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Abstract—In this paper we present the dynamic answer 

modelling, with the dynamic models method and after that 
using the finite element method, for an experimental 
mechanism used to mowers machine. The proposed mechanism 
is RTR-TRT type. The paper is structured in three parts. In the 
first part we present the stage to day of the various type of 
mechanism used as design solution to the cut-off systems of the 
mowers machines. We present the kinematic scheme of the 
proposed mechanism as a structural equivalent mechanism, 
following the structural and geometric synthesis. In the second 
part we present the mechanism’s kinematic model and we 
perform a dynamic calculus. With this we obtain the kinematic 
parameters variation laws in dynamic regime, and also other 
dynamic parameters. In the last part of the paper is presented 
the finite element analysis in dynamic regime, using as input 
law for the load, the motor torque obtained by experimental 
analysis. It is presented the finite element analysis results: 
stress, strain and displacement distribution for the 3D model. 
 

Index Terms— modelling, kinematics, dynamics.  

I. INTRODUCTION 

Aspects concerning the dynamic answer analysis of the 
mobile mechanical systems are presented in the researches of 
many authors. The dynamic analysis is presented in [1], in 
two variants, respectively with the dynamic models method 
and with Newton-Euler method, completed with the 
Lagrange multipliers. In Fig. 1 we present some mechanism 
models kinematic schemes used in the mowers cut-off 
systems structures, (a-crank – rod, b and c – balancing 
mechanism, and d - oscillatory washer mechanism) [2, 4]. 

 

 
Fig.1. Scheme of mechanism used to the cut-off systems 
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II.  STRUCTURAL ANALYSIS 

In Fig. 2 we present the proposed mechanism kinematic 
scheme, for the mowers machine cut-off system. 
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Fig.2.The kinematic scheme of the proposed experimental model 

 
As it is observed from the kinematic scheme the 

mechanism has 5 kinematic elements and 7 kinematic joints. 
So we have the degree of mobility of the mechanism: 
M=3·5-2·7=1. 

That means that we have a motor element that is the rod 1. 
Analyzing the structural decomposition we observe that we 
have 2 dyads, the BBC dyad of RTR type, and the DEF dyad 
by TRT type. 
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Fig.3.The structural decompose in Assur groups 

III. THE DYNAMIC ANSWER ANALYSIS OF THE MECHANISM 

USING THE DYNAMICS MODELS METHOD 

The kinematic scheme of the mechanism is presented in 
Fig. 2. 

We know that the dynamic analysis straight on the 
mechanism with the Lagrange or Hamilton method is 
difficult, that why we appeal to dynamic study based on the 
dynamics models [1]. 

It is necessary to respect two conditions: 
1. The power of the forces and moments which acts upon 

the mechanism elements, to be equal with the power of the 
forces and moments which acts upon the model. 

2. The kinetic energy of the mechanism must be equal in 
any moment of the movement with the kinetic energy of the 
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model. 

A. Positions 

We write the relations for the positions (according to Fig. 
4). The point B coordinates are determined with the relations: 
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The point C coordinates are known, and they are gibed by 
the relations: 
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From (2) we could determine the 1
3S  movement. 
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Fig.4.The calculus scheme for the mechanism kinematic model 

 

The 3  angle is determined with (4): 
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The point D coordinates are obtained with relation (5): 
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The point E coordinates are determined with relation (6): 
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We know: ;axC   byC  ; 3 ;   24 ; .ct  

Fx ; Fy ; 
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 FF yx , - The point upon the slide (which is stationary); 

B. Speeds 

We derivate in report with the time the relations (1), (2), 
(5) and (6). 

The absolute speed of the point B is determined with the 
relation: 
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The absolute speed of the point D is determined with the 
relation: 
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The absolute speed of the point E is determined with (9): 
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C. Accelerations 

We derivate in report with the time the relations (7), (8) 
and (9). 

The components of the point B accelerations vector are 
computed by the relations: 
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The components of the point D accelerations vector are 
computed with the relations: 
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D. The reaction forces establish 
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Fig.5.The scheme of forces and moments which acts upon the DEF dyad 

 
TRT dyad is represented in Fig. 5. 

