index Terms— Cold forging process, large strains, 

integrated constitutive law, axi-symmetrical element, Inverse 
Approach.  

 

I. INTRODUCTION 

In a cold forging process, the metal is plastically deformed 
under the tool action. The forging process allows not only to 
change the billet’s shape but also to improve the metal 
properties because it refines the metal grain size. Forged parts 
are often used for high performance and high reliability 
applications where the strength and the human safety are 
crucially important.  

The numerical modelling plays an important role in the 
tool design for the forging process. Many research groups 
work on the forward method or on the backward tracing 
method for the forging simulation and optimization [4]-[7]. 
Very advanced works have been done by Chenot, Fourment 
et al. from CEMEF in France and the corresponding software 
“FORGE” is largely used in the forging industry.  

Two simplified methods called Inverse Approach (I.A.) 
and Pseudo Inverse Approach (P.I.A.) have been developed 
by Batoz, Guo et al. [8], [9] for the sheet forming modeling. 
They are less accurate but much faster than classical 
incremental approaches. 
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The aim of the present work is to study the feasibility of the 
I.A. for the cold forging modeling. The formulation of an 
axi-symmetric element based on the I.A. is developed for the 
preliminary preform design and optimization. 

 
In this study, firstly, we present the basic idea of the I.A. 

and the main steps of modelling. Then, we talk about the 
formulation of an axi-symmetric element based on the I.A.: 
the principle of virtual work in large deformation, the large 
logarithmic strains, the integrated constitutive law, the 
technique to ensure the incompressibility of the metal and the 
treatment of the boundary conditions.  An example will be 
presented to show the efficiency and limitations of the 
present I.A. for the forging process modelling. 

 

II. OUTLINE OF THE INVERSE APPROACH 

The Inverse Approach is based on the knowledge of the 
final part shape. The prediction of the trajectories of all 
material points from the initial billet to the known final part is 
done in one step by comparing directly the initial and final 
configurations. Two basic assumptions are used in this study: 
the assumption of proportional loading (for cold forging) 
gives an integrated constitutive law without considering the 
strain path and the visco-plasticity, the assumption of contact 
between the part and tools allows one to replace the tool 
actions by nodal forces without contact treatment. These two 
assumptions make the I.A. calculation very fast.  

The I.A. procedure is carried out as follows (Fig. 1): 
 
1) The finite element mesh is created on the known final 

part. 
 2) As an initial solution, the nodes at the part contour are 

mapped on the contour of the initial billet and a linear 
resolution allows determining the positions of the other 
nodes (internal nodes) in the initial billet. 

 3) The large strains are calculated by using the 
Cauchy-Green left tensor between the two meshes, the 
stresses are obtained by using an integrated constitutive law. 

4) An implicit Newton–Raphson algorithm is used to move 
the nodes in the initial billet in order to satisfy equilibrium in 
the final part. 
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Fig. 1 Two approaches for forging process modelling 

III. AXISYMMETRIC ELEMENT BASED ON I.A. 

A. Principle of Virtual Work (PVW) 

In the Inverse Approach, the final configuration is known 
and taken as reference configuration. The equilibrium of the 
final part is expressed by the principle of virtual work: 
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where We
int and We

ext are the element internal and external 
virtual works, 

 
 the Cauchy stresses,  *

 
the virtual 

strains, *u  the virtual displacements,  f  the volume 

forces. 
We note that: the virtual strains are infinitesimal, so they 

are linear functions of virtual displacements; whereas, the 
above Cauchy stresses are related to the large strains, so 
generally they are calculated by an incremental algorithm. In 
the present study, a total method is proposed: 1) the 
deformation gradient tensor and the Cauchy-Green left tensor 
are defined; 2) then the principal elongations and large 
logarithmic strains are calculated; 3) finally the Cauchy stress 
is calculated by using an integrated constitutive law 
(Hencky-Mises). 

B. Virtual strain operator 

For an axi-symmetric problem, the strain vector is often 
defined in the global cylindrical coordinate system ( , , ,r Z  

Fig. 2). In our finite element formulation, it is more 

convenient to define the strains in the local element 
system ( , , )x z : 
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where u* and w* are the virtual displacements along x and z, r 
the radial coordinate and  is the inclination angle of the local 

reference  with respect to the global reference ( ( , )o x


to 

( , )o r


) . 

 
The present element is an axi-symmetrical CST element 

with three nodes and six degrees of freedom. The 
displacements are interpolated linearly in terms of nodal 
displacements: 
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where Ni(x,z) are the linear interpolation functions for an 
element. 
        Substituting Eq. (5) into (4), we obtain the following 
virtual strain operator [Bm]: 
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Fig. 2 Cylindrical coordinate system (r,Z)  

C. Internal force vector 

Substituting Eq. (6) into (2) gives the element internal 
force vector in the local reference:   

Incremental approach: 
numerous steps from C0 to C 

Inverse approach: 
1 step from C to C0 

C0 

C 

k , W


 
k


re , U
  

Y

Z, W

X 

M (r,, Z)  

r, U 

e , V
  
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Since the stress vector   is not constant in an element, 

generally we should introduce the reference element and use 
the numerical integration to calculate the internal force vector 
in the local reference.