 
Input dates (know): 

 - Vectors 4


 and 5

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The D, E and F joints coordinates. 
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The translating joints D and F angles, that are 4  and 5 . 

We want to obtain: 
- The reactions forces from the D, E and F kinematic joints, 

that is: 
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We proceed in the following way: 
We write the axes projections equations for the forces that 

act upon the dyad, that are: 
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We write the bound relations between reaction force 

components 34F , which are perpendicular on the translating 

joint axis: 
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By resolving the system made by (12) and (13) we obtain 

the forces 34 34,  x yF F  and 05F . 

We write the axes projection equations for the forces that 
act upon the element (4), that are: 
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Resolving the system (14) we determine the forces xF54  

and yF54 . 

We write the moment’s equations in report with the point E 
for the element 4 and 5 respectively, and in report with the 
point D and F for the whole dyad, that is: 
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By solution of the system (15), we determine the 

application point coordinates of the reactions forces 34F


 

and 05F


, which are orthogonal on the slide ways D and F, 

that is,  DD yx ,  and  FF yx , . 

RTR dyad is represented in Fig. 6. 
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Fig.6. The scheme of the forces and moment which act upon the dyad BRBTC 

Input data (know): 
- The point B coordinates, the elements mass centers 

coordinates. 

- The vectors  2


 and 3


. 
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The joints C coordinate. 

The B slide way angle, that is 3 . 

We want to determine: 
- The reactions forces from the kinematic joints B and C, 

those are: 
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We proceed in the following way: 
- We write the axis equations projections, for the forces 

which act upon the element 2, that is: 
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We write the connecting relation between the components 

of the reaction 32F


, which is orthogonal on the slide way, that 

is: 
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We write the moment’s equation in report to the point C, 
for the entire dyad, that is: 
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From the equations (16), (17) and (18) we determine the 

forces: xF12 , yF12 , xF32 , yF32 . 

We write the axis projection equations for the forces that 
act upon the dyad: 
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By solution of the system (19) we establish the forces xF03  

and yF03 . 

We write the moment’s equations reported to the point B 
for the element 2, and for the element 3 in report with the 
same point B, that is: 
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By resolving the system (20) we determinate the 

application point of the reaction force 32F


. 

The motor element is represented in Fig. 7. 
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Fig.7. The scheme of the forces and moments that acts upon the motor 
element 

 
We proceed in the following way: 
- We write the axis projection equations, for the forces that 

act upon the element 1, that is: 
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- We write the moment’s equations for the element 1, 
reported to the point A: 
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E. The inertia moments 
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Where  
1  is the angular speed of the element 1. 
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If we neglect the inertia moments we have: 
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The calculus of the reduced inertia moment is made from 
the condition: 
T model = T mechanism 
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Where    is the angular speed of the element 1. 
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We apply the kinetic energy theorem: 
LdT   
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The angular speed for the motor element is give by the 
relation: 
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F. Graphical results 

The force are represented in newton, angle are in radian. 
Graphics’ for the kinematics parameters calculated in 

dynamic regime: 

 
Fig.8.The law of variation of the motor element angular speed and angular 
acceleration 
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Fig.9.The law of variation of the motor element angular speed and angular 
acceleration 

 
Fig.10.The graphic for the bound force F05 variation 
 

  
Fig.11.The graphic for the bound forces F54x, F54y variation 

 

   
Fig.12.The graphic for the components of the bound force F32 

 

  
Fig.13.The graphic for the components of the bound force F03 

IV. EXPERIMENTAL RESULTS 

In Fig. 14 is presented the mechanism experimental model 
mounted on the essay stand. 

     

 
Fig. 14.The mechanism mounted on the test stand 
 

For the experimental research the mechanism was 
mounted on a test stand, equipped with an electric motor. 
Also the stand offers the possibility to modify the angular 
speed by means of a conical variable speed drive. In Fig. 14 
we present the acquisition system connected with the 
displacement transducers W50, W100 and W300. The force 
of technological resistance appear because of the adjust 
screw, as is presented in the Fig. 15, which push a plate upon 
the knife, resulting an friction force, which can be adjusted 
and experimentally measure. 

 
Fig.15.Transducers to measure the resistance force and of the motor torque 
 

We made tests for 3 technological forces, which have been 
determined whit the force transducer. Also have been 
determined the displacements S1 – displacement of the slide 
1, S2 – displacement of the slide 2, and S3 – displacement of 

Mechanism with screw for the 
cut-off force simulation 
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the knife, the motor moment and the resistance force. In Fig. 
16 is presented the time variation of the slide displacement 
S1, S2 and S3, for the first technological force, and the motor 
moment. 

 
Fig.16.Original registrations. Test 2, ω1 angular speed, F2 technological force 

 
We processed on to computer the dynamic model, and we 

obtained the graphics’ for the dynamic parameters, for a 
complete rotation of the motor element. After that, with the 
help of the Nastran finite element software package we made 
the dynamic modeling, with finite elements, and we obtained 
the stress, strain and displacement distribution, considering 
the fiction from the mechanisms’ kinematics joints. The finite 
element dynamic analyze results are presented in Fig. 17, 18 
and 19. 

 
Fig.17.The stress distribution for the mechanism assembly 
 

 
Fig.18.The displacements distribution for the mechanism assembly 

 
Fig.19.The strain distribution for the mechanism assembly 

V. CONCLUSIONS 

After the dynamic analyze and of the dynamic model 
computer processing we made the following observations: 

- The variations law of the motor element angular speed 
has been graphically represented, in the Fig. 8, for a complete 
rotation of the motor element, and he vary between the limits 
10,5 and 8 rad/sec; 

- The angular acceleration represented in Fig. 9, vary 
between the limits 0,6 to - 0,8 rad/sec2 ; 

- The angle phi3 vary between -180 and 165 degree; 
- The displacement S31 varies between 95 and -150 mm; 
- The displacement S32 varies between -94 and -106 mm; 
- The displacement S5 varies between the limits 175 to 125; 

the total displacement is 50 mm. 
- That displacements are represented in Fig. 16, by 

experimental way; 
- The bound force F05 varies between 0 and 50 N; 
- The reaction F34 is greater upon the y axis; he varies 

between 101.7 and 101.2N, at a complete rotation of the 
element 1; 

- The reaction F54 is greater upon the y axis, varying 
between -99N and -102N; 

- The great value has the reaction F12, the component upon 
the  x axis varying between -150N and 150N, and the 
component upon the y axis varying between -220 and 70N, 
the component upon the y axis being much greater that that 
upon the x axis.  

REFERENCES 
[1] Dumitru, N., Nanu, Gh., Vintilă D., Mechanisms and mechanical 

transmisions, Editura Didactică şi Pedagogică, Bucureşti , 2008. 
[2] Dumitru, N.; Dynamic Answer Modeling of a Mechanism from the 

Mowers Machine Structure. 1317-1319, Annals of DAAAM for 2009 
& Proceedings of the 20th International DAAAM Symposium, ISBN 
978-3 901509-70-4. 

[3] Dumitru N., Cherciu M. Theoretical and Experimental Modeling of the 
Dynamic Response of the Mechanisms with Deformable Kinematics 
Elements, IFToMM, 2007, Besancon, France. 

[4] Dumitru N.; Researches upon the kinematic and dynamic response of 
the oscillatory washer mechanism from the harvester machine, The 8th 
International Conference – Fuel Economy, Safety and Reliability of 
Motor Vehicles, 12-14 November 2009, volume 1, pp. 447-452, ISSN: 
2067-1083, 2009 

[5] G. Piras, W.L. Cleghorn, J.K. Mills, Dynamic finite-element analysis of 
a planar high-speed, high-precision parallel manipulator with flexible 
links, Mechanism and Machine Theory 40 (2005) 849–862. 

Proceedings of the World Congress on Engineering 2010 Vol II 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-7-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010