 

A reduced integration method is 
proposed by Batoz and Dhatt [2]: the stresses are supposed 
linear in an element and the barycentre is taken as single 
integration point. Thus the calculation of the internal force 
vector becomes very simple: 
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D. External force vector 

In a forging process, the initial billet is submitted to a 
normal pressure force and a tangential friction force on the 
contour. In the Inverse Approach, these tool actions are 
simply represented by some external nodal forces at the final 
configuration to avoid the contact treatment. At a node, the 
direction of the resultant force n f


can be defined by the 

friction cone and the slide direction: 
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(9) 

where n


 is the unit normal vector of the contour, t


the unit 
vector of the projection of the node displacement on the 
tangent direction of the contour, 

 



 

the friction coefficient.

                                            

 

The FE discretization allows one to establish the 
following equations representing the equilibrium on a node 
k: 
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where 
Tk k

r Zn n n f



 

represents the direction of the 

resultant force at the node k (Eq. 9), the intensity of this force 
kP  can be determined as follows: 
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The element external force vector is finally obtained: 
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E. Large logarithmic strains 

In the Inverse Approach, we use an integrated 
constitutive law which associates the total strains to the total 
stresses. These large strains are calculated by the following 
steps: the inverse of deformation gradient tensor  the 
inverse of the Cauchy-Green left tensor  the principal 
elongations  the logarithmic strains. 

The word « inverse » is used to indicate that the known 
final configuration is taken as reference configuration, and 
the calculation is carried out from the known final part to the 
unknown initial billet.  

The solid has an axis of revolution ( , )o Z


. Any point M in 

the solid is defined in the global reference by its cylindrical 
coordinates (r, θ, Z, Fig. 2). The displacement field is 
composed of the radial, circumferential and vertical 
displacements (U, V, W): 
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This allows us to obtain the differential of the 

displacement field:                            
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For an axi-symmetric problem, each point of the solid 
moves in its meridian plane (V=0) and the displacement field 

is independent of the circumferential coordinate ( 0





). 

In this case, the displacement gradient tensor in 
cylindrical coordinates is reduced to: 
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In our Inverse Approach in large strain and plasticity, it is 
more convenient to define the deformation gradient tensor in 
the element local system:  
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where u


 is the displacement vector in the local reference 
from the initial position vector 0x


 to the final position vector 

x


. 

F. Inverse of the Cauchy-Green left tensor 

The inverse of the Cauchy-Green left tensor in the local 
system is determined by the following expression: 
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transformed to the principal reference to obtain the three 
eigenvalue 2 2 2
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where 

 

is the angle from the local reference to the principal 

reference. 
Finally, the principal logarithmic strains are defined by: 
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    The assumption of incompressibility of the metal gives the 
volume strain null: 
 

1 2 3 0v x z            
                   

(22)
 

1 2 3 1x z                               (23) 

G. Penalization method for metal incompressibility 

The incompressibility of the metal can be ensured by 
introducing a Lagrange multiplier or a penalization term 
(Kobayashi and Altan, [5]).  In our Inverse Approach, we add 
a penalization term in the Principle of Virtual Work: 
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                                                   (24) 
where v  

is the volume strain, K is a great positive factor 

which allows to annul v in the convergence loop. Using the 
virtual strains operator (Eq. 6), we obtain a vector of 
"equivalent forces" relative to the volume stain:
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H. Integrated constitutive law (Hencky-Mises) 

In the present study, the isotropic constitutive law is 
adopted. The Von Mises criterion of plasticity is expressed 
by: 
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where   is the equivalent stress, Y  the
 
yield stress.

 The normality law allows one to establish the relation 
between the plastic strain rate and the Cauchy stress using the 

plastic multiplier : 
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Using Eqs. (28) and (29), we obtain: 
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The Hencky assumption (proportional loading) allows to 
directly integrating the plastic strain rate: 
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where sE



  is the secant modulus of the uniaxial 

stress–strain curve. 

Adding the elastic strains, we obtain the total strain: 
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where  C
 
is the elastic flexibility matrix. 

    Finally, the total Cauchy stresses are obtained in terms of 
the total logarithmic strains as: 
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I. Boundary conditions on an irregular contour 

 In the present Inverse Approach, the displacements of the 
nodes at the contour are supposed tangential to the contour 
defined by the tools. Dhatt and Touzot [1] proposed to 
establish a contour reference and impose the normal 
displacements null in this reference. 

Considering a node i on the contour of a mesh. We 
establish a contour reference defined by the tangential and 
normal directions in which we impose the normal 
displacement '

iV 0 (tangent displacement '
iU 0 ). The 

following matrix allows one to transform les displacements 
between the contour reference and global reference: 

cos sin '

sin cos '
i i i i

i i i i

U U

V V

 
 

     
    

     
                   (34) 

It is more convenient to transform the tangent stiffness 
matrix and the vector of residual forces at the elementary 
level.  

After the resolution, the displacements in the contour 
references should be re-transformed into the global 
reference.  

IV. NUMERICAL RESULTS 

The validation of the simplified Inverse Approach is done 
by using the code ABAQUS®/Explicit. Two axi-symmetric 
parts are considered. 
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A. Numerical results of the part 1 

 
Fig. 3 Geometry of the part 1 

The geometry of the part 1 is shown in Fig. 3. In the 
simulation by the incremental approach, the initial billet is 
discretized into 176 axi-symmetric triangle elements (CAX3 
of Abaqus). The tools (punch and die) are supposed rigid and 
modeled by analytic rigid wire. One point of the tool surface 
was defined as reference point. The tools displacement was 
specified by using this point.  

A master-slave contact approach is used in this simulation 
where the tools are considered as the master surfaces and the 
outer surface of the billet (surface facing the tools) 
constitutes the slave surface.  

The material of the billet is the lead whose properties are: 
Young's modulus E=17 (GPa), Poisson's ratio =0.42, 
friction coefficient =0.35, Hollomon stress-strain curve 

 0.27pσ=65.8 ε  (MPa). The punch is moved vertically. The 

total punch travel is 3.52 (mm). In order to compare the two 
approaches, we mesh the billet (Fig. 4a) and use Abaqus to 
obtain the mesh of the final part (Fig. 4b), then we use this 
mesh for I.A. modeling to obtain the mesh of the initial billet 
(Fig. 4c). We note the mesh of the initial billet obtained by 
I.A. is very similar to that of Abaqus. 

 

                  
 
 
 

    
 

 

Fig. 4 Initial and final meshes of the part 1 

The distributions of the equivalent plastic strain obtained 
by the Inverse Approach and Abaqus are shown in Fig. 5. We 
note that the distributions are similar and the maximal and 
minimal values are in good agreement.  

B. Numerical results of the part 2 

The second axi-symmetric (Fig. 6) has a horizontal plane 
of symmetry. The half section is meshed with 889 
axi-symmetric triangle elements (CAX3 of Abaqus, Fig. 7). 

The material properties of the billet are: Young's modulus 
E=10300 (MPa), Poisson's ratio =0.3, friction coefficient 

=0.15, Hollomon stress-strain curve  0.2pσ=140 ε  (MPa). 

The punch travel is 3.72 (mm).  
 

          
 

a. Inverse Approach 
 

                               

b. Abaqus (Incremental Approach) 
 

Fig. 5 Equivalent plastic strain obtained by I.A. and Abaqus 
 

 
Fig. 6 Geometry of the part 2 
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Fig. 7 Initial and final meshes of the part 2 

The mesh of the initial billet and the mesh of the final part 
obtained by Abaqus are shown by Fig. 7a and 7b. Then we 
use the mesh 7b for the I.A. modeling which gives the mesh 
of the initial billet (Fig. 7c). A fairly good agreement is 
observed between the two meshes (Fig. 7a and 7c). 

Fig. 8 shows the distributions of the equivalent strain 
obtained by the Inverse Approach and Abaqus incremental 
approach. Comparing the equivalent strain distributions 
obtained by the both approaches, one observes that the 
equivalent plastic strain distributions are quantitatively very 
close to each other. The maximum plastic equivalent strains 
are respectively 0.97 and 1.02. The percentage error is 
reasonably acceptable (5.2 %). 

 
 

 
 

 
 

 
 
 

     
 

Fig. 8 Equivalent plastic strain obtained by I.A. and Abaqus 

V. CONCLUSION 

 A simplified method called “Inverse Approach” (I.A.) is 
developed for the axi-symmetrical cold forging modeling.  
The approach is based on the knowledge of the shape of the 
final part. The assumptions of the proportional loading and 
the simplified tool actions make the calculation of the I.A. 
very fast. 

The strain equivalent results obtained by the Inverse 
Approach are less accurate, but very close to those obtained 
by the Abaqus incremental approach. The Inverse 
Approaches is very advantageous to quickly realize the 
preliminary perform design and optimize the process 
parameters.  

Some limitations of the I.A. are observed. The 
assumptions on the constitutive law and the tool actions are 
questionable; they cannot provide good stress estimation 
because of neglecting the loading history. For complex parts 
in very large deformation, the remeshing operation and a 
more powerful resolution algorithm should be considered. 

The future work for the I.A. in the forge application is to 
improve the stress estimation. Recently, a new approach 
called “Pseudo Inverse Approach” has already been proposed 
by Guo et al. [9] for the sheet for sheet forming, which keeps 
the advantages of the I.A. but gives good stress estimation 
with the loading history consideration, will be tried for the 
forge application.  
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